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Introduction
Electric Vehicles (EVs) are a promising solution to reduce greenhouse gas emissions and 
the reliance on fossil fuels (Electric Power Research Institute 2007). EVs use electricity 
instead of burning fossil fuels and rely on a grid power infrastructure for the charging 
of their batteries. The increasing penetration of EVs  (IEA 2021) in the Transportation 
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Network (TN) comes with important loads affecting the Power Distribution Networks 
(PDN) (Clement et al. 2009). In other words, meaningful parts of the needs of the trans-
portation network that were traditionally served by gas stations are now moving to the 
power network. The fact that such load is mobile, that is, a car can and will charge at 
different points of the power network, poses additional challenges to the infrastructure. 
This is especially true of urban networks where there is a high density of population and, 
consequently, large use of transportation and power infrastructures.

There are two main challenges that EVs impose on the power grid. First, due to the 
uncontrolled charging schedules of the EV users, the power load might increase during 
peak hours. This can be a source of grid stress and consequent failure due to factors such 
as voltage instability and power losses. Therefore, a rapidly growing EV market would 
need additional investment in grid infrastructure to decrease the risk of grid overload. 
Second, due to the power capacity constraints, the charging stations may not be able to 
fulfill all EV charging requests. In addition, the optimal installation of rapid chargers is 
expensive and the lack of incentives on smart charging behavior defer users to make the 
switch to EVs. Thus, appropriate EV routing along TN network and charging scheduling 
can mitigate the adverse impacts of EV charging on PDN network, as well as prevent 
potential traffic congestion in the TN network.

A way of looking at this current trend is to realize that the transportation and power 
urban infrastructures are becoming increasingly correlated, and therefore their opera-
tion should be optimized jointly. The challenge for such optimization is due to the nature 
of EVs. In fact, these are distributed mobile energy consumers whose energy demand 
behavior is highly influenced by multiple factors including the State of Charge (SoC) of 
the EV Battery, the type and capacity of the battery, the average travel distance, traffic, 
distance to the charging stations, and charging duration with charge preferences  (Wu 
et al. 2018). While residential EV charging demand is fairly predictable in nature, as the 
average user’s driving pattern can be identified with reasonable accuracy, the public 
EV re-charging behavior is stochastic and difficult to predict as they are influenced by 
erratic traffic flow.

These interactions between TN and PDN networks, exemplified in Fig. 1, pose a com-
plex problem to the management of the power system (Wei et al. 2019; Marmaras et al. 
2017).

The present work contains a proposal for an optimal transportation-power network 
model to study the impact of variable traffic flow and congestion scenarios on power 
distribution loads. The operation of coupled TN and PDN networks with the objective 
of minimizing costs is formulated as an optimization problem. Obviously, the inter-
connected system’s load capability constraints are taken into account in the developed 
model. Integrating traffic flow information with the queuing theory, our methodology 
achieves equilibrium traffic flow to minimize the impact on the PDN. Ultimately, the aim 
is to minimize the social costs mutual to both TN and PDN networks.

Each EV in a TN is defined by multiple parameters including driver behavioral 
profiles, traffic elements, Origin-Destination (OD) points, trip travel time, energy 
consumption, EV battery capacity, and battery SoC. These parameters are identi-
fied based on stochastic travel behavior and traffic flow. The fundamental Wardrop 
principle (Wardrop 1952) is used to estimate the distribution of EV flows in the TN 
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which leads to a stable equilibrium of traffic-flow pattern known as Dynamic User 
Equilibrium (DUE) in Dynamic Traffic Assignment (DTA) setup. The DUE model 
can be computationally very expensive as it enumerates all possible paths in the OD 
pairs  (Janson 1991). The DTA model was developed to generate approximate solu-
tions to DUE which can be applied to larger networks (Janson 1991). We utilize the 
Semi-Dynamic Traffic Assignment (SDTA) model which has lower computational 
complexity. The mobility and charging demand of EV users are assessed using traffic 
elements. Finally, by modeling both TN and PDN networks independently and then 
linking them with coupling constraints, optimized traffic-constrained transportation 
power flow solution is developed.

Several research works have proposed individual operational methodologies and 
optimization techniques to ensure secure operation under peak demands when EVs 
are connected to the power grid, e.g., (Diaz-Cachinero et al. 2021; Spitzer et al. 2019). 
However, to the best of our knowledge, a model considering the coupling of the inter-
dependent TN and PDN networks which considers the time-varying, dynamic nature 
of all the parameters in their spatial temporal variations has not been studied.

A bottom-up approach is used to model the characteristics of individual EV driv-
ing and charging behavior creating a unique load profile for each scenario. However, 
the energy consumption of EVs at charging stations is accumulated over time peri-
ods to ascertain the electrical impact on the power grid. We resort to quantitative 
techniques with an agent-based simulation method coupled with MATLAB for power 
flow analysis. The mobility model is realized in the JAVA Agent Development Frame-
work (JADF) and power flow model calculations are done with MATLAB using a 
standard radial distribution network. In addition, the ACN-Dataset is used for pub-
lic EV charging to have realistic charging information (https://​ev.​calte​ch.​edu/​datas​
et). Our proposed methodology takes a unique interdisciplinary approach by finding 
the inter-relations between TN and PDN by combining a multi-agent system frame-
work into the TN with traffic information. We evaluate the feasibility and achievable 

Fig. 1  Hierarchical coupling of TN and PDN networks

https://ev.caltech.edu/dataset
https://ev.caltech.edu/dataset
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improvements of our proposed approach using the most used IEEE test systems. In 
our case study, the interactions between EV users are captured in a semi-realistic dis-
tributed environment.

