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Introduction
Energy systems of the past could be characterized by the presence of a few central 
energy producers running mainly by the consumption of fossil resources and many 
consumers. The energy production of these producer types is scaleable and is very 
stable, as the amount of electricity feed-in is—at least in most cases—independent 
from environmental influences and can be adjusted to the current consumers’ needs, 
but has a significant environmental impact. Renewable energies are much more 

Abstract 

The massive use of small energy resources and storage units causes a transition from 
a traditionally centralized to a decentralized energy system. To structure and coordi-
nate the emerging changes in the energy system, the concept of Energy Cells (ECs) 
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environmentally friendly but are not suitable to replace conventional producers with-
out further adjustments, as the actual energy feed-in depends on factors outside our 
control, such as the season and the time of the day. Apart from that, many renewable 
energy producers like photovoltaic (PV) systems are often decentralized (e.g., inte-
grated into a household), which makes it even more difficult to control them centrally. 
With the help of storage units, we can compensate for over- and underproduction 
of energy without the need for conventional energy forms. This has especially been 
made possible due to the advancements in storage technologies in recent years  (Ma 
et al. 2021). However, since these are often placed distributed like renewable energy 
producers, we have to coordinate them in a new way.

In this context, the concept of the Cellular Energy System (CES) has arisen and 
has been researched by many organizations, especially in Germany by the Verband 
der Elektrotechnik (VDE)  (2019). This system should help to create a scientific and 
technological view on the reliability of supply regarding electricity and other forms of 
energy. The basis is the Energy Cell (EC) which encapsulates geographically or struc-
turally coherent parts of an energy system. An EC could be of any scale, e.g., a house, 
a neighborhood, or even an entire city. It has the target to fulfill all its demands by 
itself and it can provide or receive energy to/from other ECs. Furthermore, an EC can 
contain other ECs or be connected with neighbor ECs. This allows the coordination 
of an energy system with an increasing amount of distributed elements.

In Fig. 1 we see an illustration of a small EC system by definition of the VDE: this 
example consists of multiple ECs, which are either connected locally or hierarchically 
with each other and can transmit energy as well as data. For EC 1 it is additionally 
stated what a typical EC can look like: in this EC there are a producer, a consumer, 
and a storage component. All of these three components themselves could also be 
seen as ECs. They are connected to a controller which can exchange energy and infor-
mation with EC 2. EC 2 contains three other ECs (or differently speaking, is hierar-
chically connected to three other ECs) and is connected with three neighbors on the 
same level.

In this paper, we propose a methodology for modeling CESs that have both a hier-
archical structure and neighborhood relationships based on energy flows. We begin 

Fig. 1  A small CES based on the definition of VDE (2019)



Page 3 of 21Dengler et al. Energy Informatics  2022, 5(Suppl 4):51	

with reviewing related work. Then we present how we model the previously presented 
concept of the VDE and what algorithms are used, following an analysis of the com-
putational complexity. Finally, our approach is evaluated with examples of different 
sizes.

Related work
The German project C/sells is a research and implementation project for Smart Grids 
(SGs) and one of the main contributors in the field of the CES  (Website 2022). Their 
goal is to realize the energy transition in a “cellular, participatory and diverse” man-
ner  (Haller et al. 2020). C/sells discusses multiple approaches to solutions, which may 
also be in competition with each other. This is intended to serve the various customer 
requirements in a variety of ways in order to find the best implementation in each indi-
vidual case. Regardless of the exact interpretation of C/sells concepts in corresponding 
projects, C/sells is based on the idea of an EC similar to the definition of the VDE: an EC 
summarizes multiple coherent parts of an energy system. Connected ECs can exchange 
data and any form of energy. According to C/sells, a CES is either autonomous, which 
means that it can organize itself independently, or autarkical, referring to a system that 
does not need to interact with other components. They focus on the first type of CESs 
and want to integrate a CES into the existing power grid. In this context, C/sells intro-
duces the FlexPlattform which is a central marketplace where the components can sell 
energy to or buy energy from. It can be used as a further way of exchanging energy 
between the individual participants in the system. Especially the influence of this Flex-
Plattform has been analyzed by different researchers. For example, Klempp et al. (2020) 
discuss the effects of strategical bidding and the resulting problems as well as possible 
solutions in this market, while Bauknecht et al. (2021) did some investigations of legal 
regulations.

