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Introduction
Power systems are becoming increasingly distributed in terms of the management of 
the grid and the engagement of energy players. This allows the creation of smaller 
communities, such as microgrids and energy communities, usually composed of 
smart buildings (Mota et  al. 2021), in which local energy management is carried 
out using local energy demand and renewable energy sources (RES). In this context, 
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energy communities are gaining importance, since they are seen as pillars of a suc-
cessful energy transition (São et al. 2021), where they can alter the energy paradigm 
by empowering energy players, such as consumers and prosumers, therefore, contrib-
uting to energy and climate goals in what concerns meeting demand with renewable 
sources and reducing emissions (Reis et al. 2021).

There has been a substantial change in power systems, namely in energy con-
sumption and generation, even more evident with the growth of distributed energy 
resources (DER) and the active engagement of prosumers, who are players that gen-
erate energy in addition to consuming it (Gržanić et al. 2022). The growth of active 
participant players reflects investments in the transition to RES. Nonetheless, it offers 
new challenges for the energy network, necessitating flexibility from energy players 
and efficient market mechanisms, which enable the correct operation of the smart 
grid. Besides that, the power and energy systems planning and operation become 
impaired or, at least, hampered, by the lower predictability and stability of RES gen-
eration (Chicco et  al. 2021). With the shift in system structure, the energy market 
has to deal with a high number of small-scale renewable energy prosumers. Feed-in 
Tariff (FiT) system has been implemented as the most prevalent generation subsidy, 
in which prosumers get compensation for the energy exported to the grid at FiT sup-
plied by the upstream utility firm (Chen and Liu 2021). This system enables pro-
sumers to take advantage of the flexibility of their self-generated power and sell the 
surplus to the grid. Nevertheless, this payment may not consider the installation and 
operating cost of DER. On the other side, players who buy electricity from the grid 
are often faced with expensive Time-of-Use (ToU) tariffs supplied by the upstream 
utility provider (Venizelou et al. 2018).

In the smart grid paradigm, the concept of Transactive Energy (TE) is being highly 
addressed in order to balance the grid’s consumption and generation. Several require-
ments, including two-way communication, integration of information and communi-
cation technology with the power grid, smart and remote supervision, and advanced 
and smart metering, are essential in this context (Wu et al. 2021). In reality, TE systems 
expand the present notions of wholesale transactive power systems into retail markets 
with end-users equipped with intelligent energy management systems to enable small 
energy consumers to participate actively in electricity markets (Abrishambaf et al. 2019). 
TE systems can also enable the administration of peer-to-peer (P2P) trading and local 
energy markets (LEM) in smart grids by employing devices with their own objectives 
and decision-making capabilities. A LEM can be used in a close community of prosum-
ers and consumers which share a market platform for trading locally produced energy 
(Dudjak et al. 2021).

P2P energy trading comprises a large number of continuous data comprised of unpre-
dictable and uncertain variables, such as renewable generation and load demand, making 
it difficult to make a decision using conventional optimization and learning techniques 
(Chen and Bu 2019). Thus, a commonly explored option is reinforcement learning, espe-
cially with the integration of deep learning and multi-agent techniques that give it a 
greater ability to approach optimal optimizations (Gronauer and Diepold 2021). A prob-
lem normally associated with this type of models is the difficulty in modelling the envi-
ronment with which the agents will interact.
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To tackle the problems mentioned here, the methodology proposed in this paper inte-
grates the use of deep reinforcement learning to optimize the participation of players in 
LEMs and P2P markets. Two algorithms are used independently, which are integrated 
into an agent-based smart grid management ecosystem that allows agents to have access 
to innovative features that allow them to manage their resources in an intuitive, efficient 
and adaptable way. A case study was developed, using an energy community with players 
with real consumption and generation profiles, in order to test the proposed methodol-
ogy. The results were positive and showed that this approach can create a competitive 
advantage for agents who train to participate in P2P, and also gives a greater ability to the 
community in general to transact more energy per period.

The paper is organized as follows, after the introduction, there is a section to present 
a general overview of the applications of Reinforcement Learning to local energy mar-
kets and P2P energy markets. Then, it is presented the proposed methodology, with a 
description of the Agent-based ecosystem for Smart Grid modelling (A4SG) and the 
training of both RL algorithms. The next section presents the case study, the used data 
and the description of the studied players, followed by a results section where is com-
pared a P2P market week, before and after the RL training. Finally, the last section pre-
sents the main conclusions of the work.