In summary, the main contributions of our research work are as follows:

•	 The formulation of an optimization problem to minimize the total system cost of 
interdependent TN and PDN networks in a dynamic setting by analysing EV driving 
behavior profiles and energy prices.

•	 An integrated agent-based traffic assignment model for TN impact analysis and 
its cascading effect on power systems. Through our unique Agent Based Modeling 
(ABM), EV driving behavioral data samples are collected and energy requirements at 
charging stations are identified as loads connected to the power network bus nodes. 
The collected load profiles of EV charging load for a 24-h period are used to analyze 
the impact on PDN. This approach is a unique simulation-based optimization of cou-
pled networks.

•	 The dynamics of large-scale EV penetration in an overlaid distribution and transpor-
tation network system are part of the model. As traffic behavior changes, variable 
load distributions in terms of the EV charging process are used.

•	 The development of an approach to achieve optimal route selection to nearby charg-
ing stations which eliminates the need for long waiting periods at public charging 
spots thereby reducing the load curve. A controlled smart-charging technique is also 
applied to reduce voltage problems that may arise in the distribution network due to 
multiple EVs recharging at the same time.

The rest of the paper is organized as follows. Section Related work contains a discus-
sion of related work. Section Problem formulation presents the formulation of the opti-
mization problem of TN and PDN models and introduces the approach for solving the 
problem. A case study based on a small region of the urban TN and its interdependent 
impacts on the PDN is illustrated in Case study and simulation results section. Finally, a 
summary of the contribution and a discussion of future work in the area of EV mobility 
in interconnected TN and PDN networks are drawn in Conclusions section.

Related work
There are many previous papers on modeling coupled TN and PDN networks as well 
as EV integration into the power grid. Marmaras et al. used an integrated simulation-
based approach to model road traffic and EV battery charging (Marmaras et al. 2017). 
The main focus of Marmaras et al. (2017) is on the EV agent’s characteristics and behav-
ioral modeling rather than the inter-relation between TN and PDN. In most of the previ-
ous works on TN modeling, the Bureau of Public Roads (BPR) function (United States. 
Bureau of Public Roads 1964) is used to calculate the cost function of travel time which 
is quadratic in nature, however, in this paper, the Davidson’s function (Davidson 1966) 
with queuing analysis has been used due to its linear properties.

The current state of the art in optimal operation of the interdependent transportation-
power network system is based on graph network approaches where nodes and edges 
represent the interlinking elements. In addition, simple static traffic models without 
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dynamic user equilibrium conditions have been used for traffic flow modeling. Tang 
et al. have discussed spatial and temporal impacts of EVs on traffic systems using a prob-
abilistic model of expected nodal EV charging demand based on parking events (Tang 
and Wang 2016). Graph theory along with Dijkstra’s algorithm is employed in Tang 
and Wang (2016) to calculate energy consumption based on trip distance. However, the 
model is generic with macroscopic characteristics taken into account without any coor-
dinated charging events between EV users. Wei et al. presented a a dedicated traffic user 
equilibrium model to describe the steady-state distribution of traffic flows comprised of 
gasoline vehicles and electric vehicles (Wei et al. 2017). In that study, the impact of indi-
vidual driving behaviors on the power grid has not been modeled.

Geng et  al. have developed an integrated system of “vehicle-traffic-distribution” and 
solved the spatial-temporal distribution of EV charging load using OD matrix.

Geng et  al. proposed a hybrid optimisation method using stochastic user equilib-
rium and information gap decision theory to study the impact of the uncertainties on 
the coordinated Electrified Transportation Network (ETN)-PDN operation (Geng et al. 
2021). ETN enables the integration of EVs into an efficient PDN infrastructure with an 
emphasis on usage of renewable energies. A similar approach has been presented in 
Xiang et al. (2018) which utilizes cellular automata in an integrated traffic-power simula-
tion framework to evaluate the feasibility of EV charging stations deployments without 
actually quantifying the impact on coupled TN and PDN.

The research on the interconnection between TN and PDN is still in its evolving phase. 
Only a few interdisciplinary studies have been made on the stochastic spatial-tempo-
ral electrical energy and mobility behavior of electric vehicles considering the dynamic 
activity of both networks. The studies made by Xie et al. (2021); Wei et al. (2016) and 
Jiang et al. (2018), aim at minimizing the total cost of both TN and PDN networks, but 
without considering the time-varying dynamics of the transportation traffic network. 
The static traffic Assignment model has been used which gives a coarse overview of traf-
fic flows. In addition, the constraints associated with EVs’ charging load at charging sta-
tions are not explicitly modeled.

All the above-mentioned works have considered the spatial-temporal behavior of elec-
tricity and vehicle traffic demands with static charging loads and/or static transportation 
traffic. To the best of our knowledge, the present treatment is the first work that consid-
ers the time-varying and dynamic nature of all the effective parameters in spatial-tempo-
ral variations to the coupled TN and PDN networks.