Outside the cellular approach, there are various projects to realize decentralization 
in energy systems. One of them is Local Energy Management (LEM), where the basic 
idea is similar to the CES: neighborhoods try to meet their own demands directly but 
still have the possibility to make requests to the outside. Related work mainly covers the 
realization of some thinkable scenarios: Eid et al.  (2016) examined issues with market 
integration of local energy systems with European regulations. Additionally, Feng et al. 
(2020) analyzed local energy communities as a possibility to implement LEM by utilizing 
a coalitional game model in their research.

Another popular method of coordinating energy in neighborhoods is by utilizing 
energy hubs which can receive, provide, as well as store different types of energy (e.g. 
electricity, heat, or water) and, in particular, convert between those types if physically 
possible and implemented into this hub. This concept shows many similarities with 
the idea of ECs and is used in research to address the problem of managing energy in 
neighborhoods: Walker et al. (2017) reviewed the current state of the art back in 2017 
in managing energy via energy hubs in energy positive neighborhoods and considered 
energy hubs as a widely researched and reasonable concept. Concrete modeling and 
testing of energy hubs at a neighborhood scale were done by Kristina et al. investigating 
optimal configurations and building layouts for a village in the mountains of Switzer-
land containing 29 buildings, showing an overall decrease in energy demand peaks and a 
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reduction of the overall consumption (Orehounig et al. 2015). A variation of this concept 
has been done by Perea et  al.  (2021) by extending the hub concept by introducing an 
urban cellular architecture that facilitates sector and spatial coupling, which comes even 
closer to the EC concept.

In the context of decentralized energy management there is an increasing trend in 
investigating the capability of introducing Peer-to-Peer (P2P) energy trading in energy 
systems. It refers to the direct energy exchange between two components in a system. 
These components are typically consumers or prosumers (which denotes participants 
that produce and consume energy), e.g. households. They can directly communicate 
with other participants in the system. In doing so, they usually make use of a market: 
the participants in the system can sell energy to or buy energy from other components. 
Those trading procedures can be combined with various technologies. One of these is 
blockchain as it allows to securely record all tradings without the need of one central 
instance  (Cali and Fifield 2019). Each component tries to minimize the resulting costs 
but ensures that it still satisfies its consumption. One implementation from Monroe 
et al. implements an agent-based model following this idea  (Monroe et al. 2020): each 
household acts like an individual agent with its own decision-making. Every agent can 
utilize any type of control strategy including machine learning techniques or forecast-
ing algorithms. This approach was tested in a case study with 18 households in Western 
Australia utilizing a blockchain-enabled trading platform. A different approach is taken 
by Tushar et al. (2019) by first summarizing different types of P2P energy trading topolo-
gies, e.g., trading within a microgrid or between multiple microgrids. After that, they 
apply game-theoretical methods to answer the question of how to encourage prosumers 
to participate in P2P energy trading, so that it becomes sustainable. Additional research 
was done by Shrestha et al. (2019), reviewing a broad range of methods for P2P energy 
trading models, including game theory, distributed algorithms, or a multi-market driven 
approach. Their paper discusses the challenges and opportunities of using P2P energy 
trading in the energy system of Nepal. To sum up, the most related work regarding P2P 
energy trading takes a multifaceted view on the topic, also beyond technical aspects. 
However, our proposed CES simulation combines hierarchical and local decision-mak-
ing by utilizing different controller types, which is often missing in P2P energy trading 
models.

Modeling a Cellular Energy System
In the "Introduction", we took a look at the definition of a CES according to the VDE. 
However, since it is mainly described as a concept, it is not very well suited to be used 
directly in a simulation framework. Therefore, we precise the concept of a CES and give 
a more formal definition of an EC. In our approach, an EC is either

•	 an atomic component, such as a consumer (taking predetermined energy from the 
system), a producer (adding predetermined energy to the system), or a storage unit 
(possibility to store energy),

•	 a Hierarchical Controller (HC) with one or more subordinate ECs (this models 
energy management with a central coordinator) or
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•	 a Local Controller (LC) with one subordinate EC. An LC is furthermore connected 
and can interact with an arbitrary amount of neighbor ECs (this represents decen-
tralized management).

As the resulting structure is tree-like, every non-root component has one overlying 
component as a parent, while each controller aggregates one or more subordinate com-
ponents. A visualization of an example CES is presented in Fig. 2. If we consider an LC 
or HC with the associated child elements as a unit, we obtain an EC similar to the defini-
tion of the VDE. The limitation for an LC to one child is by purpose since hierarchical 
controlling should be done by the HC. This enables us to separate the control from the 
neighbors and the children into two components, which increases the modularity of the 
system. Furthermore, it is also possible to omit the LC completely and use only an HC 
for certain ECs.

