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Abstract 

Demand response (DR) management systems are a potentially growing market due 
to their ability to maximize energy savings by allowing customers to manage their 
energy consumption at times of peak demand in response to financial incentives from 
the electricity supplier. Successful execution of a demand response program requires 
an effective management system where the home energy management system 
(HEMS) is a promising solution nowadays. HEMS is developed to manage energy use 
in households and to conduct the management of energy supply, either from the grid 
or the alternative energy sources like solar or wind power plants. With the increase 
of vehicle electrification, in order to achieve a more reliable and efficient smart grid 
(SG), cooperation between electric vehicles (EVs) and residential systems is required. 
This cooperation could involve not only vehicle to grid (V2G) operation but a vehicle 
to home (V2H) too. V2H operation is used to transfer the power and relevant data 
between EVs and residential systems. This paper provides an efficient HEMS enhanced 
by smart scheduling and an optimally designed charging and discharging strategy for 
plugged-in electric vehicles (PEVs). The proposed design uses a fuzzy logic controller 
(FLC) for smart scheduling and to take the charging (from the grid)/discharging (supply 
the household appliances) decision without compromising the driving needs. Simula-
tions are presented to demonstrate how the proposed strategies can help to reduce 
electricity costs by 19.28% and 14.27% with 30% and 80% state of charge (SOC) of the 
PEV respectively compared to the case where G2V operation only used along with the 
photovoltaic (PV) production, improve energy utilization by smoothing the energy 
consumption profile and satisfy the user’s needs by ensuring enough EV battery SOC 
for each planned trip.

Keywords:  Fuzzy logic controller, Home energy management system, Energy storage 
systems, Vehicle-to-home, Smart home, Smart grid

Introduction
The demand for electricity due to industrialization and the shift from conventional 
grids to smart ones is exponentially growing nowadays. Meanwhile, the use of renew-
able energy sources (RESs), EVs, and energy storage systems (ESSs) is also increasing. 
To influence customer use of electricity in ways that will produce desired changes in the 
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utility’s load profile, demand side management (DSM) is used for those utility designed 
activities. Moreover, time-of-use pricing (TOU) encourages consumers to move their 
charging from peak to off-peak periods. DR strategies are considered one of the most 
important DSM solutions, it is gaining more attention in power system operations 
recently, driven by the increasing interest in implementing the SG concept. Therefore, in 
order to remodel and adapt to increasing load levels, DR is a promising long-term solu-
tion to improve energy efficiency and reducing energy loss. It also plays an important 
role in both balancing energy supply and demand and enhancing the reliability in the SG 
(Jabir et al. 2018; Paterakis et al. 2015; Durvasulu and Hansen 2018; Hou et al. 2019; Cui 
et al. 2014).

Recent research considers HEMS as an integral part of the SG that plays a key role in 
implementing DR applications for residential consumers, which aim to minimize elec-
tricity bills and improve energy efficiency. HEMS offers economic incentives for users 
to manage their electricity consumption by shifting the operational time of household 
appliances during peak demand in response to electricity price signals (Zhou et al. 2016), 
as most customers do not have time to manage, control and monitor their electricity 
consumption. Many researchers are working on the development of efficient and reli-
able HEMS using different strategies and optimization techniques. For example, to solve 
the scheduling problem (Aslam et  al. 2018; Antunes 2018; Foroozandeh et  al. 2020) 
used mixed integer linear programming (MILP). While Ahmad et  al. (2017) proposed 
an optimal home energy management system using a genetic algorithm (GA) where 
the constrained optimization problem is mathematically formulated by using the mul-
tiple knapsack problems. In ref Lokeshgupta and Sivasubramani (2018) game theory 
approach is used to minimize both the consumer’s energy bill and the system peak 
demand simultaneously by scheduling the residential energy consumption. However, 
these strategies are computationally complex. Therefore, they are not favorable for real-
time applications.

Recently, a wide variety of applications that have been made based on the FLC empha-
sized its effectiveness as it is easy to implement and much closer in logic to human 
thinking and natural language than the traditional logical systems (Rajeswari and Janet 
2018; Chandran et al. 2016; Rahman et al. 2014). FLC is widely adopted for home energy 
management techniques. For example, in order to avoid overriding the autonomous 
thermostat decision, an Adaptive Fuzzy Logic Model (AFLM) is developed for residen-
tial energy management in the SG environment to adapt to the new user’s preferences. 
The proposed study has offered the user a control capability, it did not consider the cost 
reduction as a preference though. Fuzzy et  al. (2018) proposed an FLC for HEMS to 
minimize electricity cost by managing the energy from the PV to supply home appli-
ances in the grid-connected PV battery system. In this study, automatic tuning of the 
fuzzy membership functions using the Genetic Algorithm is developed to improve 
performance, but the FLC is developed by the distributed approach where each home 
appliance has its own FLC make it more complex to implement compared to a fuzzy 
logic controlling all the appliances. Moreover, Khalid et al. (2019) designed HEMS using 
fuzzy logic to manage the energy consumption of the heating, ventilation, and air con-
ditioning (HVAC) and illumination while the rest of the household appliances is man-
aged using heuristic optimization techniques. This design is not fully automated control 
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where some parameters require a regular update from the user. Chekired et al. (2017) 
elaborated a strategy to manage home energy demand using a fuzzy logic technique that 
mainly depends on the PV available energy and according to an established load priority. 
The proposed strategy has saved 26.49% and 25.54% of energy. The author here has not 
considered the price signal in order to maintain cost reduction where the reduction in 
the consumed energy does not ensure the cost reduction because the price is changed in 
different periods.