Reinforcement learning in peer‑to‑peer energy markets
Reinforcement learning (RL) is a type of trial-and-error learning in which an agent/
learner interacts with its environment to learn the better action to take. Unlike other 
machine learning approaches, the agent is not advised on the right action to take. 
Instead, the agent explores the environment to maximize its future rewards (or, statis-
tically, the sum of total expected rewards), generally in pursuit of a goal/objective rep-
resented numerically by a big reward (Recht 2019). The exponential growth of deep 
learning eventually extended to reinforcement learning, which had a beneficial effect 
on its potential applications. Deep reinforcement learning (DRL) combines the sensing 
ability of deep learning with the decision-making power of RL (Botvinick et al. 2019). 
Deep learning processes information about the target observation from the environment 
and delivers state information about the current environment. The RL algorithm then 
transfers the current state to the corresponding action and calculates predicted return 
values for each value (Arulkumaran et  al. 2017). DRL handles standard RL challenges 
by performing complex tasks with less prior knowledge, as a result of its ability to learn 
abstraction levels from data (Arulkumaran et al. 2017).

With the increasing complexity of the problems addressed with the use of RL, 
namely in the smart grid, it was necessary to explore the cooperation and competition 
between RL agents, moving from a single-agent RL to a multi-agent RL (MARL) para-
digm. In a MARL, there are two main approaches: (i) independent learning, which 
attempts to train a policy for each agent by mapping its private observations to an 
action, and (ii) cooperative learning, which aims to achieve a group goal by having 
each agent work on the issue as a whole or in subtasks. Dealing with multi-agent set-
tings in competitive RL is not a straightforward problem, since agents are attempting 
to learn the best strategies to gain an edge over other agents in the same process, but 
with different configurations. Second, training independent policies typically does not 
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scale well to large numbers of agents, and the change in policies renders the environ-
ment dynamics non-stationary from the perspective of any particular agent, which 
may result in instability (Padakandla and Bhatnagar 2020). To overcome the non-sta-
tionarity issue, MARL methods have been employed to address this problem.

Prior applications of MARL in the field of power and energy systems are currently 
restricted but growing. Regarding the application of RL and MARL to LEMs and 
P2P energy trading, numerous learning and trading algorithms have been combined 
to increase energy consumers’ involvement. One of the most explored algorithms is 
Q-Learning, and in Chiu et al. (2022) a multi-agent variant of this algorithm is pre-
sented to determine the optimal approach for energy market pricing negotiations. 
The most significant issue with Q-Learning, which prevents it from being used in an 
original manner in many smart grid situations, including the P2P market, is that it 
cannot deal with continuous observation and action spaces, and its adaptation, which 
involves the discretization of actions and observations, can result in the loss of valu-
able information, preventing optimal results. In Samende et al. (2022), it is proposed a 
multi-agent deep deterministic policy gradient (DDPG) algorithm using distribution 
network prices to incentivize an energy market in which RL incentives help to meet 
network limitations and choices that violate them.

Regarding the application of MARL to P2P energy trading, there are already sev-
eral proposals with different methodologies. In Qiu et  al. (2021a) it is proposed a 
multi-agent DDPG to automate P2P energy trading in double-auction markets. The 
proposed model provided a high level of scalability and also protects the privacy of 
prosumers/consumers by considering the market operator as a third-party service 
that provides agents with the market results. Also using multi-agent DDPG, but with 
a different approach, the work proposed in Qiu et al. (2021b) integrates the notion of 
parameter sharing to optimize the participation in P2P energy markets. This architec-
ture allows all agents to share parameters (e.g., the weights of the actor and critic net-
works) of a single policy that is taught using the experiences of all agents (although 
each agent can obtain its unique observations). In Chen et al. (2022) it is proposed a 
model to optimize P2P energy trading and energy conversion policies of multi-energy 
microgrids in real-time. The proposed model uses twin delayed deep determinis-
tic policy gradient algorithm (TD3) to improve the performance of the multi-agent 
actor-critic algorithm. The model considers P2P energy trading, energy conversion 
and multi-vector energies.