Energy flows

Before we start with the actual system, we need to introduce the concept of an energy 
flow. An energy flow describes how much energy flows of a certain type (e.g., electric-
ity, gas, or heat) from one part of the system to another. More precisely, each EC A in 
the system can transmit energy with a power P(t) (usual unit kW) at a time t to any 
other connected EC B. For simplicity, we say that the flows can be conducted through 
controllers. We safely assume that for all t the value of P(t) ≥ 0 . To model an energy 
flow in the opposite direction (B to A) we simply introduce an additional energy flow. 
Therefore, the complete transmitted energy (usual unit kWh) from the start of the 
simulation ( t = 0 ) until a time t_end between those participants can be calculated as 
E(t_end) =

tend

0
P(t)dt.

This approach is a vast simplification in comparison to other simulation models (such 
as the complex alternating current calculation). But more precise models are not neces-
sary in our case and would not suit the main goals of this simulation: our framework 

Fig. 2  Visualization of a hierarchical CES and correlation to the definition of the VDE
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is mainly designed to develop control strategies within the system, for example decid-
ing how to resolve an energy excess when there are multiple possibilities. Energy flows 
help to understand the impact of each component and identify parts that might turn out 
to be weak spots regarding the overall system’s performance. Furthermore, a simulation 
using energy flows is less computationally expensive compared to more precise calcula-
tion models and can be scaled more easily to large systems. We can use the simulation’s 
results to find out possible weak spots in our system which we can investigate with more 
accurate models.

In the scope of energy flows, we introduce a naming pattern to describe and distin-
guish multiple flows. This naming pattern is only valid locally, which means that the 
flows are named from the point of view of one component. Every flow is classified as 
follows:

The type describes the energy carrier of the flow, e.g., electricity, gas, water, or (in our 
case) a generic form ‘x’. Source and drain describe the direction of the flow, as men-
tioned, from the point of view of the current component. Possible values are ext refer-
ring to the overlying component, int to the component itself, and ec to any subordinate 
EC. Since every energy flow must not be negative by definition, we usually use pairs of 
energy flows between two components to express flows in both directions. The possible 
meanings depend on the application, and do not necessarily describe an actual existing 
flow: it can also be used to exchange data and is then denoted as information flow. What 
they are in our case is described in the following section.

Interfaces

Each component in the CES has a number of different flows to its overlying component. 
From their perspective, these flows can be described as x_ext_int_* for flows from the 
overlying component and x_int_ext_* in the opposite direction (‘*’ stands for a certain 
meaning, see below). HCs are furthermore connected to an arbitrary number of subor-
dinate components and share flows with them, while LCs have one subordinate compo-
nent and an arbitrary number of neighbors (see Fig. 3).

Based on this information we can define the following meanings of energy flows:

•	 f: it stands for flow and resembles the actual energy flow. It describes the amount of 
energy that flows currently in or out of an EC. Similar to Kirchhoff’s current law, the 
sums of the incoming and the outgoing f flows of a controller have to be the same.

•	 r: this information flow stands for request. It is set by the overlying component or 
a neighbor EC and gives information about what the optimal adjustments are 
for f to answer. More precisely, a r flow describes the desired total energy flow 
outgoing from or incoming to an EC, so in the optimal case, it holds, e.g., that 
x_int_ext_f = x_int_ext_r and x_ext_int_f = x_ext_int_r.

•	 z and g: that information flows stand for zero and grant. The z flow describes the flow 
f an EC emits after the initial call of calc_z() (see below). In g it is stated what an EC 
allows additionally after some (maybe multiple) calls of calc_f().

(1)[type]_[source]_[drain]_[meaning]
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Besides the flow meanings stated above, it is also possible to exchange further infor-
mation to the parent EC via information flows: one example is a r_min as well as a 
r_max flow meaning which contains an estimation of what is the minimum (unequal 
to 0) and maximum amount of energy an EC can offer to its parent. Formally it should 
hold for all flows unequal to 0: 

 Those limitations lie in the modeling of storage components: for each battery there exist 
restrictions for the outgoing and incoming flows. A controller can use this information 
to compute requests optimally based on the current strategy. Another parameter that 
could be exchanged is the current State of Charge (SoC) of the attached storage units.

These flows can now be used for the definition of some functions every component 
offers to overlying elements (or neighbors in the case of the LC). The goal of an EC 
is to fulfill its own needs but is furthermore able to exchange energy with connected 
ECs. These two properties are modeled with two functions:

•	 calc_z(): this function calculates an EC’s initial flow and is invoked once per EC 
and calculation step. It determines which energy surplus an EC produces or which 
demand an EC has if the EC tries to fulfill its requirements on its own. When the 

(2a)x_int_ext_r_min ≤ x_int_ext_f ≤ x_int_ext_r_max

(2b)and x_ext_int_r_min ≤ x_ext_int_f ≤ x_ext_int_r_max

Fig. 3  Interfaces of an HC (above) and an LC (below), ∗ ∈ {f, r, z, g} , △ ∈ {z, f}
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EC is not able to balance its own demand and production, it returns a flow that 
the overlying EC has to handle.