Problem formulation
The formulation of the models of both TN and PDN networks, the optimization prob-
lem, and the coupled transportation and distribution networks subject to their specific 
constraints are presented next. The interactions between EVs’ charging impact on the 
PDN are central to the formulation. The idea is to make conjunction between the two 
generally independent networks and formulate an optimal operation that aims at mini-
mizing total costs.

It is also possible to model the whole system using the weighted sum approach to merge 
multiple objectives into a singular objective function. However it results in multiple Pareto-
Optimal solutions and the solver might encounter difficulties in convergence which results 
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in sub-optimal solution (Watanabe and Sakakibara 2005). In addition, using multi-objective 
solvers to find global optimal solution is much higher time consuming. Therefore, in this 
work, the TN and PDN networks are modeled individually and then coupled by coupling 
constraints.

Table 1 lists the key notations used throughout this paper, in order of their presence in 
the text.

Modelling the transportation network

The topological structure of the transportation traffic network is a connected Graph 
G(V, E) where each node v ∈ V  is an endpoint (either origin or destination) or an intersec-
tion of multiple road sections. These endpoints can be origin or destination nodes and their 
links have associated costs that represent the travel time for EV users.

Each EV inside the transportation network leaves from its origin s and travels to its desti-
nation d. Let ϑe,t stand for the traffic flow on link e ∈ E generated by the traffic demand of 
OD pairs (s, d) connected by subset of nodes in V during time period t. The latency func-
tion τe(t) calculates the time to travel on link e during time period t, as a function of aggre-
gated traffic flow.

Each EV user aims to minimize its travel time on the traffic roadways. Therefore, the opti-
mization problem of TN as the minimization of the travel time and the associated energy 
cost during a charging event for aggregated EVs at a charging station, subject to a set of 
system constraints is formulated. In this paper, this optimization problem CTN is defined as 
follows:

(1)Min. CTN :=

t∈T e∈E

[(w ∗ τe(t)+ X
cg
e,t) ∗ ϑe,t ] + G

{ev}
ch

subject to:

(1.a)τe(t) ∗ ϑe,t = τ 0e ∗ [1+ α ∗ (
ϑe,t

cape − ϑe,t
)]

(1.b)Cch
j ∗ πj(t) =

∑

e∈E

(τe(t) ∗ w)+ Pev
ch ∗ πj(t)

(1.c)Csd
p,t =

∑

e∈p

(

w ∗ τe(t)+ X
cg
e,t

)

∗ ψp

(1.d)Tsd
p,t =

∑

e∈E

τe(t) ∗ ϑe,t ∗ ψe,p

(1.e)
∑

p∈Psd

f sdp,t = ηsd(t)+ X
cg
e,t ∗ (x

sd
t−1 − xsdt ),∀s, d
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Table 1  Notations summary

General parameters and variables

CTN Objective function (travel time cost and 
associated cost of energy during a charging 
event - Cost of TN)

w Parameter—Associated cost of travel time 
estimated in Euros

τe(t) Latency function to calculate the travel time 
on link e during time period t

X
cg
e,t

Traffic congestion cost on link e during time 
period t

ϑe,t Total aggregate of traffic flow on link e dur-
ing time slot t

G
{ev}
ch

Aggregated charging costs of all EVs

T The predefined time period for optimization τ 0e Free flow traveling time on link e

α Co-efficient for real traffic observation data cape Capacity of traffic flow on road link e

Cch
j

Associated cost (Euros) of electricity at the 
charging station connected to bus node j 
of PDN

πj(t) Locational Marginal Price (LMP) of bus j in 
PDN during time period t

Pevch Average EV charging power (kW) for unit 
traffic flow

Csd
p,t

Cost of travel on path p in the OD pair (s, d) 
during time period t

ψp Decision parameter to state if path p is 
chosen or not

T sdp,t Time to travel on path p in the OD pair (s, d) 
during time spot t

ψe,p Decision variable which states if link e 
belongs to path p or not

f sdp,t Traffic flow on path p in the OD pair (s, d) dur-
ing time period t

ηsd(t) The traffic demand on OD pair (s,d) during 
time period t

xsdt Binary variable if vehicle makes a trip from 
source s to destination d during time period t

Pevmax Maximum charging power rate of electric 
vehicle ev

SoCminQ Minimum state of charge of the battery 
capacity Q

SoCmaxQ Maximum state of charge of battery capac-
ity Q

Capch Number of charging stations

Capchk
Number of charging piles at charging sta-
tion ch

Pevch,k Charging Power (kW) of the electric vehicle ev 
in pile k of charging station ch

lch The load that the charging station can 
handle

Nch Power efficiency factor of charging station ch

πch Charging price (Euros) at charging station 
ch

ϑe,ch,k Traffic flow captured by the charging station 
ch in pile k through link e

A
{ev}
ch

Amount of Energy (kWh) to be charged by 
all EVs at charging station ch

CPDN Objective function (energy cost of PDN for 
charging all EVs)

�j The cost (Euros) of generating power from 
bus node j

p
gen
x (t) Average generated power (MW) by bus node 

x during time t

πcs(t) Contract energy cost charged per kWh dur-
ing time period t

Ŵc(t) The purchase energy cost from main power 
grid excluding contract price, during time 
slot t