DR provides the controllable functionality over some appliance’s activities but does 
not reduce the total demand. Consequently, PEVs and PVs technologies and DR can be 
engaged to the load profile and achieve a greater energy balance. Recently, the imple-
mentation of EVs integrated into residential applications is rapidly growing thanks to 
their power flexibility, storage properties, and the tax breaks or rebates to EV owners 
which leads to economic and environmental benefits (Verma et al. 2015). As stated in 
the Future Energy Scenarios (FES) report published by the UK National Grid, the num-
ber of EVs in the UK is expected to increase significantly to 11 million by 2030 and to 36 
million by 2040. Consequently, the electricity network can be affected due to the ran-
dom charging of EVs during peak hours causes an electricity price increase, additional 
load, and force serious stress on the distribution grid (Denai 2019). However, EVs could 
also serve as temporary energy storage with a bi-directional capability to provide auxil-
iary power fed to the household appliances, other EVs, and/or utility grids when needed. 
However, other than the disruption of the EV availability for travel needs, EVs taking part 
in bi-directional power flow could result in more charge cycles. Thus, battery deteriora-
tion will be more severe depending on the depth and frequency of the charging and dis-
charging cycles (Storage et al. 2018; Khan et al. 2019). Therefore, to maintain an efficient 
energy balance, advanced management of the EV battery need to be investigated. In this 
context, Irena (2017) used the term smart EV charging as “adapting the charging cycle 
of EVs to both the conditions of the power system and the needs of vehicle users". This 
facilitates the integration of EVs while meeting mobility needs and encourages EV own-
ers to adopt their EVs to serve as a DR resource. The development of modern automa-
tion technology offers vast benefits not only in economics and environmental protection 
but also in employing DR (Radu et al. 2017). For example, Nour et al. (2019) and Sachan 
et al. (2020), smart charging strategies of EVs are proposed, in which the EV charging 
process benefits both electric utility and customers by shifting EV charging to the off-
peak and low-cost periods. In addition, Chen et al. (2016), proposed a new scheduling 
approach for isolated microgrids (MGs) with renewable generations by incorporating 
the demand response of EVs. Khemakhem et al. (2019) proposed a rule-based double-
layer supervision strategy for residential energy management systems. The first strat-
egy aims to schedule the operation time of the household appliances using a demand 
response algorithm. The second strategy aims to ensure the bi-directional power flow 
from the home to the PEVs and vice versa. However, these strategies deal with exact 
values rather than approximate values compared to fuzzy reasoning which leads to a less 
accurate decision-making process.

Thus, the novel contributions of the proposed design can be summed up as follows: (I) 
An automated and independent HEMS assisted by the V2H technique is implemented 
without compromising the owner’s driving needs and convenience. (II) The proposed 
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approach uses a fuzzy logic controller because of its flexibility in implementation and 
the capability of dealing with approximate values for more precise decisions. (III) This 
study also quantifies the potential cost savings of V2H operating mode. (IV) This paper 
also evaluates the impacts of PEVs participating in HEMS. It has the potential to achieve 
higher levels of self-consumption compared to using only stationary batteries.

This paper is organized as follows: In section “Overview of HEMS and EV technolo-
gies”, HEMS and EV technologies are briefly described. Section “HEMS and PEV mod-
els” demonstrates HEMS and the PEV models. Section  “Fuzzy logic controller and 
proposed strategies” presents the FLC and discusses the proposed strategies. Section 
“Simulation and result discussion” presents the results and discussion. Finally, the con-
clusions of the paper are summarized in section “Conclusion”.

Overview of HEMS and EV technologies
Home energy management system (HEMS)

In the context of the SG, HEMS is a fundamental component that can achieve an effec-
tive DR. Based on the customer’s preferences, it is used to monitor, control and optimize 
the energy consumption in real-time. Therefore, customers are enabled to take part in 
DR programs to reduce electricity costs and achieve efficient energy utilization. Nowa-
days, HEMS is more flexible and able to manage different types of household resources 
such as RESs and home energy storage systems (HESS). Moreover, power consumption 
and electricity pricing are provided to the users in real-time which helps them to select 
their preferences to schedule the operation time of different appliances to improves their 
energy usage efficiency.

To design an effective HEMS model, adopted communication technologies and appli-
ances classifications must be addressed. According to Serban et  al. (2020), communi-
cation networks in smart grid applications based on their coverage classified as follow: 
Home Area Networks (HANs), Neighborhood Area Networks (NANs), and Wide Area 
Networks (WANs). These networks are the wired networks (optical fiber. twisted pair 
and power line), and wireless network (Wi-Fi, ZigBee, Bluetooth, LoRa, and different 
generations of cellular). Hylsberg et  al. (2014), proposes implementing ZigBee IP and 
Smart Energy Profile 2.0 standards to a wide extend conforms with the Internet Proto-
col suite and state-of-the-art web services development enabling status monitoring and 
peak load shifting driven by distribution system operator (DSO) price policies as well as 
energy usage and energy bill reductions.