•	 calc_f(): this function receives a request as information from the request flows and 
adjusts its flows to determine its grant for this request. It is called multiple times per 
system calculation.

With the information gained from the subordinate cells, a control algorithm can now 
request the current state of the subordinate ECs and adjust the energy distribution based 
on this information.

Managing energy
Previously we described the proposed modeling of a CES. However, we did not specify 
how to implement the described functions and how to calculate possible flow constella-
tions. Therefore we design a calculation procedure that utilizes the recursive structure of 
the CES. Another goal for the creation of the general principle is that we are able to real-
ize different control strategies without major changes.

Discrete time step simulation

The flows determined via the calc_f() and calc_z() functions calculate the flows for 
a given time step. However, we are interested in the system’s behavior over time. The 
main idea in the CES simulation is to recalculate the flows in fixed time steps. The time 
between any recalculations should be chosen such that the overall computation time of 
the simulation is not too expensive, but the calculations are accurate enough. The recal-
culations are managed by a sequencer that initializes the flow balance calculation from 
the top EC iteratively. At first, it advances one time step in the simulation by updating 
the SoC of the batteries and statistics. After that, the flows will be reset and then recal-
culated on the new status of the system by invoking calc_z() at the top EC.

Hierarchical Controller routine

For an HC, we have to implement two functions calc_z() and calc_f(). Both maintain a 
variable balance defined as:

At the end of a calculation step, the balance has to be 0 to guarantee that there is no 
energy excess or demand.

(3)balance =
∑

(incoming flows)−
∑

(outgoing flows)
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Since calc_z() (see Algorithm  1) is the first function called per component during a 
time step, it is responsible for preparing its children by calling calc_z(). The resulting 
imbalance is redirected to the caller to ensure that balance = 0 . However, the current 
flows could be optimized (e.g., the energy should be managed as locally as possible), 
whereas calc_z() calls calc_f() requesting no incoming or outgoing flow. If this can be 
achieved, the EC can work fully self-sufficient.

The function calc_f() (see Algorithm 2) starts with a possible constellation of incoming 
and outgoing flows fulfilling that balance = 0 . However, they are probably not optimal as 
the energy may be managed more locally, so the function tries to improve them. It con-
siders the initial request and tries to fulfill it by requesting the children. The order and 
magnitude are determined by the strategy. The effects on the balance are then redirected 
to the caller.

Figure 4 illustrates the idea behind the two functions when applied to a small system 
consisting of an HC and a consumer, a producer, and a storage unit attached. We are 
interested in how the system behaves when it tries to be as self-sufficient as possible. 
Therefore we start with the calculation of calc_z() at the top HC. At first, the controller 
requests the original flow from each component (figure above). Then, the consumer and 
producer return their production or demand. The imbalance can be temporarily redi-
rected to the caller of the HC. After that, the controller asks its children to adjust their 
flow to a new value. Only the battery in this example can store the surplus (figure below).

Local Controller routine

Similar to the HC, we can realize the calc_z() and calc_neigh_z() functions as shown 
in Algorithm  3 and Algorithm  4. For both, we have to prepare the only children, and 
for calc_z() we have to additionally take care of the neighbors. The imbalance in calc_
neigh_z(), however, is redirected to the overlying EC and not to the neighbor, as flows 
between neighbors are only determined via calc_neigh_f(). In any case, we have to ensure 
that an LC is only prepared once per time step, as the initialization can both be initiated 
by a parent or neighbor.

For calc_f() (see Algorithm 5) it is our goal to handle the request at first only by the 
usage of the subordinate EC, as we want to handle the energy as local as possible. Only 
then the neighbors are considered, in a similar manner as for the HC. The calc_neigh_f() 
function (see Algorithm 6) first checks, if calc_f() has already been called from the top. If 
not, the flows have not been sent to the overlying EC. Then, if applicable, we can redirect 
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parts of these flows to the neighbor. Afterwards, the controller tries to resolve the initial 
request with the child EC.

Minimum/Maximum request estimation

As mentioned in the definition of the Interfaces, we can determine flow estimators 
with the meaning r_min as well as r_max describing a minimum and maximum energy 
flow an EC can offer. Note that while these values are perhaps not exact, they are still 
very helpful for estimating the possible capacity of an EC which can be used for control 
strategies.