�j Set of all bus nodes which are at the end of 
the distribution line

Pij(t) Active power flow from bus node i to j during 
time period t

rij Reactance of active power line connecting 
bus node i to j

Iij(t) Current from bus node i to bus node j during 
time period t

Pjk(t) Average active Power flow (MW) from bus 
node j to pile k during time period t

pdemx (t) Total active power demand (MW) at bus node 
x during time period t

Qij(t) Average reactive power flow (MVar) from 
bus node i to j during time period t

q
gen
x (t) Average reactive power (MVar) generated at 

bus x during time slot t

xij Reactance of reactive power line connect-
ing bus node i to j

Qjk(t) Average reactive power flow from bus node j 
to pile k during time period t

qdemj (t) Average reactive power (MVar) demand at 
bus node j during time period t

Ux(t) Average voltage drop at bus node x during 
time period t

Uf
i (t) Lower bound of square voltage magnitude 

at bus node i during time slot t
Ur
i (t) Upper bound of square voltage magnitude at 

bus node i during time slot t

pfi Lower limit of active power generation at 
bus node i

pri Upper limit of active power generation at bus 
node i

qfi Lower limit of reactive power generation 
bus node i

qri Upper limit of reactive power generation bus 
node i

pri (t) Regular power demand at bus node i dur-
ing time period t

� Unit traffic flow charging demand rate
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where w, Xcg
e,t , and G{ev}

ch  stand for the estimated cost of travel in Euros, traffic conges-
tion cost index on link e, and aggregated charging cost of all EVs at charging station ch, 
respectively. Therefore, the first term of the objective function refers to the total travel 
cost associated with traffic flow for all EVs including travel and traffic congestion costs.

The parameter τ 0e  refers to the travel time on link e in free flow. cape and α in 
Eq.  (1.a) represent the capacity of link e and the co-efficient for real traffic observa-
tion parameter in Davidson function (Davidson 1966), respectively. In this work, the 
Davidson’s function is used as it is linear and it is easy to fit to actual traffic data.

The variables C{ev}
ch  , Pev

ch , and πj(t) in (1.b) show the charging cost of all EVs at the 
charging station ch, the charging power rate of unit traffic flow in the network, 
and the Locational Marginal Price (LMP) connected to bus j during time period t, 
respectively.

In (1.c), Csd
p,t denotes the travel cost on path p in OD pair (s, d) during time t and 

the decision variable ψp shows whether the path p is chosen or not. In addition, 
C
{ev}
ch ∗ τe(t) denotes the aggregated link travel-time and charging cost at charging sta-

tion ch. The parameter Tsd
p,t is the travel time on path p between the OD pair (s, d) in 

the constraint expressed by Eq. (1.d).
The fifth constraint Equation (1.e) satisfies flow conservation for all residual traffic 

flow in the OD pair (s, d) from the current to previous time period’s traffic demand 
wrt. congestion index and added to the current traffic demand ηsd(t) . The parameter 
f sdp,t  is the traffic flow on path p between the OD pair (s, d). The constraint expressed 
by Eq. (1.f ) ensures that the traffic flow on link e during time period t is the sum of all 
possible taken routes or paths through each link during time period t.

(1.f )ϑe,t =
∑

p∈Psd

f sdp,tψe,p, ∀e ∈ E

(1.g)0 ≤ Pev
ch ≤ Pev

max

(1.h)Pev
ch + SoCminQ ≤ SoCmaxQ

(1.i)
Capch
∑

ch=1

Capchk
∑

k=1

Pev
ch,k ≤ Capch ∗ lch ∗ Nch

Table 1  (continued)

General parameters and variables

Nch
b

The binary variable is set to 1 if charger b is 
connected to charging station ch

Psd Paths from origin s to destination d

Indices

t Index for time period e Index for link

p Index for path s, d Index for OD pair

i Index for source bus node j Index for demand bus node

ch Index for charging station ev Index for electric vehicle

k Index for pile
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As the number of EVs grows, the charging demand grows significantly which adds sev-
eral more constraints (Eqs. 1.g–1.i). Equation (1.g) guarantees that the charging rate is 
less than the maximum charging rate of an EV. Equation (1.h) ensures that the charged 
quantity (kWh) is less than the maximum vehicle battery capacity. Equation (1.i) states 
that the sum of all EV charging instances Pev

ch,k must be less than or equal to the total 
charging capacity of the charging station. Capch , lch , and Nch stand for the number of 
charging stations, the load that can be handled, and the power efficiency factor of station 
ch, respectively.

Finally, the aggregated charging cost G{ev}
ch  for all EVs at each charging station ch is cal-

culated based on the charging power of each EV and the electric charging cost at the 
charging station connected to a bus in the PDN. Given the charging price πch at charging 
station ch and EVs’ charging energy A{ev}

ch  , the function G{ev}
ch  estimates the charging cost. 

Summing up all the charging instances for each vehicle considering traffic flow on link e 
connected to the charging pile k at the charging station ch multiplied by the amount of 
energy it requires to be recharged, gives us the total aggregated charging cost. Formally,

The optimization variables in optimization problem presented in Eq. (1) are ψp , ψe,p , and 
A
{ev}
ch  that need to be optimized to achieve the objective of minimizing the travel time 

cost and associated cost of energy during a predefined period of time, under defined 
constraints.