Moreover, the classification of home appliances is very important for the SG system as 
it provides a solution to understand the way of operation of each appliance. For example, 
the author in Xiao et al. (2019) has classified the household appliances into three cat-
egories: non-interruptible appliances and interruptible appliances and thermostatically 
controlled appliances while Pipattanasomporn et  al. (2014) discusses high-resolution 
data at an appliance level intended to develop realistic load models, analyze various DR 
algorithms for home energy management, and thus ultimately gaining an insight into 
how individual appliance operation can be controlled for an emerging DR program. 
Furthermore, four types of household appliances discussed in Xu and Jiao (2020): core 
electrical appliances, electrical appliances capable of providing storing energy, electrical 
appliances of any use time, and load aggregators.
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Overview of EVs battery and V2H technique

Unlike other types of batteries, EV batteries have a low self-discharge rate—which means 
they are less likely to lose their charge when they are not being used. Once an EV battery 
is no longer capable of powering a car, it can be reused for energy storage in the home, 
workplace, or electricity network. However, EV batteries are subjected to unavailability 
in some periods and different SOC constraints must be addressed (Storage et al. 2018; 
Bussar et al. 2013). Therefore, smart charging strategies and other energy management 
techniques like the V2H technique are addressing those challenges and benefiting from 
the EV battery as an auxiliary power supply.

According to battery university (Battery University 2020) comparison last updated on 
2020-10-21, Table 1 compares the battery size and energy consumption of common EVs 
in the market.

Nowadays, Li-Ion batteries have the biggest market sale in fitting electric vehicles, 
thanks to their moderate energy consumption, increased cycle life, low weight, and high 
energy storage potential. Recently, Tesla has announced a new battery technology that 
lasts over 15,000 cycles makes it a suitable choice enabling V2G or/and V2H features. 
For EVs, a battery charger is a fundamental unit. Therefore, choosing the power con-
verter topology is important for EV battery charging/discharging. An electric vehicle 
battery charger should be with bi-directional power flow to allow G2V, V2G, and/or 
V2H. for example, a bi-directional AC-DC converter with a flyback based regenerative 
clamp circuit can recycle the energy stored in the clamp capacitors twice in a switching 
cycle, thus the overall power conversion efficiency is improved (Nayak and Rajashekara 
2019).

While wireless EV charging (both stationary and dynamic) has been proposed in dif-
ferent studies there is still some undergoing research investigating the dynamic charg-
ing and discharging strategies. With the increase in mobility-as-a-service and the 
eventual shift towards fully autonomous vehicles, these strategies need to be further 
adjusted, mainly in urban areas. EV battery has massive energy storage capacity which 
can be potentially utilized as a temporary energy source enabling V2H implementation. 
Hence transferring the power and relevant data between EVs and home and drive the 

Table 1  Battery size and energy consumption of common EVs in the market

EV model Battery size Range km (mi) Wh/km (mi) Energy cost/km (mi)

BMW i3 (2019) 42 kWh 345 km (115) 165 (260) $0.033 ($0.052)

GM Spark 21 kWh 120 km (75) 175 (280) $0.035 ($0.056

Fiat 500e 24 kWh 135 km (85) 180 (290) $0.036 ($0.058)

Honda Fit 20 kWh 112 km (70) 180 (290) $0.036 ($0.058)

Nissan Leaf 30 kWh 160 km (100) 190 (300) $0.038 ($0.06)

Mitsubishi MiEV 16 kWh 85 km (55) 190 (300) $0.038 ($0.06)

Ford Focus 23 kWh 110 km (75) 200 (320) $0.04 ($0.066)

Smart ED 16.5 kWh 90 km (55) 200 (320) $0.04 ($0.066)

Mercedes B 28 kWh 136 km (85) 205 (330) $0.04 ($0.066)

Tesla S 60 60 kWh 275 km (170) 220 (350) $0.044 ($0.07)

Tesla S 85 90 kWh 360 km (225) 240 (380) $0.048 ($0.076)

Tesla 3 75 kw 496 (310) 151 (242) $0.030 (0.048)
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development of new technologies such as wireless charging and move charging from 
home/office to hubs (Renewable, International Agency, Energy 2019).

HEMS and PEV models
Household appliances model

As shown in Fig. 1, the household power profile for each time-step can be fulfilled through 
(i) electricity generated by the PV system; (ii) electricity supplied from the stationary bat-
tery and/or from the EV battery if the vehicle is available; and (iii) electricity consumed 
from the power grid. Where charging/discharging of the stationery and EV batteries within 
the same time-step is not possible because the stationary battery can be used only dur-
ing peak hours and if the EV is not available. As shown in Table 2, the household appli-
ances in this paper are divided mainly into two categories; first, shiftable appliances that 
could reschedule their operating time based on load demand and electricity price such as 
washing machine, dishwasher, and clothes dryer. Then, non-shiftable appliances require a 

Fig. 1  HEMS Architecture

Table 2  Home appliances classification

None-shiftable appliance Rated power (W) Shiftable appliance Rated 
power 
(W)

Iron 1000 Washing machine (WM) 800

Oven 2000 Dish washer (DW) 1100

Laptop 20 Clothes dryer (CD) 400

Microwave 600 Hair dryer (HD) 450

Television 200 Hair straightener (HS) 20

Lighting 100

Refrigerator 200

Water heater 2000



Page 7 of 24Alfaverh et al. Energy Informatics             (2023) 6:6 	

permanent power supply during operating time regardless of electricity prices. Therefore, 
the total power consumption by the appliances can be calculated as follow:

where Pnon−sh
j  and Psh

i  are the power of nonshaiftable and shiftable appliances respec-
tively, j and i represent the index of the appliances.n and m are the numbers of non-shift-
able and shiftable appliances respectively. The status of the shiftable and non-shiftable 
appliances ( ui(t) , uj(t) ) are set as 0 if the appliance is off and 1 when the appliance is 
operating.