For consumers and producers, the corresponding flows are fixed, which means that 
sending special requests would not change the flows. Therefore, the calculation of the 
r_min and r_max flows can be omitted here. For our storage unit models, we set mini-
mum and maximum flows in the incoming as well as outgoing directions. However, also 
more complex battery models can be implemented which consider external factors such 
as the working temperature.

The capacity of controllers is dependent on their subordinate ECs. For the r_min flow, 
we only have to be aware of the subordinate EC with the lowest corresponding r_min 
information: we can redirect all energy to or from this EC. When we calculate the 
maximum possible flow, we consider the left buffer (e.g. difference between the r_max 

Fig. 4  Example describing the idea behind the functions calc_z() and calc_f()
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estimator and the current flow) for each subordinate EC. The sum of those buffers indi-
cates how much power we can redirect additionally into the current EC. Therefore this 
sum can be added to the existing incoming or outgoing flow to obtain the maximum 
request. For LCs we only consider the subordinate EC but not the neighbors, as we do 
not see neighbors as part of the current EC.

Strategies

Until now we did not specify how exactly the requests are sent to the subordinate ECs 
(in case of the HC) or the neighbors (in case of the LC). Depending on the chosen strat-
egy the behavior of the system can differ vastly. In this paper, we present three simple 
strategies with different goals:

Greedy One simple strategy to determine the requests is the Greedy strategy: after 
calculating the initial flows from and to the attached ECs, the controller tries to com-
pensate for the complete current energy surplus or shortage using only one calc_f() 
call by sending a corresponding request to a child or neighbor. Ideally, the current EC 
can directly fulfill the current request. Otherwise, the caller has to ask another EC or 
let the initial request remain unsatisfied.
Equal request As introduced earlier, we calculate flows of the type r_max . Those flows 
give an estimation of how capable an EC is to answer a request. For example, a high 
value for this estimation indicates that this EC consists of many components and can 
therefore also provide a large amount of energy. We use this information to distribute 
the request equally to all neighbors but weighted according to the r_max values. There-
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fore, we ask each candidate once, evaluate its answer, rearrange the new target request 
and go on with the next EC. We further divided this strategy into two variants:

•	 In variant 1, we split the difference between the initial request and the actual flow. 
For every child or neighbor, we use as weighting, which buffer is between the current 
flow and the corresponding r_max flow. The achieved result for the next EC is then 
added to the existing flows to obtain the request flows.

•	 In variant 2, we redistribute the total request. Since we reorganize the complete 
request, we do not consider the buffer, but instead, the complete possible requests 
given by the r_max flows. The achieved result for the next EC is then considered as 
the new request.

Equal SoC In the context of this strategy, we look at some observations from Abgott-
spon et al. (2018). They analyze how to control a Battery Energy Storage System (BESS) 
and observe many parameters. One of them is the heterogeneity, describing how dif-
ferent the storage components regarding parameters like size or charging/discharging 
speed are. One result of the paper is that a homogeneous BESS can usually perform 
better than a heterogeneous one. The goal of our approach is to keep the SoC of the 
batteries on a similar level. Therefore we use variant 2 from the Equal Request strategy. 
Variant 1 cannot be easily adapted, as it requires knowing what part of the maximum 
possible flow is already used. We use the entire free storage of all attached child bat-
teries for charging and saved energy for discharging as weighting. Due to the modular 
structure of the framework, further strategies are possible, also ones that consider and/
or control not only the current controller but also a complete subtree. Apart from it, 
possible thinkable is to establish a market in which the components participate, e.g. by 
setting a price a controller has to pay for demanding a certain request.
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Computational complexity
Since the general relatively complex procedure consists of various cascade-like function 
calls, it is hard to determine the simulation’s complexity by intuition. However, an estima-
tion of the computational effort can be really helpful to better assess the simulation.

We consider a CES as a tree as presented in Fig. 2 and define h as the height of the tree 
( h = 0 refers to a tree with one node). Regarding the tree’s height, we consider each pair of 
an LC and HC as a node. Each HC in the tree has d children and each LC has k neighbors 
on the same height. The lowest layer consists of producers, consumers, or storage units 
which are treated equally here.