The proposed methodology in this paper, besides using multi-agent DDPG, uses TD3, 
proposed in Fujimoto et al. (2018). Even though DDPG can deliver good outcomes, it 
has limitations. As with many RL algorithms, DDPG training may be unstable and highly 
dependent on finding the optimal hyperparameters. This is because the algorithm con-
sistently overestimates the Q values of the critic network. Over time, these errors may 
drive the agent to reach a local optimum or develop forgetfulness for prior experiences. 
TD3 solves this problem by concentrating on decreasing the overestimation bias. TD3 is 
an algorithm that tackles this problem by proposing three crucial techniques:

•	 Using a pair of critic networks: TD3 tends to underestimate Q values. This under-
estimating bias is not a concern because low values are not propagated through 
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the algorithm, unlike high values. This technique provides a more stable approxi-
mation, hence enhancing the algorithm’s stability;

•	 Delayed updates of the actor: TD3 allows the definition of the delay periods to update 
the policy (and target networks) as an hyperparameter, thus updating it less often;

•	 Action noise regularization: when calculating the targets, clipped noise is added 
to the action. This makes that higher values are preferred for actions that are more 
robust.

Although there have been substantial advancements in the application of reinforce-
ment learning to local energy markets and peer-to-peer energy trading, these models 
are trained for extremely narrow scenarios that do not allow for their implementation 
in real-time. The RL model proposed in this study was integrated and evaluated within 
an agent-based ecosystem designed to simulate smart grids, from which the model’s 
execution data was obtained. Furthermore, the work proposed in this paper addresses 
the uncertainty that the forecast brings to participation in energy markets (Gomes et al. 
2022), using the forecast error as a variable in the calculation of the amount of energy to 
be transacted.

Double‑auction market
The LEM implemented in this study is a P2P energy trading model based on the Double 
Auction (DA) (Friedman 2018). This is a particularly interesting negotiation model for 
integration with reinforcement learning models, because it motivates agents to look for 
different negotiation strategies when compared to their opponents. In DA traders are 
allowed to submit bids/offers at the start of an auction period, following which the auc-
tioneer clears the market and publishes the results, i.e., trading prices and quantities.

More in detail, a DA market is comprised of a group of buyers and a group of sellers 
who declare the quantity of energy they wish to trade, in kWh, as well as the minimum/
maximum price they are willing to receive/pay for the energy they want to sell/buy, in 
EUR/kWh. The auctioneer then creates a public order book in which the accepted bids 
and offers are published. In the order book, buy orders are ordered by decreasing sub-
mitted buy prices, whereas sell orders are organized by increasing submitted sale prices. 
The DA market involves multiple steps, specifically in matching sellers and buyers. In 
the first step, when an auction period begins, market players input their order informa-
tion as well as a trading price and energy quantity. All orders are recorded in the order 
book, and then the matching algorithm iterates through the order book and tries to 
match each sell order with a buy order until the selling price is greater than the buy-
ing price or there are no more mismatched buyers or sellers. Finally, when two orders 
are matched, the algorithm determines the market clearing price using the mid-price 
approach (Friedman 2018), as

where BidPriceb is the price that the buyer b offered in the market, and BidPrices is the 
price that the seller s is asking, both in EUR/kWh. The transaction quantity is equal to 
the minimum quantity between the two matched orders. The whole process of market 

(1)ClearingPrice =
BidPriceb + BidPrices

2
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clearing is represented in Fig. 1. In the double auction trading mechanism, each match 
between sellers and buyers has a clearing price, thus demanding exploring numer-
ous strategies to ensure not only that the required energy is bought or sold, but also 
that transactions are done at the best possible pricing. This type of trading mechanism 
was chosen based on previous results in the literature (Friedman 2018), namely in what 
regards the application of RL algorithms (Qiu et al. 2021a).

Proposed methodology
The methodology proposed in this paper aims to serve as decision support for partici-
pants in local energy markets, regarding the amount of energy to be transacted, the price 
bided/offered for that transaction, and the use of flexibility to counter possible extra 
costs related to participation in P2P. In this methodology, the players representation 
agents can use reinforcement learning-based training to improve their participation in 
P2P markets using simulation environments. For this, two DRL algorithms will be used, 
i.e., multi-agent versions of DDPG and TD3, separately, allowing the choice of agents 
who will take advantage of them. In order to facilitate the use of this methodology in 
real contexts, it was integrated into the Agent-based ecosystem for Smart Grid model-
ling (A4SG), from which agents can request training, and use the resulting policies in 
their participation in real-time. The A4SG is a multi-agent system framework developed 
by the authors to digitalize the smart grid operation models. Therefore, A4SG was used 
to integrate the proposed methodology due to its ability to provide agents with useful 
mechanisms that facilitate their active participation in the smart grid, as described in the 
following subsection.