PEV system model and formulation

Some of Nissan Leaf 2017 model parameters are used in the simulations since it offers a 
capacity suitable for the designed case [the maximum battery capacity Cmax

PEV  (40  kWh), 
charging time empty to full (18 h)]. The maximum charging Pchmax

PEV /discharging Pdismax
PEV  

power rate is 2.3 kWh. All the PEV system components are viewed in terms of their input 
and output. Their internal behavior is out of the scope of this study. The charging Pch

PEV/dis-
charging Pdis

PEV   power rates are dynamic with respect to the price and the demand respec-
tively. Because PEV can act as a temporary source supplying the appliances during the peak 
hours, it can help maintain more cost reduction during the proposed charging slots, charg-
ing power rate depends on the real-time price is calculated as follow:

where RTP(t) is the real-time price and Pricemin is the minimum price which is set as 
0.08. Pchmin

PEV  is the minimum charging power rate of the PEV and set as 1150 kWh.
The discharging power rate set equal to the total demand power if the total demand 

power is less than the maximum discharging power rate:

The total energy of the PEV is

uPEV  represent the status of PEV (1 charging state while 0 is discharging state).
The SOC of the PEV represented as follow:

To avoid deep charging and discharging, the upper and lower limits of the PEV battery 
SOC are

ta and td represent the PEV arrival and departure time, respectively.

(1)PA(t) =

n

j=1

Pnon−sh
j (t)uj(t)+

m

i=1

Psh
i (t)ui(t)− PPV (t)

(2)Pch
PEV (t) = Pchmax

PEV −

(

(

(RTP(t)− Pricemin)
/

Pricemin

)

∗Pchmin
PEV

)

(3)Pdis
PEV (t) = PA(t)PA(t) < Pdismax

PEV otherwise Pdis
PEV (t) = Pdismax

PEV

(4)EPEV (t) =
td
∫
ta

Pch
PEV (t)uPEV (t)+ Pdis

PEV (t)(1− uPEV (t))

(5)SoCPEV (t) = SoCPEV (t − 1)+ (PPEV (t))∗�t
/

Cmax
PEV

(6)0.2SoCmax
PEV ≤ SoCPEV (t) ≤ 0.8SoCmax

PEV t ∈ [ta, td − 1)
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The designed charging/discharging strategy will ensure that the SOC of the PEV bat-
tery will be at least 40% before any trip. In case the user intends to take a long trip, he 
must define the target SOC SoCtarget to calculate the required SOC as follow:

Therefore, the time duration needed to apply forced charging with the maximum 
power rate for this case can be calculated as follow:

Fuzzy logic controller and proposed strategies
Smart scheduling

In this model, the appliances are controlled by an FLC in order to make an optimal 
scheduling decision. It provides a workspace for computation with words and offers 
a hand in managing uncertainty during the designing of expert systems. It has now 
become an unavoidable part of machine learning as it simplifies the overall implemen-
tation, leads to better performance, and lower time-consuming as compared to other 
techniques. Fuzzy logic-based implementation overcomes the limitation of rules-based 
techniques (crisp values) and can handle imprecise and uncertain situations.

Mamdani-type fuzzy inference system is used in this design because it offers a smooth 
output. A fuzzy inference system takes the electricity price signal and demand load 
as inputs. As shown in Fig.  2, the membership functions (MFs) for the input variable 
“power demand” are triangular and labeled as Low, Average, and High. The universe of 
discourse of power demand is chosen as [0 6300] (Watt) while the membership function 
for the input variables “electricity price” are gaussian and defined as “Low” and “High” 
and the universe discourse is [0 0.16] (€/kWh).

The outputs of the fuzzy inference system are: Shifting (switching the appliance off), 
Valley Filling (switching the appliance on) and Do-nothing (keep the operating status of 
the appliance without any change). As shown in Fig. 3, the fuzzy sets for each output are 
determined as Bad Action (BA), Good Action (GA) and Very Good Action (VGA). The 
universe of discourse of the membership functions is defined as [0 100] to evaluate all 
possible modes with values out of 100. While Table 3 shows the input and the output of 
the fuzzy logic controller (controller knowledge base rules).

(7)SoCreq(t) = SoCtarget − SoCPEV (t)

(8)T =
(

SoCreq(t) ∗ C
max
PEV

)

/

Pchmax
PEV
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Fig. 2  a Fuzzy sets of power demand input variable, b fuzzy sets of electricity price input variable
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The pseudo-code listed in algorithm 1, illustrates the procedure of the main algorithm of 
the DR. The controller will receive the scheduling modes m1 (Shifting, Valley Filling and 
Do-nothing), then, the status of the shiftable appliances ( ui(t) ) must be checked at each 
time step in order to update the status signal of all shiftable appliances unew

all (t) as follow:
Calculate the total power of shiftable appliances

where n is the number of shiftable appliances, ui(t) is the appliances status (0—off, 
1—on).