At first, we analyze the number of function calls for a strict hierarchical system. Let f(h) be 
the number of calculation steps to determine the system’s flows for a tree of height h with 
d defined as above. We consider each function call as one calculation step. The runtime 
is also dependent on the overhead occurring at each function body, which is for example 
affected by the number of children at this node, but for general analysis, we consider this 
estimation as sufficient. Furthermore, we specify f (0) = 1 , suggesting that the flow calcula-
tion complexity for consumers, producers, and storage components is constant. Every cal-
culation step of calc_z() and calc_f() leads to at maximum two function calls (again calc_z() 
and calc_f()) for each child. Therefore we can conduct for h > 0:

The 1 indicates that every function call has a constant overhead. For further simplifica-
tion, we erase the 1 as summand. In this case, this simplification does not lead to falsifi-
cation in terms of complexity. A detailed explanation is omitted here, but, in short, we 
would only observe a small multiplicative offset. We follow:

As one can see, this equation can be simplified to f (h) = (2d)h . We now extend the 
given approach to a system with LCs. Again, the tree has as root one HC, following the 
LCs in each layer with an HC attached to each of them. fhierarchical(h) is the number of 

(4)f (h) = 2 · d · f (h− 1)+ 1

(5)f (h) = 2 · d · f (h− 1)
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calculation steps remaining when starting with an HC at height h. fneigh(h) describes 
the number of calculation steps remaining when starting with an LC which has been 
requested from the top, while fneigh_side(h) refers to the number of calculation steps 
when requested from a neighbor. Then we can derive 

 with fhierarchical(0) = 1 . The difference between the runtime for a request from an LC 
when requesting from the top or a neighbor lies in the fact that in the second case an LC 
only asks the subordinate HC to answer the given request. This is a strong overestima-
tion of the actual computational effort since this calculation assumes that during every 
function call calc_z() and calc_f() have to be completely recalculated. However, since 
calc_z() on each component has to be called only once per time step, the cascade may be 
often interrupted earlier.

Deleting the summand 1 and doing some simplifications leads to:

If we consider a complete tree with n nodes, the height of the tree will be logarithmic 
to n, formally h ≈ c · logd n with c being a constant. For the hierarchical system we can 
derive

Therefore, we can expect a polynomial runtime with the number of children per node 
having a minor influence on the exponent. E.g., when choosing d = 2 and c = 1 , the 
resulting runtime lies in O(n2).

Applying these calculations to the second formula we derive

For simplification, we set this time d = k = 2 and c = 1 to follow:

This time we obtain a larger exponent, but the result is still a polynomial. A higher num-
ber of neighbors per LC tends towards higher complexity.

Regardless of the details in the runtime analysis, we can conclude that the system’s 
runtime in normal use cases is polynomial and not exponential in the number of 

(6a)fhierarchical(h) = 2 · d · fneigh(h− 1)+ 1,

(6b)fneigh(h) = 2 · fhierarchical(h)+ 2 · k · fneigh_side(h)+ 1

(6c)and fneigh_side(h) = 2 · fhierarchical(h)+ 1

(7)

fhierarchical(h) = 2 · d · fneigh(h− 1)

= 2 · d · [2 · fhierarchical(h− 1)+ 2 · k · fneigh_side(h− 1)]

= 2 · d · [2 · fhierarchical(h− 1)+ 2 · k · (2 · fhierarchical(h− 1))]

= (4d + 8dk) · fhierarchical(h− 1) = (4d + 8dk)h

(8)f (h) = (2d)h ≈ (2d)c·logd n =

[
(2d)logd n

]c
=

[
nlogd(2d)

]c
= nc·(1+logd(2)).

(9)
fhierarchical(h) = (4d + 8dk)h ≈ (4d + 8dk)c·logd n

=

[
nlogd(d·(4+8k))

]c
= nc·(1+logd(4+8k)).

(10)n1+log2(4+8·2)
= n1+log2 20 ≈ n5.32
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elements of the tree. This means that the simulation is capable of handling larger sys-
tems and is not limited to very small examples, although the algorithm design might 
imply it differently.

Evaluation
Testing example

For demonstration, we select the example CES presented in Fig. 2. Furthermore, we 
define the following properties: Both controller types follow the Greedy strategy. The 
HC 1 first asks Storage 1 and then the LCs 1 to 3, while the handling of the LC always 
begins with the LC with a smaller digit. Consumer 1 needs a constant power of 4 kW, 
while both producers provide a power of 3 kW and 4 kW to the system. All storage 
components have a capacity of 10 kWh, are initially fully discharged, support charg-
ing and discharging between 1 and 3 kW, leak some energy when charging/discharg-
ing, and constantly lose energy due to self-discharging. The simulated time frame is 
12 h long and a time delta between two time steps amounts to 1 min, yielding a total 
of 12 · 60 = 720 time steps with 721 points in time.