A4SG

The A4SG, conceived and developed by the authors, which architecture for integrating 
the proposed methodology is depicted in Fig. 2, combines the concepts of multi-agent 
systems (MAS) and agent communities (ACOM) to produce an ecosystem in which 
multiple agent-based systems can coexist and interact. ACOMs are smaller groupings 
of agents that can represent aggregation entities, such as energy communities. The use 
of several groups of agents allows a distributed and intelligent decision-making process, 
with the integration of different services in the groups, considering their objectives. 

Fig. 1  DA market clearing process



Page 7 of 18Pereira et al. Energy Informatics  2022, 5(Suppl 4):44	

Furthermore, this ecosystem takes advantage of two novel mechanisms, i.e., branch-
ing and mobility, to improve the agents’ context and performance. The A4SG ecosys-
tem is built on top of the Python-based Agent Communities Ecosystem (PEAK) (https://​
www.​gecad.​isep.​ipp.​pt/​peak), and the Smart Python Agent Development Environment 
(SPADE) (Palanca et al. 2020), which enable the agents communication and distributed 
execution. Besides that, it uses as graphical interface the Citizen Energy Communities 
Operator System (CECOS) (Pereira et  al. 2021), that enables the access to useful ser-
vices, such as tariffs management, and demand response simulation.

As agents may have different objectives simultaneously, that involve the engagement 
in multiple ACOMs concurrently or even subscribe to various services, the branch-
ing mechanism was developed to offer this capability to the agents of the ecosystem. 
The branching of agents is the technique that permits the deployment of a new branch 
agent that acts as an extension of the representation agent to achieve a specific objective. 
There are two types of branch agents: the goal-oriented and the service-oriented agent. 
The goal-oriented tries to achieve an objective, which might be, for instance, the sub-
scription of a service or the participation in an ACOM. On the other hand, the service-
oriented agents provide services to other agents. In the context of this work, branching 
is important, since it allows an agent to have a representation in an energy community, 
and simultaneously deploy a goal-oriented agent to perform the RL training, only hav-
ing the objective of returning the trained policy to the agent that later participates in the 
P2P market.

The agents’ mobility in A4SG is divided in two types: the physical mobility, and the 
virtual mobility, supported by the Computation Load Balancing Mechanism and the Vir-
tual Mobility Mechanism, respectively. The physical mobility within the ecosystem ena-
bles agents to move to a different physical location, for instance a different host, such as 
a computer or a server. From an individual point of view, the primary advantage is the 

Fig. 2  A4SG architecture to integrate the proposed methodology

https://www.gecad.isep.ipp.pt/peak
https://www.gecad.isep.ipp.pt/peak
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convenience that mobility may provide to the entity represented by the agent. From the 
ecosystem standpoint, the Computation Load Balancing Mechanism makes use of the 
physical mobility in A4SG to balance the available hosts in the ecosystem in terms of 
computation load. In this type of mobility, the destination host’s main agent is respon-
sible to confirm the mobility, enabling the consideration of existing constraints, such as 
communication, or physical resources available. The Virtual Mobility Mechanism, more 
important in the context of this methodology, enables agents to move to other agent 
communities (e.g., energy retailers) deployed on the same physical host, in order to take 
use of their services, interact with other agents, or get access to shared resources at the 
destination entity (e.g., citizen energy community). Agents that make use of this type of 
mobility can engage in aggregation entities that are a good fit for their profiles, bringing 
them closer to realizing the full potential of their energy resources. The primary distinc-
tion between virtual and physical mobility is that virtual mobility occurs within the same 
physical host, eliminating the need for the agent to restart its execution. In the context 
of this work, an agent can, for instance, enter both RL training ACOMs, and perform 
a training with few iterations to understand which algorithm best suits its profile, and 
from there, move to the ACOM that will bring it better results.