Modelling the power distribution network

Power distribution networks usually take the shape of a radial or mesh graph  (Pagani 
and Aiello 2011). These can be represented as an undirected graph G(M, B), where M 
shows the set of buses and B denotes the set of branches or power distribution lines. In 
this definition, a slack bus is indexed as O and the bus-bus pair i, j is used to denote a 
link between bus i to bus j. If a generator is connected to a bus node i ∈ M , then its cor-
responding electric power demand or bus injection power is set to 1.

The voltage and power loss are contributing factors that determine the safe operation 
of a Direct Current Optimal Power Flow (DCOPF) model (Eldridge et al. 2017). How-
ever, DCOPF power flow equations are not suited for the distribution systems because 
of high voltage fluctuations and power losses that are higher than in transmission sys-
tems. DCOPF solutions also may not satisfy all non-linear power equations. To stabilize 
the voltage magnitudes, reactive power must be injected into the system. In addition, 
these defects can decrease the scalability of these solutions for bigger networks.

Concerning the above-mentioned issues, convex relaxations of AC power flow 
equations have been adopted via a Second Order Cone Programming (SOCP) (Bara-
dar et  al. 2013). In general, solving AC Optimal Power Flow (ACOPF) problems 
through convex relaxations provides a feasible way to obtain a globally optimal solu-
tion. If the solution is not achievable, a lower bound on the objective function is 
provided by solving the OPF. ACOPF problems are NP-hard  (Lehmann et  al. 2015; 

(2)G
{ev}
ch =

Capch
∑

ch=1

[πch ∗

Capchk
∑

e=1

(ϑe,ch,k ∗ A
{ev}
ch )]
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Bienstock 2019), however, relaxations on ACOPF can lead to convex optimization 
problems which can be computed in practice.

An Optimal Power Flow (OPF) problem is defined as the power flow problem com-
bined with the Economic Dispatch (ED) problem. As the standard power flow prob-
lem does not consider power generation costs, the ED problem is used to minimize 
the operating cost which mainly includes fuel costs of a power distribution network. 
During each time period t, branch flow equations are iterated to calculate power 
flows. As some constraints in the optimization problem are non-linear, the SOCP 
technique for OPF is utilized to relax and transform the problem into a convex opti-
mization problem and finally be able to solve it. This ensures that the problem can be 
solved in polynomial time and makes it tractable.

Our approach to formulate the power flow equations and relaxations are similar to 
the ones presented in several related works, namely  (Eldridge et al. 2017; Gan et al. 
2014; Low 2014). It is assumed that there is a distribution network operator in the 
smart grid who manages the operations of the PDN.

The operational energy production cost of the PDN ( CPDN  ) is formulated as:

where the first term in the equation includes the costs (convex cost function) for loads 
connected to the demand bus node j and the second term represents the cost of energy 
purchased from the main power grid during time period t.

Average power generated and demanded at bus j during time period t are denoted 
by pgenj (t) and pdemj (t) , respectively. The parameters �j , πcs(t) and Ŵc(t) stand for the 

(3)Min. CPDN :=
∑

j∈M

[�j ∗ p
gen
j (t)+ πcs(t) ∗

∑

c∈�j

Ŵc(t)]

subject to:

(3.a)Pij(t)+ p
gen
j (t)− rijIij(t) =

∑

k∈�j

Pjk(t)+ pdemj (t)

(3.b)Qij(t)+ q
gen
j (t)− xijIij(t) =

∑

k∈�j

Qjk(t)+ qdemj (t)

(3.c)
Uj(t) = Ui(t)− 2 ∗ (rijPij(t)+ xijQij(t))

+ ((rij)
2 + (xij)

2)Iij(t)

(3.d)Iij(t) ≥

(

Pij(t)
)2

+
(

Qij(t)
)2

Ui(t)
,Pij ≥ 0,Qij ≥ 0

(3.e)Iij(t) ≤ Irl ,∀l,U
f
i (t) ≤ Ui(t) ≤ Ur

i (t),∀i

(3.f )p
f
i ≤ p

gen
i (t) ≤ pri , q

f
i ≤ q

gen
i (t) ≤ qri , ∀i
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set of buses towards the end of the distribution line starting from bus j, the co-effi-
cient of energy production cost during time period t and the price of energy from the 
main grid, respectively. Variable �j denotes the cost of generating power from bus j. It 
is assumed that the energy consumption is charged by the operator using LMP which 
is usually a fixed contract price in a region.

The constraints of Eqs.  (3.a) and (3.b) guarantee the nodal active power balance and 
reactive power balance of the network. Equation (3.c) ensures Ohm’s law of voltage drop 
on branch {i, j} and Eq.  (3.d) denotes the SOCP relaxation applied to nodal active and 
reactive power. Finally, Eqs. (3.e) and (3.f ) put upper/lower bounds on current and volt-
age limits as well as generator output, respectively. Other parameters used in Eqs. (3.a)–
(3.f ) are defined in Table 1.

The optimization variables in optimization problem presented in Eq. (3) are pgenj (t) , 
Pjk(t) , and Qjk(t) that need to be optimized to achieve the objective of minimizing 
the power generation cost during a predefined period of time, based on EVs’ charging 
demand and under defined constraints.