Figures 5 and 6 demonstrate the imported and exported energy of HC 1 and LC 1. 
As one can see, the system’s behavior can be divided into three phases: 

Fig. 5  Outgoing (left) and incoming (right) energy flows for HC 1 in the example from Fig. 2 when using the 
Greedy strategy, ec[0] =̂ Storage 1, ec[1] =̂ LC 1, ec[2] =̂ LC 2, ec[3] =̂ LC 3

Fig. 6  Outgoing (left) and incoming (right) energy flows for LC 1 in the example from Fig. 2 when using the 
Greedy strategy, neigh[0] =̂ LC 2, neigh[1] =̂ LC 3
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1.	 HC  1 begins with requesting the initial flows of its children. During this, LC  1 
receives from its child the information that it has a power shortage of 4 kW. There-
fore, LC  1 asks LC  2 to compensate for this, but it can only provide 3  kW. The 
remaining 1 kW power shortage is delivered by LC 3. However, LC 3 still has to deal 
with an energy surplus which will be redirected to LC 1.

2.	 After about 4 h, Storage 2 is fully charged. Then the energy surplus from LC 3 has to 
be exported to HC 1, which can conduct this energy to Storage 1 by sending a cor-
responding request call.

3.	 After that, the overproduction in the system cannot be compensated anymore by the 
storage components. The excess must be exported by HC 1.

The flickering effects beginning at about 4 h are caused by the constant energy loss of the 
storage components. When the battery has been discharged to a level where it is again 
able to receive a power of at least 1 kW, this battery will be charged again, resulting in 
the observed anomalies.

In short, our proposed algorithms show the wanted behavior: The energy surplus is 
managed as locally as possible because Storage 2 is loaded first and solely over neighbor-
hood connections. Only afterwards HC 1 has to be utilized.

Comparison of measurements

To better assess the capability of the presented procedures for larger systems, we have 
to aggregate information about the calculated flows. Therefore we defined the following 
measurements to evaluate the overall performance of our chosen strategies: 

(a)	 Power that is flowing over an HC, formally 

 This measurement informs us about how much power can be managed locally 
instead of being handled by an HC. A low value, especially for higher placed HCs 
in the tree, indicates that much energy can be managed locally without the need 
for higher placed controllers. If the LC can share energy flows over its neighbor-
hood connections, the amount of energy flowing over an HC should on average be 
lowered.

(b)	 Percentage of outgoing and incoming flows at each LC being distributed hierarchi-
cally ( x_ext_int_f  and x_int_ext_f  ) or locally ( x_neigh_int_f  and x_int_neigh_f  ) in 
each direction to serve the needs of the subordinate EC, formally for n neighbors: 

(11a)x_ext_int_f+

n−1∑

i=0

x_ec_int_f[i]

(11b)or x_int_ext_f+

n−1∑

i=0

x_int_ec_f[i].

(12a)
∑n−1

i=0 x_neigh_int_f[i]

x_ext_int_f+
∑n−1

i=0 x_neigh_int_f[i]
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 This measurement is only applicable to systems with LCs. In the best-case scenario, 
these values are 1, which means that all flows through that controller are man-
aged locally, in contrast, a value of 0 indicates that the neighborhood connections 
could not be utilized. However, these values usually do not reach 1 as imported or 
exported energy for this LC must, in any case, be conducted over the correspond-
ing HC and cannot be managed locally.

(c)	 Unresolved energy flows ( x_ext_int_f  and x_int_ext_f  ) at the top HC. This 
describes if all needs of the CES could be fulfilled and gives us information on 
whether the presented strategies improve or even worse the system’s stability. If the 
CES does not demand any energy export or import, both flows are 0. In general, we 
want to achieve the smallest possible value.

These measurements are depicted for each calculation step and then averaged for all 
time steps and controllers. There is no weighting in regards to the importance of a con-
troller (e.g., the root controller is more important than one near the leaves), but for a 
general estimation, we consider this as accurate enough.

Large‑scale example

We evaluate the efficiency of our algorithms with the help of a randomly created larger 
CES. We analyze the difference between a strict hierarchical system and a mixed one 
including LC as well as the different presented strategies. The CES is constructed by set-
ting up a tree to define the hierarchical structure and afterward adding neighborhood 
connections if LCs are included. We use a tree with a height of 6, with ≈ 3 attached con-
trollers per HC and ≈ 3 neighbors per LC. Furthermore, at each HC there is on average 1 
producer, consumer, or storage component for inner nodes and 2 for leaf nodes. For the 
particular example, we, therefore, obtain 75 HCs, 73 LCs, 47 consumers, 28 producers, 
and 32 storage units. The time-varying impact of the producers and consumers is mod-
eled with a sinus-shaped function with two peaks for consumers (forenoon and after-
noon, maximum consumption 3 kW, representing a typical household) and one peak for 
a producer (midday, maximum production 6 kW, representing a PV system). The average 
capacity of a battery is ≈ 20 kWh, in total they can hold 659.58 ≈ 20 · 32 kWh. For each 
battery, we model again some losses during operation, and each of them supports charg-
ing and discharging between 1 and 5 kW. Initially, they have a random SoC. As before, 
one time step amounts to one minute, resulting in overall 24 · 60 = 1440 time steps.