Reinforcement learning training

The reinforcement learning training in the proposed methodology focuses on two main 
blocks, the environment and the agents. The environment incorporates the P2P model 
used and provides agents with customized observations for each one. The agents receive 
the observations from the environment, compute the action to take, determined by the 
policy or exploration mechanism, and then execute the after market phase. The archi-
tecture of the methodology is shown in Fig. 3. As can be seen, although there are sev-
eral agents, with actions decided by themselves, these are centralized when entering the 
environment and the P2P market, in order to guarantee the integrity of the environment. 
After training, only the policies developed by each agent are returned to A4SG agents.

Fig. 3  RL environment and agents interaction in training
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Regarding RL, both algorithms, i.e., TD3 and DDPG, will be used under the same 
conditions, that is, with the same types of observations, actions and rewards calcu-
lated in the same way. Regarding the observation of the state of an agent, this includes 
several important factors for the decisions of the players when participating in the 
market. The observation for player p in period t is given by:

where Forecastpt  is the demand forecast of player p for period t , in kWh, Flexibilitypt  is 
the forecasted flexibility of player p for period t , also in kWh, Transactionspt−1

 is the 
list of transaction made by player p in period t − 1 in the P2P market, including infor-
mation about the price and quantities of energy transacted, and PeriodTimet provides 
information about the period of the day represented by period t.

The agents’ actions are related to the strategy that each one of them develops to 
participate in the P2P market. Thus, each agent generates two different actions, on 
regarding the price, and the other regarding the amount of energy to transact, both in 
the interval [0, 1], representing a percentage value. Thus, the actions of each agent are 
given by:

where aPricept  represent the action relative to the price to pay for energy, aQuantitypt  is 
the action that indicates the amount of energy to trade in the P2P market, both repre-
sented in percentual points, regarding period t and player p.

Regarding the proposed exploration mechanism, two types of exploration are used, 
in order to create a greater range of actions considered. The exploration mechanism 
is activated from a completely random value, generated in the interval [0,1]. If the 
value is lower than 0.8, then the actions that were chosen according to the policy are 
applied without any change. If the value is equal or higher than 0.8 and lower 0.9, 
then exploration with gaussian noise is activated. And finally, if the value is equal or 
higher than 0.9 then completely random values are used for all actions. Noise explora-
tion explores actions values relatively close to ideal according to the policy, and ran-
dom explores any value within the considered ranges.

The truth is that the actions that the policy or the mechanism of exploration of agents 
generate, for that reason alone, do not have much meaning. In this way, agents must 
frame these actions in their context, to generate the offers and the strategy to participate 
in the market. Regarding the price, so that both buyers and sellers feel motivated to par-
ticipate, the prices offered/asked are limited to the purchase and sale price of energy on 
the grid. In what regards the energy amount to transact the agents consider the forecast 
error, and as that, the first step is to determine the potential error in a period. This error 
is computed using the evaluation metrics of the algorithm for forecasting at the time of 
testing. If it is the Mean Absolute Percentage Error (MAPE), it must be multiplied by 
the forecasted value for the period in question; if it is the Mean Absolute Error (MAE), 
it is used as the error’s direct value. After calculating the error, the value of aQuantitypt  is 
applied within the forecast’s possible range. As such, the price to pay and the amount of 
energy to be transacted are given by the following equations:

(2)o
p
t = (Forecast

p
t , Flexibility

p
t ,Transactions

p
t−1

,PeriodTimet ,ToUt , FiT t)

(3)a
p
t = (aPrice

p
t , aQuantity

p
t )
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where BidPricept  represents the price to pay in the P2P market, in EUR/kWh, Errorpt  is 
the mean error of the forecast of the player, in kWh, and BidQuantitypt  is the amount of 
energy to transact in the P2P market, in kWh, all regarding player p in period t.

Bearing in mind that in this methodology the hour-ahead market is used, there is a 
need of energy forecasts models to carry out the market, and not real values. Therefore, 
the true impact can only be measured in the period after the transactions are carried 
out, when the real values of consumption and generation are known. Thus, as shown 
in Fig.  4, in period t the data related to the transactions carried out are stored, while 
in period t + 1 , interactions with the grid to buy or sell energy are carried out, and the 
reward for period t is calculated.