During the shifting mode process, the amount of power that needs to be curtailed during 
peak hours is calculated as:

(9)Psh(t) =

n
∑

i=1

Psh
i (t)ui(t)
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Fig. 3  Smart scheduling fuzzy sets of the output variables

Table 3  Smart scheduling fuzzy logic controller knowledge base rules

BA bad action, GA good action, VGA very good action

Power demand Electricity price Shifting Valley filling Do nothing

High Expensive VGA BA BA

High Cheap BA BA VGA

Average Expensive VGA BA GA

Average Cheap BA VGA GA

Low Expensive BA BA VGA

Low Cheap BA VGA BA
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where Plower
avg    is the lower limit of the average total demand power level.

During the valley filling mode process, the amount of shifted power that needs to be run 
during off-peak hours is calculated as:

where Pupper
avg    is the lower limit of the average total demand power level.

If shifting mode is detected, there are two possible scenarios. Firstly, when the 
required power is higher than the total power demand of the shiftable appliances, then 
all shiftable appliances will be shifted. However, when the required power is lower than 
the demand of the shiftable appliances, there is no need to shift all appliances, some of 
them are enough to meet the average power demand. In this case, the system selects the 
appliances with the highest probability that calculated based on the rated power of the 
appliance as shown in Eq. (10)

In case there is only a shiftable appliance is operating, If the value of the shifting power 
required is too small compared to the rated power of that shiftable appliance, then the 
appliance will not be shifted.

If valley filling mode is detected, to select which appliance needs to be switched on, the 
Pv_f illing_req(t) is compared to the Psh(t) . Therefore, there are also two scenarios: when 
the required power is higher than the total rated power of shifted appliances, in this 
case, all shifted appliances will be switched on as the demand will not exceed the lower 
of the average power. However, when the required power is lower than the power rated 
of shifted appliances, it is not desired to run all shifted appliances. Therefore, selecting 
an appliance depends on the valley filling probability as presented in Eq. (11).

In case there is only one shifted appliance needs to be switched on, If the value of the 
valley filling power required is too small compared to the rated power of that shifted 
appliance, then the appliance will not be switched on.

In order to ensure that the shifted appliance will be switched on only for the calcu-
lated duration of the shifting mode for that appliance. The shifting counter ( ci ) is used as 
shown in algorithm 1.

Finally, the updated status signal of all shiftable appliances is represented as follow:

(10)Pshifting_req(t) = PA(t)− Plower
avg

(11)Pv_filling_req(t) = P
upper
avg

(12)α
shifting
i = 1− abs

(

Psh
i − Pshifting_req (t)

Psh
i + Pshifting_req

(t)

)

(13)α
v_filling
i = 1− abs

(

Psh
i − Pv.filling_req (t)

Psh
i + Pv.filling_req (t)

)

(14)unew
all (t) =

[

unew
i=1 (t),u

new
i=2 (t), . . .u

new
i=n(t)

]
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PEV charging/discharging strategy

The proposed PEV controller works based on the relationships between scheduled 
power demand, electricity price, availability of PEV and PV, and SOC of PEV. Due to 
the changes in the electricity price during a day, the DR program aims to inform cus-
tomers about the prices on an hour ahead basis to shift the charging battery of the PEV 
from peak demand hours to off-peak and/or supply the household appliances during 
peak hours when the power demand and the electricity price are high which in return 
minimize the electricity bills for the consumer and reduce the stress on the power grid. 
The operational strategy of the proposed PEV system is categorized into three modes: 
Mode-I (discharging/supplying the household appliances during peak demand). Mode-II 
(Charging from the power grid during off-peak). Mode-III (Disable mode/Do-nothing).

As shown in Fig.  4, the input variables of the fuzzy controller are set as Scheduled 
Power Demand, Electricity Price, SOC of PEV, PEV Availability and PV Availability, 
where the output variables are; Charging, Discharging, and Do-nothing. The MFs for 
input variables “Scheduled Power Demand” are gaussian and are labeled as High, Aver-
age and Low.

The universe of discourse of the scheduled power demand is chosen as [0 6300] (Watt) 
and the fuzzy sets of electricity price are defined as “Cheap” and “Expensive”, the MFs 
are also gaussian and the universe discourse is [0 0.16] (€/kWh) as shown in Fig. 4a and 
b. In Fig. 4c, MFs of the PEV SOC is illustrated, the minimum SOC is set to 40% in order 
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to extend the battery life. The four fuzzy sets of SOC are labeled as; “Quite Low”: occurs 
when SOC less than 40% and then the battery has to be charged, “Low”: is the fuzzy 
set that can be detected when SOC is between 40 and 65%, however, it is not too low, 
“High”: SOC is lower than 80% and “Quite High”: the battery is almost full. The MFs for 
the input variable which refer to PEV availability depend on whether the PEV is con-
nected to home “ON” or it is outside the home “OFF”. Therefore, the status of PEV set to 
“1” when it is available and connected to the home or “0” when it is outside as shown in 
Fig. 4d. The availability of PV is considered as a second auxiliary power supply for house-
hold appliances.

For each possible decision that the system can make in order to manage the status of 
the PEV (charging/discharging/do nothing), the fuzzy sets are determined as Bad Action 
(BA), Good Action (GA) and Very Good Action (VGA). The universe of discourse of 
MFs is set to [0 1] to evaluate all possible decisions with values out of 1 as shown in 
Fig. 5. The list of fuzzy rules fed to the controller are shown in Table 4. The total applica-
ble rules are 24 since we have eliminated all the rules when the EV availability input is off 
which is not applicable.