Modelling the coupled TN and PDN

The final aspect for the formulation of the optimization problem is defining the rela-
tion between the traffic and the power networks. An example is depicted in Fig. 1. The 
connections between the charging stations and the power network are shown in dotted 
lines. To analyze the impact of EV penetration in the power grid, the spatial and tem-
poral EV mobility is considered. As EVs move, their battery charge decreases with time 
which initiates the charging necessity. As the charging stations in TN draw load from the 
PDN, charging EVs’ battery impacts the load of the TN on the buses of the power dis-
tribution network. Therefore, assuming that one bus is connected to one generator, the 
total power demand at bus i is calculated as the sum of regular power demand at the bus 
and aggregated EVs’ charging at the charging station.

It is assumed that the energy consumption at link e of TN network is a linear function 
of the traffic flow (Wei et al. 2016). Thus, the link between TN and PDN is formulated 
by Eq. (3.g). In addition, to model the coupling optimization problem, three more con-
straints are defined for the optimization problem defined in Eq. (1).

where pdemi (t) and pri (t) stand for the total power demand and regular power demand at 
bus i during time period t, respectively.

The parameter � shows the unit traffic flow charging demand rate, which can be 
determined from real-world traffic data. This parameter is estimated on the basis of the 
EV penetration level or current EV charging rate on the given network. The higher the 
level of EV penetration, the greater will be the charging rate parameter. Finally, Eq. (3.g) 
establishes that nodal electric power demand is equal to regular power demand and 

(3.g)pdemi (t) = pri (t)+�
∑

e∈S(i)

ϑe,t , ∀i ∈ M

(3.h)Capk =

Capk
∑

e=1

ϑe,j,k ∗ A
{ev}
ch



Page 12 of 20Sadhu et al. Energy Informatics            (2022) 5:35 

EV charging demand. The parameter ϑe,t shows the traffic flow through link e, where e 
belongs to the set of links connected to bus i ∈ M (S(i)).

Equation (3.h) ensures that the charging capacity Capk of the charging pile k is equal 
to the links’ charging demand. In this constraint, the connection of the charging station 
pile k with bus node j is denoted by ϑe,j,k and the changing energy is presented by Aev

ch.

Optimal transportation‑power network flow model

In a coupled system of TN and PDN networks, when EVs recharge their batteries at 
charging stations, the required energy is provided by PDN. In this paper, the defined 
objective of the coupled system is to minimize total costs. To achieve this, it is assumed 
that there exists an independent system operator who manages both the TN and PDN 
networks. It aims to minimize the total costs of both interdependent systems.

In additions, the fundamental Wardrops Principle (Wardrop 1952) is adopted in gen-
eralized format to solve the traffic assignment problem. Taking into consideration both 
the networks, the optimization problem in Eq.  (1) is updated to the following coupled 
formulation:

Case study and simulation results
The OTPNF (Eq. 4) is a mixed integer convex optimization problem that can be solved, 
e.g., through commercial solvers such as IPOPT, CONOPT, and COUENNE(convex 
over and under envelopes for nonlinear estimation) solver (Couenne 2006). Given the 
constraints of the models, one can assume the optimization problem to be convex. In 
fact, after relaxing the non-linear constraints and convexifying the objective function, 
the convex Mixed Integer Nonlinear Problem (MINLP) is solved using the Couenne 
solver  (Couenne 2006) and AMPL  (https://​ampl.​com/​produ​cts/​solve​rs/​all-​solve​rs-​for-​
ampl/), which apart from handling convex MINLPs can also solve non-convex MINLPs. 
Global optimality is guaranteed for the Couenne solver, while it is not for other solv-
ers. This is because Couenne implements linearization, bound reduction, and branching 
using branch-bound algorithm, therefore it can find the best solution or global optimum 
solution without interruption.

These tools are used for the evaluation of the cost reduction achieved by solving the pro-
posed optimization problem compared to the baseline scenario. As a case study, the IEEE 
30-bus power system test case with two connected charging stations CS1 and CS2 is used, 
as shown in Fig. 2. To validate the feasibility of our chosen method and analyse the effects of 

(4)

Min. OTPNF := [CPDN + CTN ] :=
∑

j∈M

[�j ∗ p
gen
j (t)+ πcs(t) ∗

∑

c∈�j

Ŵc(t)]

+
∑

t∈T

∑

e∈E

[(w ∗ τe(t)] + X
cg
e,t) ∗ ϑe,t ] + G

{ev}
ch

subject to:

Transportation Network Constraints - (1.a - 1.i)

Power Distribution Network Constraints (3.a-3.f)

Coupling Constraints (3.g-3.h)

https://ampl.com/products/solvers/all-solvers-for-ampl/
https://ampl.com/products/solvers/all-solvers-for-ampl/
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cascading line failures due to the EV charging load, the comparison with a standard power 
system is necessary. The IEEE standard test systems represent real systems and has been 
used in most of the similar works, in turn helping to compare the results (Xie et al. 2021; 

Fig. 2  a IEEE 30-node radial power network as a base layout for the PDN. b coupled with charging stations 
CS1 and CS2 in the transportation network with the travel links and nodes. The yellow lines in TN denote 
possible traffic congestion. The links of the TN are shown by L1–L30 and the nodes are denoted in red from 1 
to 24
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Sun et al. 2019). The radial power system topology allows us to evaluate multiple EV flees 
power demand and discharge scenarios where links are serviced by an electrical bus. Links 
between nodes 7 and 16 serve as the main conjunction for the PDN. The charging station 
CS1 is placed at the conjunction of the main road connecting to bus node 7 in the distribu-
tion network and CS2 is placed at the branch node of Bus 16 which is located within the 
OD pair of the given transportation network.