Regarding the calculation of the reward, it is directly linked to the savings made by 
the player with the participation in the P2P market. The first step is to calculate the cost 
or profit of buying or selling the energy to the grid (i.e., CostGridpt  ), where the actual 
demand of the player is multiplied by the corresponding market price, represented in 
Eq. (7). Then, the next step is to calculate the money transacted in the P2P market (i.e., 
CostMarket

p
t  ), that is given by the summatory of price multiplied by energy transacted in 

each deal of the market, as represented in Eq. (8).

Even with market transactions, the interaction with the grid to buy/sell energy from/to 
the grid is almost inevitable. This is because, using the forecast as a basis for the amount of 

(4)BidPrice
p
t = aPrice

p
t ∗ (ToUt − FiT t)+ FiT t

(5)Error
p
t =

MAPE ∗ Forecast
p
t , ifMetric = MAPE

MAE, ifMetric = MAE

(6)
BidQuantity

p
t =aQuantity

p
t ∗ (

(

Forecast
p
t + Error

p
t

)

−
(

Forecast
p
t − Error

p
t

)

)+
(

Forecast
p
t − Error

p
t

)

(7)CostGrid
p
t = Demand

p
t ∗

{

Price
Buy
t , if Role

p
t = Buyer

PriceSellt , if Role
p
t = Seller

(8)CostMarket
p
t =

N
∑

i=0

(TransactedEnergyi ∗ Pricei)

Fig. 4  RL after market phase
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energy to be transacted, there will always be errors, even if small, that make this interaction 
mandatory. The amount of energy to buy/sell from/to the grid (i.e., EnExtrapt  ) is given by 
the Eq. (9) and is the difference between the real demand and the amount of energy traded 
in the market. In order to try to reduce the cost of interacting with the grid, when it is nec-
essary to buy, that is, when a buyer does not transact enough energy in the market, or when 
a seller transacts more energy, flexibility is used to reduce costs. Equations (10) and (11) 
describe the process of calculating how much flexibility is needed, and the cost associated 
with this interaction in the after market phase. In Eq. (10) the amount of flexibility is given 
by the minimum between Flexibilitypt  and EnExtrapt  , both regarding player p in period t , in 
kWh. On the other hand, the result of Eq. (9) and (10) are used to calculate the cost of buy/
sell energy to grid in the after market phase. The flexibility is used only in the periods that 
demands the buying of more energy from the grid.

Finally, the reward is calculated by measuring the impact of participation in P2P in reduc-
ing costs or increasing profits, so there is a differentiation in the formula for sellers and buy-
ers. The equation that gives the reward is then given by:

In order to facilitate the development and integration of the methodology in the A4SG 
ecosystem, the OpenAI Gym toolkit (Brockman et al. 2016) and the Ray RLib library (Liang 
et al. 2017) were used. The OpenAI Gym toolkit enables research, development, and appli-
cation of RL. It integrates a large number of well-known tasks that expose a common inter-
face that allows direct comparison of the performance results of various RL algorithms. In 
addition, the environments that follow the OpenAI Gym settings and requirements are 
often efficient in training processes that involve a high number of iterations. The Ray RLlib 
library provides the implementation of several RL algorithms, such as the one used in the 
proposed methodology in this paper, i.e., DDGP and TD3. If the environments where the 
algorithms are applied are OpenAI Gym-compliant, then the integration between the two 
libraries is quite straightforward since the agents that this library provides already allow and 
aim to make this connection.
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Case study
In order to test the proposed methodology, a case study was developed using an energy 
community of 50 players (Goncalves et al. 2022). The objective was to validate whether 
the two reinforcement learning algorithms used allow A4SG ecosystem’s agents to 
improve their participation in the P2P energy transactions market. From the 50 play-
ers of the energy community, 20 will be sent to training with TD3, 20 to training with 
DDPG, and 10 will remain without training, in order to have a strong component of 
comparison between these three aspects. The distribution of the players is completely 
random. The flow and steps of the case study are shown in Fig. 5. The objective is to sim-
ulate a P2P week without training (step i) train the agents with the proposed RL mod-
els (step ii), and then compare the simulated market week with the agents’ participation 
in the market with the trained policies (step iii). From the point of view of the A4SG 
ecosystem, the agents will be distributed among the different training ACOMs, despite 
meeting together in the ACOM of the energy community.

In order to test the application of the methodology in a real context, the energy com-
munity used was created from real player profiles. These players are all residential, thus 
having relatively similar capacities in terms of generation. In Fig. 6 can be seen the con-
sumption and general generation of the community throughout the studied week.