In the pseudo-code below of algorithm 2, the first five steps are to ensure the avail-
ability of the PEV to apply the proposed strategy and to ensure that the battery has 
enough SOC % for the next trip by setting the mode m2 to charging with the maxi-
mum charging power rate, one hour prior to the departing time if the SOC% is less 
than 40%. Then the algorithm checks if the driver has requested a SOC for a long trip 
in order to start the forced charging scenario when the time left for the trip ( td − t ) 
is exactly equal to the duration need to meet the required SOC with the maximum 
charging power T. Other than that, algorithm 2 will calculate the charging and dis-
charging power rates according to the real-time price and the power demand respec-
tively described in Eqs.  (2) and (3). PEV availability depends on the existence of the 
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Fig. 5  PEV management fuzzy sets of the output variables

Table 4  PEV management fuzzy logic controller knowledge base rules

BA bad action, GA good action, VGA very good action

Power demand Electricity price EV availability SOC Discharging Do nothing Charging

High Expensive ON Quite Low BA VGA BA

High Expensive ON Low VGA GA BA

High Expensive ON High VGA GA BA

High Expensive ON Quite high VGA GA BA

High Cheap ON Quite low BA GA VGA

High Cheap ON Low BA VGA BA

High Cheap ON High VGA GA BA

High Cheap ON Quite high VGA GA BA

Average Expensive ON Quite low BA VGA BA

Average Expensive ON Low VGA GA BA

Average Expensive ON High VGA GA BA

Average Expensive ON Quite high VGA GA BA

Average Cheap ON Quite low BA GA VGA

Average Cheap ON Low BA VGA BA

Average Cheap ON High VGA BA BA

Average Cheap ON Quite high VGA BA BA

Low Expensive ON Quite low BA BA VGA

Low Expensive ON Low BA VGA BA

Low Expensive ON High VGA BA BA

Low Expensive ON Quite high VGA BA BA

Low Cheap ON Quite low BA BA VGA

Low Cheap ON Low BA BA VGA

Low Cheap ON High BA BA VGA

Low Cheap ON Quite high BA VGA BA
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PEV at home, where the availability is set to 1 when EV is existing and connected to 
the home, and 0 when the EV is outside the home.

Simulation and result discussion
Scenario 1: Implementing smart scheduling strategy without V2H technique

The proposed scheduling strategy works based on real-time pricing (RTP), which is 
considered dynamic pricing. Using the DR program, the customers receive price sig-
nals on an hour-ahead basis as the electricity price varies at different time intervals 
of a day. Therefore, smart meters are used to receive the RTP signal from a utility 
and record the current power consumption data of all household appliances and PEV 
charging during their operation times, and then send them to the HEMS to manages 
and schedule the shiftable appliances. The simulation time is set at one day (24  h) 
with 1 s time step.

In order to evaluate the proposed scheduling strategy without implementing the V2H 
technique, two cases are considered based on equipping the PV into the home due to its 
impact on the total household demand.
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Case 1: Demand + PEV

In this case, there are some assumptions to be considered; (I) The total household 
demand is the sum of all household appliances consumption and random PEV charging. 
(II) The PEV works under G2V mode only without implementing PEV charging strategy 
in which the PEV battery charge from the power grid and it does not supply power to the 
home. (III) The user leaves the home by 09:00 and returns at 16:00. (IV) Once the PEV 
is available, it starts charging with the maximum power rate until the SOC reaches the 
maximum limit which is set to 80% in order to avoid overcharging.

The daily energy consumption profile including all appliances’ consumption and PEV 
charging shown in Fig. 6, and the electricity price signal received from the power utility 
is shown in Fig. 7. Two critical peak demand periods can be distinguished, which usually 
occur during morning and evening times when the electricity prices are higher. Due to a 

Fig. 6  Energy demand profile (average limits in green lines)

Fig. 7  Electricity price
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decrease in user’s activities such as cooking, washing, cleaning, and watching TV, there 
is also off-peak demand corresponding to a lower energy price.

Based on the proposed approach discussed in section "Scenario 1: Implementing 
smart scheduling strategy without V2H technique.", HEMS detects Shifting, Valley 
filling and Do-nothing modes. For example, the morning peak demand occurs dur-
ing [07:00–09:00], where the total household demand is High and the electricity price 
is Expensive, hence the Shifting mode should be applied according to the fuzzy rules 
shown in Table 3. Based on algorithm 1, the total rated power of the operating times 
of all shiftable appliances is less than the shifting required power. As a result, Dish 
Washer, Hair straightener and Hair Dryer appliances have been shifted as shown in 
Fig.  9. During the period [9:00–14:00], the proposed control algorithm detects Do-
nothing mode as shown in Fig.  8a, since the total household demand is Low and 
the electricity price is Expensive. Consequently, the operating time of the shiftable 
appliances maintains as it is. During the time [11:00–13:00], Valley Filling mode is 
detected because the load profile is Low and the electricity price is Cheap. According 
to algorithm 1, the total rated power of shifted appliances is more than the valley fill-
ing required power. As a result of this, HEMS switches on all the shiftable appliances 

Fig. 8  a Scheduling output, b power profile

Fig. 9  Operating status of shiftable appliances case 1
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which have been shifted before. Based on this technique, Fig. 8b shows the final power 
consumption profile of the household appliances over 24 h (Fig. 9).