Optimization results for the coupled TN and PDN

In this paper, the OTPNF optimization problem is solved using the Couenne Solver and 
AMPL code. For the ACOPF and DCOPF models, piece-wise linear generator costs are 
considered. The results of this evaluation are presented in Table  2 as the TN and PDN 
costs along with their formulation methods. The OTPNF formulation found a locally fea-
sible optimal solution with an optimal cost of 5470.67 Euros/h. In addition, as the results 
in Table  2 show, the OTPNF model decreases the operating costs of both the TN and 
PDN networks when the stochastic dynamic user equilibrium traffic assignment formula-
tion is used along with OPF. The optimal system cost due to our optimization formulation 
(OTPNF) resulted in 5470.67 Euros/h whereas the aggregated cost of the individual net-
works would have been 8604.67 Euros/h. Therefore, the cost savings is calculated as 36.42%, 
when compared to the aggregated cost of individual baseline scenarios (without the cou-
pling constraints).

The achieved improvement is due to the non-existence of nodal electric power demand 
according to links’ charging demand for each EV connected to the charging pile, when 
modeled with individual not-coupled models. The additional coupling constraints ensures 
that the operational cost is within boundaries of the amount of energy to be charged by all 
EVs at the charging station which are connected to the bus nodes.

Evaluating the maximum EV penetration level based on our approach

With the given EV penetration level, the PDN network aims to handle as many charging 
requests as possible. Therefore, supporting the maximum number of EV charging demands 
without violating grid constraints and operational efficacy is a representative evaluation 
metric. The EV charging behavior is controlled by the EV owner or dispatcher unit from 
the grid. The optimization problem is modeled to find the largest EV adoption based on the 
maximum load from the charging stations and electricity drawn from the main grid.

(5)Max.{Lv} ∗

Capj
∑

b∈j

N ch
b

Table 2  Comparison of costs (Euro) associated with the TN and PDN

Formulation 
method

Solver Individual TN cost Individual 
PDN cost

Iterations Optimal 
system 
cost

OPF GUROBI – 8812.22 N/A 8372.12

OTPNF CONOPT/IPOPT 3384.28 5220.39 13 5470.67
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where Lv is the function determining the PDN flow load. The binary variable Nch
b  is set 

to 1 if charger b is connected to charging station ch otherwise is set to 0. The objec-
tive function maximizes the number of EV charging requests, respecting the distribution 
network constraints. The above problem is a mixed-integer non-linear model. By trans-
lating the problem into a running program for Couenne, an improvement of 45% for EV 
penetration level is achieved that can support charging demand without negative impact 
on the grid. Voltage magnitudes deviate between 0.1 and 0.3%. An amount absolutely 
acceptable by the infrastructure and would not cause power failure issues.

Evaluating the network congestion of the coupled networks

A sample network with 30 zones and 30 links having 552 OD pairs and 76 path links 
has been used in the simulations. In these simulations, the traffic flow is assumed to be 
100 vehicles/h. The cascading effect of transportation traffic flow on the PDN network 
is shown in Fig. 3. This figure represents the voltage magnitude heatmap showing areas 
where nodes suffer from high EV charging demand.

The congestion index of TN is based on data from user equilibrium traffic flow by 
dividing the link capacity to the traffic flow. The traffic flow affects the power demand 
to the PDN and loading capacity. The congestion level of PDN is high at bus numbers 16 
and 6 during the morning peak hours (7–9 am) and evening peak hours (5–7 pm). Bus 
16 in our network provides a charging link where charging piles are present to support 
multiple incoming EVs. At this node, the voltage magnitude is low due to the high EV 
charging demand. In this simulation, the lower and upper bound of voltage magnitude 
are assumed to be 0.91 and 1.05, respectively. Figure 4 shows the PDN under EVs load, 
before and after optimization.

Evaluating user equilibrium traffic condition metrics

The results of the equilibrium travel time and traffic flow for our simulated case study 
are presented in Table 3. The user equilibrium travel time (UE_travelTime) is measured 
in vehicle-minutes and user equilibrium traffic flow (UE_Flow) is measured in number 
of vehicles per hour. The congestion factor is calculated as the ratio of (UE_Flow) and the 
capacity of the road. A higher congestion intensity increases the travel time on the net-
work, depending on the number of travelling vehicles. Congestion is minimized when 
agents are informed of alternative routes prior to reaching their destination. Ideally, 
lower congestion factor is preferred as it results in less aggregation of EVs at charging 
stations and ultimately leads to less stress on the PDN network.

Discussion

In Case study and simulation results section, the proposed system model for coupled TN 
and PDN networks was evaluated and compared with the baseline scenario. In addition, 
the maximum EV penetration level and the network congestion of the coupled networks 
were examined. The results presented in Table 2 indicate that our OTPNF model with 

subject to:

Power Distribution Network Constraints (3.a-3.f)

Coupling Constraints (3.g-3.h)
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DUE network model is able to find an optimal solution with a significantly lower cost 
compared to the combined TN and PDN networks (36% saving in total cost). Therefore, 
this model framework can potentially be adopted to formulate traffic flow distributions 
with temporally-coupled network operations. In addition, the results on the maximum 
EV penetration level show a 45% improvement on the charging demand support without 
negative impact on the grid, imposing a voltage deviate less than 0.3% which is accept-
able by the infrastructure and will not cause power failure.

