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Abstract 

Energy systems face challenges due to climate change, distributed energy resources, 
and political agenda, especially distribution system operators (DSOs) responsible for 
ensuring grid stability. Accurate predictions of the electricity load can help DSOs better 
plan and maintain their grids. The study aims to test a systematic data identification 
and selection process to forecast the electricity load of Danish residential areas. The 
five-ecosystem CSTEP framework maps relevant independent variables on the cultural, 
societal, technological, economic, and political dimensions. Based on the literature, 
a recurrent neural network (RNN), long-short-term memory network (LSTM), gated 
recurrent unit (GRU), and feed-forward network (FFN) are evaluated and compared. 
The models are trained and tested using different data inputs and forecasting horizons 
to assess the impact of the systematic approach and the practical flexibility of the 
models. The findings show that the models achieve equal performances of around 
0.96 adjusted R2 score and 4–5% absolute percentage error for the 1-h predictions. 
Forecasting 24 h gave an adjusted R2 of around 0.91 and increased the error slightly to 
6–7% absolute percentage error. The impact of the systematic identification approach 
depended on the type of neural network, with the FFN showing the highest increase in 
error when removing the supporting variables. The GRU and LSTM did not rely on the 
identified variables, showing minimal changes in performance with or without them. 
The systematic approach to data identification can help researchers better understand 
the data inputs and their impact on the target variable. The results indicate that a focus 
on curating data inputs affects the performance more than choosing a specific type of 
neural network architecture.

Keywords:  Short-term load forecasting, Residential electricity consumption, Artificial 
neural network, Recurrent neural network, Feature identification, Feature selection, 
Ecosystem
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Introduction
Energy systems face challenges due to climate change, distributed energy resources, and 
political agenda. For instance, in Denmark, By 2030 carbon emissions should be reduced 
by 70%, with the goal by 2050 being carbon footprint neutrality (Danish Energy Agency 
2022a; Ma and Jørgensen 2018). To achieve this goal, the Danish government has intro-
duced initiatives to accelerate the energy system transition to a total reliance on renew-
able energy sources. Among the initiatives are state-of-art energy islands, investments 
in technologies, such as Power-to-X and Carbon Capture, and a green transition of the 
industry (Danish Energy Agency 2022b). However, the changes to the energy system 
will lead to an increasing number of distributed energy resources (DERs), introducing 
new challenges, such as grid balancing (Ma et al. 2017, 2019a; Billanes et al. 2017). In 
addition, the electrification of vehicles and heating of households through heat pumps 
increases the overall electricity consumption (Ma et al. 2021; Fatras et al. 2021). These 
challenges are significant to distribution system operators (DSOs) who are responsible 
to the electricity grids (Ma et al. 2016; Christensen et al. 2021). Furthermore, DSOs face 
many other challenges, e.g., the resilience of the grid after natural disasters (Hu et  al. 
2021), an increasing number of DERs (Sauter et al. 2017), or the security of supply (Ma 
et al. 2019b), and cost of the grid maintenance and upgrade (Gören et al. 2022).

There are three types of electricity consumers: residential, commercial and industrial 
consumers (Billanes et al. 2018), and in many cases, they are located separated. House-
holds make up around 12% of the total energy accounts and close to 13% of the emis-
sion accounts of Denmark (Statistics Denmark 2022). During peak consumption hours, 
households account for 35% of the total electricity load (Andersen et al. 2017). Further-
more, the adoption of DERs such as photovoltaics, electric vehicles, and heat pumps 
influence households’ electricity consumption patterns that potentially results in grid 
overloads (Christensen et al. 2019).

Thus, it is important for DSOs to understand the state of their grid on the short- and 
long-term to ensure operational quality, maintenance, and identifying areas in the grid 
for renovations or investments. Some research has experimented with accurate forecasts 
on a short- to long-term horizon by applying machine learning (ML) and deep learn-
ing (DL) methods to the problem. Several types of neural networks, ML algorithms, and 
hybrids have been tested with excellent results. Furthermore, the electricity load fore-
casts have been tested with various independent variables and applications (Vanting 
et al. 2021).