Although the TD3 algorithm is quite robust as far as hyperparameters are concerned, 
and as such, no tuning is necessary, DDPG is subject to this issue. However, both algo-
rithms were used with the same hyperparameters, which are shown in Table 1, in order 
to be able to make a direct comparison between the two.

Fig. 5  Case study steps

Fig. 6  Community general demand
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In order to compare the performance of P2P agents with and without training, three 
negotiation profiles were used prior to RL training to generate offers:

•	 Greedy profile: agents adhering to this profile will attempt to trade between 80 and 
100% of the forecasted demand at a price between 20 and 80% within market limits;

•	 Safety profile: where agents attempt to negotiate between 90 and 110% of the fore-
cast, while in terms of price, they use the limits between 60 and 100%;

•	 Cheaper profile: where agents try to seek deals at a lower price. These contracts 
aim to trade between 80 and 100% of the forecast but utilize only between 0 and 
50% of the price limits.

Results
The most effective method for assessing the performance of reinforcement learning 
algorithms is to examine agent rewards across training iterations. An increase in the 
value of rewards indicates that agents are performing better at the task for which they 
are undergoing training. However, in competitive contexts such as the P2P market, it 
is common for some agents to achieve better results than others, as strategies are not 
shared and each agent seeks to achieve the best results for himself, which in most cases 
results in poorer outcomes for the others. Figure 7 depicts the average reward received 

Table 1  TD3 and DDPG training hyperparameters

Hyperparameter Value

Train batch size 100

Tau (τ) 0.005

Gamma (γ) 0.99

Critic learning rate 0.001

Actor learning rate 0.001

Policy delay 2

Policy noise 0.2

Noise clip 0.5

Fig. 7  Mean reward for each agent per training episode: (a) DDPG, and (b) TD3
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by each agent for each algorithm throughout the training episodes. In general, the TD3 
algorithm enabled a better learning for most agents, whereas roughly half of the agents 
in the DDPG were very close to their initial values. In addition, agents with superior 
learning achieved better results in the TD3, saving an average of 0.05 EUR per period of 
market share, whereas in the DDPG, this value was close to 0.03 EUR.

From the perspective of the general community, there are greater differences in 
terms of rewards between the two algorithms. The minimum, mean, and maximum are 
depicted in Fig. 8 for the agents that participated in the training of each algorithm. On 
the one hand, the TD3 has a much higher maximum reward value than the DDPG, with 
a value of 0.47 compared to 0.34 for the DDPG. Regarding the average value, the behav-
ior of both was quite similar, as the difference was only 0.02; however, the TD3 again 
held the advantage. On the other hand, as far as the minimum value is concerned, the 
DDPG has the advantage, and based on the analysis of the graph, there appears to be a 
greater balance between all market-participating agents. This indicates that, with the use 
of DDPG and a competitive strategy, a balance has been reached between the players’ 
profits.

Considering the overall savings of the community and the fact that the rewards are 
positive for all agents who participated in the training, it is possible to conclude that 
costs were reduced, i.e., the players saved money through the training that enabled 
them to develop P2P participation strategies. Figure 9 depicts the results of partici-
pating in a P2P week before and after training, broken down by agents who trained 
with DDPG, agents who trained with TD3, and agents who received no training. 
As can be seen, the most significant difference is between agents with and without 

Fig. 8  Maximum, mean, and minimum reward per training episode: (a) DDPG, and (b) TD3

Fig. 9  Comparison of the energy costs during a week before and after the RL training, for both RL algorithms 
and the agents without training
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training, with agents with trained policies having a significant advantage in the week 
following training. From a total profit of 13.29 EUR to a loss of 3.78 EUR, untrained 
agents incurred a loss. Comparing trained agents, those with DDPG saved 15.99 EUR 
(i.e., from a cost of 7.38 EUR to a profit of 8.61 EUR, representing savings of 217%), 
while those with TD3 saved 28.66 EUR (i.e., from a cost of 36.64 EUR to a cost of 
7.97 EUR, representing savings of 78%). These results demonstrate that agents trained 
with the TD3 algorithm realized greater cost savings. Analyzing the results, in what 
regards the percentage, the DDPG had better results, but this is due to the low cost 
previously associated with the players who trained with this algorithm, going from 
having costs to profit.