Case 2: Demand + PEV + PV

In this case, it is assumed that the studied home is equipped with PEV, and PV. The same 
assumptions regarding the PEV data mentioned in the previous case are applied here 
too. The PV produces power during the period [08:00–19:00] as shown in Fig. 10b and 
supply to the home appliances when needed and store the surplus power in a stationary 
battery. According to the proposed scheduling strategy, all scheduling actions are shown 
in Fig. 10a.

For example, the total energy demand during [09:00–11:00] is Low and the electric-
ity price is Expensive, hence the Do-nothing mode is detected but as shown in fig, the 
PV-generated power is increasing from 480 to 1900 Wh. Therefore, in this period the 
demand is covered by the PV, and the surplus power shown in the green line is trans-
ferred to the stationary battery for later use. During the period [11:00–13:00], valley fill-
ing mode is applied where shifted appliances are turned on and consume all its power 
from the PV. It is noted that at 15:00 Do nothing mode is operating due to the PV sup-
plement which has changed the demand energy level from high to low as shown in fig, 
Therefore, DW did not shift all its operating period compared to the previous case. The 
same scenario is applied for the HD at 17:00. As shown below in Fig. 11

Fig. 10  a Scheduling output, b power profile

Fig. 11  Operating status of shiftable appliances case 2
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Scenario 2: Smart scheduling strategy with V2H technique

In this case, the electricity demand for each time-step in the household can be obtained 
from the home appliances, PV generated power and PEV charging/discharging power. 
The PEV works under G2V and V2H operating modes in which the PEV battery charge 
from the grid and supplies power to the home when needed according to the PEV man-
agement strategy discussed in section "Scenario 2: Smart scheduling strategy with V2H 
technique". To demonstrate the performance of the proposed design, the initial SOC of 
the PEV is set manually in different scenarios. Each scenario represents a critical limit of 
the SOC where the proposed strategies must perform as expected to satisfy user com-
fort and fulfill utility requirements. In the following cases,  td set at 09:00 and ta at 16:00.

Case 1: The initial SOC is 80%

According to the output of the PEV fuzzy control system, Fig. 12a shows the three pos-
sible actions; Discharging (V2H), Charging, and Do nothing. Figure 12b shows the SOC 
of PEV based on the action made while Fig. 13 shows the power demand profile before 
and after the proposed strategies. In this case, the initial SOC is set as 80%. The EV sup-
plied power to the household appliances (Discharging) for one hour during the first peak 
period (high demand and expensive price) [07:00–08:00]. According to algorithm 2 lines 
8–13, the discharging power rate depends on the total rated power of demand. For exam-
ple, when the total rated power of the demand is less than the maximum discharging 

Fig. 12  a PEV management fuzzy controller output, b PEV power and SOC%

Fig. 13  Power profile
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power the discharging power is set to the same value as the total rated power demand. 
Otherwise, the discharging rated power will be set to the maximum value. Therefore, 
the discharging power rate during [07:00–08:00] is set to maximum. The charging mode 
started during off-peak hours (low demand and cheap price) from [20:00] and ended at 
[02:00] when the SOC reached 80%. The remaining time of the day, the PEV was outside 
the home [09:00–16:00] or operated in Do nothing mode, where there was no need for 
Charging and Discharging modes to maintain the capacity limits set using the Eq. (6).

Case 2: The initial SOC is 60%

In this case, Fig. 15 shows the power demand profile before and after the proposed 
strategies under this case scenario. Moreover, as shown in Fig. 14b, the PEV started 
the day with 60% of SOC. During the first two hours [05:00–07:00] when the elec-
tricity price and power demand are low, PEV started Charging mode according to the 
fuzzy rules shown in Table 3. During the hours [07:00–09:00], the price is expensive, 
the SOC is high and the scheduled demand is high, which resulted in operating with 
Discharging mode to supply power to the appliances for only one hour [07:00–08:00]. 
Because the PV starts supplying power from 08:00, the total scheduled demand 
is decreased hence the Do nothing mode is operating leaving almost 65% SOC at 
[09:00] when the user left the home. At 16:00, the user arrived and plugged the vehi-
cle in with 40% SOC while the total demand is low and the electricity price is cheap. 

Fig. 14  a PEV management fuzzy controller output, b PEV power and SOC%

Fig. 15  Power profile
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Therefore, Do nothing mode is activated avoiding charging with high cost. Then, the 
Charging mode started again at [20:00] when the total scheduled demand is low and 
the electricity price is cheap. By the end of the day, SOC was 80% to ensure that the 
user will start the next day with more stored energy in the PEV’s battery. Compared 
to case 1, in Fig.  14a during the hour [06:00–07:00], the PEV is charging with low 
price in order to store enough power to supply the household appliances (Fig. 15).

Case 3: The initial SOC is 30%

In Fig. 16, with low initial SOC (30%), it can be noticed that there is no chance to 
supply power to the appliances whatever the observed states. PEV started to oper-
ate on the Charging mode at [05:00] during off-peak morning hours till [07:00]. This 
helped the user to leave the home with 40% of SOC and then he came back at [16:00] 
with quite low SOC (less than 20%). Hence, the “Charging” mode started again until 
SOC reached 60%. again, a new peak generated noticed in Fig. 17 during the hour 
[06:00–07:00] where the PEV is charging with low price but in this case, the PEV still 
has low SOC therefore it did not supply the household appliances. Finally, by the 
end of the day, the SOC reached more than 60% hence, case 2 will be the case for the 
next day.