Fig. 3  a TN traffic flow (congestion levels) and b PDN bus voltage magnitude. The cascading impact of PDN 
bus magnitude values are shown in the heatmap (bottom) which indicates large scale traffic induced EV 
charging load from the TN traffic flow, indicating large scale traffic-induced EV charging load has impact on 
the Power grid



Page 17 of 20Sadhu et al. Energy Informatics            (2022) 5:35 	

Fig. 4  Heatmap of voltage magnitude drop due to EV charging load and its cascading impact on 
subsequent nodes of the radial network. The voltage profile of affected nodes is alleviated after optimization 
which puts less strain on the power grid

Table 3  User Equilibrium traffic flow and congestion index for 24-Node transportation network

Arc Capacity (vehicle-
density)

UE_travelTime 
(vehicle-minutes)

UE_Flow (vehicle/
hour)

Congestion Factor 
(UE_flow/capacity)

L1–L2 25900.20 6.0 4127.78 0.1593

L2–L3 23403.47 4.0 7742.51 0.3308

L4–L22 25900.20 6.4 4368.14 0.1686

L14–L26 4958.18 4.0 5857.34 0.9830

L23–L24 23403.47 4.3 7730.01 0.3303

L18–L30 17110.52 2.3 13679.45 0.7794

L8–L16 23403.47 7.8 10086.02 0.4309

L7–L17 11110.52 10.20 17463.84 1.572

L15–L16 8229.91 18.08 15096.87 1.834

L9–L19 23403.47 4.23 18448.87 0.7883

L20–L21 5000.0 3.63 4258.92 0.8517

L5–L10 15078.50 4.25 4908.82 0.3255
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In another experiment, the network congestion of the coupled networks is evaluated. The 
results of this experiment are presented in Figs. 3, 4, and Table 3. Table 3 shows the results 
of the equilibrium traffic conditions for our simulated use case. Arc links L7–L17 and L15–
L16 suffer the highest congestion due to spontaneous EV charging activities and demand 
response of the charging infrastructure. Subsequently the load on the PDN increases due 
to multiple incoming EVs with charging demand. There is a significant voltage drop in Bus 
Nodes 7 and 16 which has a cascading impact on the other bus nodes as depicted in Fig. 3. 
In addition, The results in Fig. 4 show how voltage magnitude drop and its cascading impact 
alleviated after optimizing the network using our proposed model and solution.

As illustrated in Related work section, there are many papers focused on modeling 
coupled TN and PDN networks, however, the research on this topic is still in its initial 
phase and just a few state-of-the-art studies have focused on EVs’ stochastic electrical 
energy and mobility behavior. In this regard, Xie et al. (2021); Wei et al. (2016) and Jiang 
et al. (2018) are the closest studies to the present work. They aim at minimizing the total 
cost. However, none of these works consider the time-varying dynamics of all the effec-
tive parameters. In addition, the constraints regarding the EVs’ charging load at charging 
stations are not explicitly modeled. Our paper considers the time-varying and dynamic 
nature of all the effective parameters in spatio-temporal variations to the coupled TN 
and PDN networks. Finally, although our research study proposed a novel optimal trans-
portation-power network flow model which dynamically optimizes the network infra-
structures jointly, it has a limitation regarding the impact of coordinated charging of EVs 
on a larger network which could be studied in the future.

Conclusions
With the increasing adoption of EVs, the coupling of the transportation and power net-
works is tightening. In the present work, such coupling has been modeled and evaluated 
using a case study. The key contributions of this paper include: (1) the formulation of the 
optimization problem of minimizing the system costs of both TN and PDN networks; 
(2) the development of an optimization strategy to minimize the total costs, in a tem-
porally dynamic setting; and (3) capturing the stochastic nature of traffic flows, change 
in electricity prices, and EV charging demands while satisfying the concept of dynamic 
equilibrium in a computationally low footprint. Our proposed model considers the 
time-varying, dynamic nature of all the parameters in their spatio-temporal variations, 
an approach that has not been studied before.

To achieve this, the following steps were followed: First, by analyzing EV mobility 
behavior in a defined TN region, the spatial-temporal variations on all nodes of the 
TN are captured to determine the charging load on PDN. Second, the traffic flow on 
various links in the TN is calculated to identify hot spots within the distribution net-
work bus nodes which could cause instability to the power grid. Finally, smart charg-
ing is applied to minimize the charging load at public charging stations by distributing 
the load across various charging piles. Our optimization framework decreases the 
total costs of both TN and PDN networks by focusing on the impact of EVs’ load on 
the TN overlaid with the PDN. The results of the simulations highlight that large-
scale EV penetration affects the optimal operation of PDN, which is solved using an 
optimal transportation-power network flow optimization model. In future work, we 
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envision to improve the model by forecasting time varying traffic demands and elec-
tricity generation cost. In addition, evaluating the impact of renewable distributed 
generators integrated into the PDN together with the impact of random power output 
and power dispatch from EVs to the grid can also be considered. Finally, modeling the 
EVs not only as load but also as power storage for the balancing of the power system, 
can provide for new Smart Grid scenarios (Malya et al. 2021).
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