The actions of agents are an additional topic worthy of investigation. As depicted in 
Fig. 10a, substantial changes in the mean of the agents’ actions were not required for 
the agents to learn and increase their rewards. The truth, however, is that around epi-
sode 7500, both buyers and sellers began to acquire lower-priced stocks. This is due to 
different approaches by agents, including: (i) in general, agents found a better way to 
deal with forecast error when selecting the amount of energy to trade, and (ii) sellers 
began to realize that lowering the price of energy sales could result in a greater profit, 
as it would result in the sale of more energy. Figure 10b depicts the average actions of 
the agents during the P2P week following RL training. The first conclusion that can 
be drawn is that when there is less generation, that is, the first and last periods where 
there is a transaction (usually between 8:00 am/9:00 am and 5:00 pm/6:00 pm), sell-
ers reduce their asking price and increase the quantity of energy to be traded. This is 
because, as energy quantities decrease, sellers attempt to sell as much as possible at 
a low price in order to attract buyers. As far as buyers are concerned, their behavior 
is more consistent, as they attempt to find a strategy in which they purchase only the 
amount of energy they require at a compensating price.

The final metric to examine is the amount of energy traded on the P2P market. As 
a matter of fact, it can also be used as an evaluation metric for the participation of 
agents in the market as a community, since the goal is to maximize the energy trans-
acted in order to create greater sustainability within the energy community while 
interacting with the utility grid as little as possible. Figure  11 shows the energy 

Fig. 10  Actions chosen by agents: (a) Average of actions throughout the training (b) Average of actions 
chosen in the post-training week
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exchanged per period in the week preceding and following RL training. As can be 
seen, in the vast majority of time periods following training, the amount of energy 
transferred increased by 40%, from 245.11 to 342.84 kWh, getting much closer to the 
maximum value throughout the week (i.e., 387.39 kWh).

The results obtained are highly positive, particularly when comparing to the perfor-
mance of trained and untrained players. It is apparent that a player trained with one of 
the RL models can make use of the intelligence it provides to employ the best strategies 
in each situation to minimize their energy costs. In addition, since training is conducted 
in a competitive manner with other players, it is possible to perceive multiple strategies 
and prepare the player for various market circumstances. The proposed methodology 
considers the forecast error to deal with uncertainty, being an improvement when com-
pared, for instance, to the model proposed in Qiu et al. (2021a), where forecast errors 
are not considered. Also, the case study of this paper used a realistic dataset, with real 
measurements, for a community of 50 agents, contributing to the testing of the scalabil-
ity of the used algorithms. The dataset used is a public dataset that can be used by other 
authors to compare results (Goncalves et al. 2022).

Conclusions
The main objective of the proposed methodology is to improve the participation of 
energy players in P2P markets and local energy markets. In addition, the methodology 
was integrated into an agent-based ecosystem, in order to facilitate its use, and to make a 
direct connection with existing multi-agent systems. The methodology showed positive 
results in terms of reducing the costs of players who train with reinforcement learning, 
especially when compared to players without training. Each algorithm trained 20 agents, 
where the deep deterministic policy gradient (DDPG) reduced costs by 15.99 EUR (rep-
resenting savings of 217%), i.e., on average 0.80 EUR per agent in one week, and the twin 
delayed DDPG (TD3) reduced costs by 28.07 EUR (representing savings of 78%), i.e., on 
average 1.43 EUR per agent in a week.

In addition to having good results from an individual point of view, this methodology can 
also benefit aggregation entities, such as energy communities. This is because, when com-
pared to a week of peer-to-peer without training, after using the methodology, it allowed to 
increase the energy transacted by 40%, and significantly approaching the maximum possi-
ble according to the consumption and generation profiles of the considered players.

Fig. 11  Energy transacted in the P2P market before and after the RL training
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The integration of this type of RL methodologies in agent-based systems, which 
have a greater proximity to real contexts, enables RL models to be applied to real data 
more easily and to test their application in different types of players who may come 
to use these models to improve their active participation in the smart grid. The work 
proposed in this paper is susceptible to continual development through the inclusion 
of new variables that enhance the agent’s environment perception and behavior in the 
market. For instance, the use of flexibility is already addressed in this study, but only 
in the after-market phase, whereas its use may be explored to determine the quantity 
of energy to be transacted, so that a portion of the agents can participate in the mar-
ket with greater flexibility.
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