Fig. 16  a PEV management fuzzy controller output, b PEV power and SOC%

Fig. 17  Power profile
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Case 4: The initial SOC is 30% and the target SOC at the departure time is 50%

In this case, the same scenario of case 3 is applied with 50% SOC requested by the 
user at the departure time. Therefore, the controller has calculated the time duration 
needed for the forced charging process in order to maintain 50% SOC at 09:00 using 
Eq. (8). As shown in Fig. 18a although the do-nothing mode is operating, at 07:20 the 
forced charging process has been applied. As shown in Fig. 19, It can be noticed that 
before the forced charging processes the PEV battery was charging during the period 
05:00–07:00 where the charging power was calculated using Eq. (2)

Table 5 summarizes the cost of all mentioned scenarios. Where the total cost can be 
calculated as follow:

Fig. 18  a PEV management fuzzy controller output, b PEV power and SOC %

Fig. 19  Power profile

Table 5  Total cost and cost reduction of all simulation cases

Initial 
SOC%

Smart scheduling strategy PEV charging strategy

Demand + PEV Demand + PEV + PV Before After Cost 
reduction 
rate (%)Before 

scheduling
After 
scheduling

Cost 
reduction 
rate (%)

Before 
scheduling

After 
scheduling

Cost 
reduction 
rate (%)

30% 6.852 6.692 2.33 5.704 5.288 7.29 5.288 4.268 19.28

60% 5.899 5.739 2.71 4.751 4.335 8.75 4.335 3.762 13.21

80% 5.183 5.023 3.08 4.031 3.622 10.14 3.622 3.105 14.27
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In the first scenario case 1, with 30% initial SOC of the PEV battery, the total cost 
before applying the smart scheduling strategy is 6.85. however, the total cost has been 
reduced by 2.33% with implementing the proposed scheduling strategy. Moreover, it can 
be observed that the total cost reduction is 3.08% when the initial SOC of the PEV bat-
tery is 80%. In addition, it is noted that the PV has contributed to more cost reduction 
compared to the 30% and 80% of SOC in the first scenario by 7.29% and 10.14% respec-
tively. In the second scenario, the charging/discharging strategy contributes by 19.28% 
cost reduction when the initial SOC of the PEV is low (30%) while the cost reduction is 
14.27% when the initial SOC of the PEV is 80%.

Conclusion
In this paper, a smart scheduling strategy for smart home appliances assisted with the 
PEV energy management strategy is presented. On one hand, the smart scheduling 
strategy aims to guarantee that the load profile does not violate the grid-related require-
ments such as peak generation and satisfy the household needs by maintaining the 
same amount of energy consumption with less cost by changing the operation period 
of shiftable appliances from peak hours when energy prices are high to off-peak hours 
when energy prices are low. On the other hand, the PEV energy management system is 
developed to coordinate the charging/discharging modes considering the travel needs of 
the PEV owner by maintaining enough SOC before each trip. Both proposed strategies 
are developed using the fuzzy logic system because it simplifies the overall implemen-
tation, leads to better performance, and lower time-consuming as compared to other 
techniques. The simulation results show that the overall demand profile was smooth-
ened, user comfort has been satisfied and the cost of the total energy consumption 
was reduced by 19.28% and 14.27% in the case of 30% and 80% initial SOC of the PEV, 
respectively. For more reliability and independence in future work, further grid techni-
cal objectives will be considered, and reinforcement learning technique could be investi-
gated considering the PEV mobility.

Abbreviations
V2H		�  Vehicle to home
G2V		�  Grid to vehicle

Pnon−sh
j 	�	  Rated power of non-shiftable appliances

Psh
i 		�  Rated power of shiftable appliances

uj(t)		�  Status of non-shiftable appliances

ui(t)		�  Status of shiftable appliances

PA(t)		�  Total power usage of household appliances

Plower
avg 		�  Lower limit of average total power demand

P
upper
avg 		�  Upper limit of average total power demand

Pshifting_req(t)	� Required shifting power

Pv_filling_req(t)	� Required valley filling power

α
shifting
i 		�  Shifting probability of shiftable appliances

α
v_filling
i 		�  Valley filling probability

DR		�  Demand response

(15)Cost(PG) =
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∑
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Cmax
PEV 		�  Rated capacity of PEV battery

Pchmax
PEV 		�  Maximum PEV charging power

Pdismax
PEV 		�  Maximum PEV discharging power

Pch
PEV 		�  PEV charging power

Pdis
PEV 		�  PEV discharging power

RTP(t)		�  Real time electricity price

EPEV (t)		�  Energy of PEV battery
uPEV 		�  Status of PEV

SoCPEV (t)	� State of charge of PEV battery
ta		�  Arrival time of PEV
td		�  Departure time of PEV
PG(t)		�  Consumed power from grid
SG		�  Smart grid
HEMS		�  Home energy management system
RESs		�  Renewable energy sources
DSM		�  Demand side management
MILP		�  Mixed integer linear programming
FLC		�  Fuzzy logic controller
HVAC		�  Heating, ventilation, and air conditioning
HANs		�  Home Area Networks
DSO		�  Distribution System Operator
PEVs		�  Plugged-in electric vehicles
EVs		�  Electric vehicles
ESSs		�  Energy storage systems
TOU		�  Time-of-use pricing
GA		�  Genetic algorithm
AFLM		�  Adaptive Fuzzy Logic Model
PV		�  Photovoltaic
WANs		�  Wide Area Networks
NANs		�  Neighbourhood Area Networks
SOC		�  State of charge
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