By having a look at Figs. 7 and  8, we see that the system is designed so that it has to 
import energy in the forenoon due to the low SoC, but must export energy during mid-
day. Especially due to the limitation of the maximum charging/discharging power of the 
storage units we observe an export/import at the top HC even if the SoC limits of the 
batteries have not been reached. Here, the distributions of the requests can have a sig-
nificant impact, as they, e.g., determine how the batteries will be charged and therefore 
how fast and efficient a swarm of batteries can be discharged.

(12b)and

∑n−1
i=0 x_int_neigh_f[i]

x_int_ext_f+
∑n−1

i=0 x_int_neigh_f[i]
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In Table 1 we see the previously defined performance measures for strictly hierarchi-
cal systems in comparison to some using LCs. In general, the Greedy strategy and the 
Equal Request 1 strategy show the overall best results regarding the needed imported 
and exported energy. Furthermore, for these strategies, the overall amount of energy 
conducted by the HCs could be lowered significantly with the use of LCs. However, 
the Equal Request 2 and the Equal SoC variant show different results: the system has to 
import/export more energy at the top HC, and surprisingly, the average energy flows of 
all HCs have become larger, whereas the import/export could be lowered. One explana-
tion for this lies in the functionality of these strategies: at first, the requests are always 

Fig. 7  Accumulative SoC and maximum capacity of all storage components at the larger example without 
LCs when using the Greedy strategy

Fig. 8  Outgoing (left) and incoming (right) energy flows for the topmost HC at the larger example without 
LCs when using the Greedy strategy

Table 1  Evaluation of the presented metrics (in short: (a) Power over HC in kW, (b) Percentage 
resolved over LC, (c) Unresolved power at top HC in kW) to the first large-scale example when using 
either a strict hierarchical CES or one with LCs by applying different control strategies

Strategy (a) (b) (c)

Import Export Import Export

Only HCs Greedy 5.273 / / 2.894 4.858

Equal Request v1 5.204 / / 2.902 4.885

Equal Request v2 5.231 / / 3.596 6.267

Equal SoC 5.268 / / 3.241 6.435

HCs and LCs Greedy 3.477 0.576 0.584 3.095 5.098

Equal Request v1 3.430 0.580 0.545 3.005 4.955

Equal Request v2 5.457 0.582 0.624 3.181 5.556

Equal SoC 6.038 0.608 0.617 3.135 5.398
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set up without the information on existing flows. Secondly, since every attached EC in 
the controller routine during one recursion step is only visited once, the full potential of 
an EC is maybe not be called to compensate for the answer of another EC. This problem 
could be partially improved by asking an EC multiple times and would be part of further 
research.

Conclusion and future work
In this paper, we presented a methodology for modeling CES that have both a hierarchi-
cal structure and neighborhood relationships based on energy flows. Therefore we struc-
tured the CES into various components, including consumers, producers, and storage 
units as well as HCs and LCs to represent aggregations of ECs. Each ECs can control its 
energy locally by an exchangeable controller. As part of the controller implementations, 
we presented three different simple strategies for how a controller can handle the energy. 
Furthermore, we analyzed the complexity of the implemented functions and showed 
that the overall needed computing power is reasonable. The operating principle and the 
effectiveness of the proposed methods were evaluated in examples of different sizes.

The presented CES simulation could be extended and modified in various ways: Due 
to the modular architecture of our work, new components and strategies are thinkable. 
This includes, among others, complex battery models imitating real-world storage sys-
tems or advanced controllers based on linear programming, that minimizes a given cost 
function and has control over a complete subtree. Since the concept of energy flows is 
not limited to electrical energy systems, heat storage systems and electricity/heat cou-
pled systems can be integrated and the interplay between the multiple forms of energy 
can therefore be simulated. We can also introduce parallelism into our calculations to 
both enhance performance and model conflicting situations during our decision-mak-
ing. Apart from that, also different EC simulation approaches could be created, that take, 
e.g., a more sophisticated view of the communication structure between the controllers.
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