However, in the literature, the independent variables are not systematically identified 
beforehand, often leading to the questions: why were the variables chosen in the first 
place, and how do they relate to the target variable? Moreover, the argument for spe-
cific supporting data does not appear until the features are analyzed for selection crite-
ria such as correlation analysis (Friedrich and Afshari 2015; Pindoriya et al. 2010; Vonk 
et al. 2012). Additionally, the related literature does not explain the composition of the 
electricity load, i.e., the sources of electricity consumption in the aggregated load data, 
which may lead to a better understanding of the performance of the proposed models. 
Based on the challenges the DSOs face regarding the distribution grid, this study seeks 
to improve the prediction accuracy of load forecasts using a systematic data identifica-
tion approach.
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To fill the research gap, this paper aims to identify variables related to residential area 
aggregated electricity load systematically. The identified variables will be used to forecast 
the aggregated electricity consumption of two residential areas in Denmark. The system-
atic identification and subsequent selection will be made using the CSTEP framework 
(Ma 2022), which maps data within an ecosystem in several dimensions. The identifica-
tion ensures that any possible data is accounted for and a strong foundation for support-
ing data is available, which was missing in related works. The impact of the systematic 
identification on the model performance will be assessed by testing and evaluating mul-
tiple types of neural networks based on related works. Moreover, the data is analyzed 
using the K-Means clustering algorithm to investigate the composition of the electricity 
load before it is aggregated.

Furthermore, to determine the impact of different electricity consumption sources, 
such as heat pumps and electric heating, the performance of the selected neural net-
works will be compared on subsets of the data set containing households with and with-
out electric-based heating. The types of neural networks are based on the applications 
in the literature. The most popular models included in this paper are feed-forward net-
works (FFN), recurrent neural networks (RNN), and Long Short-Term Memory (LSTM) 
networks. Additionally, because the related publications have rarely applied Gated 
Recurrent Units (GRU), it will also be used in this experiment. Finally, to test the flexibil-
ity of the neural networks, each tuned model will be used to predict a single-step (1 h) 
and 24-step (24 h) of the electricity load.

This paper is structured as follows. First, the literature related to electricity load fore-
casting is presented. Afterward, the data processing and analysis is described in the 
methodology section, including the systematic identification and selection using the 
CSTEP framework. Thirdly, the forecasting results of the models are presented, com-
pared, and analyzed. Finally, the impact of the systematic identification approach is dis-
cussed based on the results of the forecasts.

Related works
Electricity load forecasting using machine learning algorithms and deep neural net-
works has been a major area of research in the last decade. The increasing amount of 
data available and rising interest in artificial intelligence research has led researchers to 
experiment with different types of networks, algorithms, and hybrids to achieve high 
accuracies or low errors for their forecasts (Vanting et al. 2021).

Based on the literature, electricity load forecasting can be placed into three horizons: 
short-, medium-, and long-term (Gebreyohans et  al. 2018; Solyali 2020). Short-term 
forecasting is applied when predicting minutes, sometimes referred to as very short-
term forecasting, and up to 1 week, as seen in Samuel et al. (2020); Houimli et al. 2020; 
Yong et al. 2020). Medium-term forecasts start from 1 week and go up several months 
to a year (Shirzadi et  al. 2021; Salama et  al. 2009; Gungor et  al. 2020). Finally, long-
term horizons are forecasts focused on predicting more than a year, sometimes several 
decades, depending on the data (Parlos and Patton 1993; Ekonomou 2010; Ghods and 
Kalantar 2008). Other than the length, each forecasting horizon is characterized by sev-
eral parameters, including the independent variables, applications of the forecast, and 
models used for the prediction.
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Long-term forecasts leverage socioeconomic data as independent variables and are 
usually applied to problems concerning larger areas, such as states, provinces, and coun-
tries (Elkamel et  al. 2020; Tanoto et  al. 2011). Furthermore, weather data are used on 
long-term forecasts for the electricity load of states and countries (Gao et al. 2019). In 
the literature, weather data includes outdoor temperature, humidity, wind speed and 
direction, precipitation, and solar irradiation. Moreover, electricity load forecasting on 
medium-term is applied to larger areas such as countries, states, and residential areas. 
Variables include weather, electricity prices, and socioeconomic data (Salama et al. 2009; 
Ilseven and Gol 2017). Short-term forecasts are applied to electricity grids and micro-
grids, power and substations, residential and office buildings, cities, provinces, and 
countries, using weather data and temporal features as independent variables (Li et al. 
2021; Xu et  al. 2019; Panapongpakorn and Banjerdpongchai 2019; Ahmad and Chen 
2018; Ruiming 2008). Short-term forecasts are essential to determine if the load exceeds 
the capacity of a transformer, which can prevent power outages (Dung and Phuong 2019; 
Giamarelos et al. 2021; Al-Rashid and Paarmann 1996).

Additionally, the short-term forecast can indicate windows for flexibility to achieve 
sector coupling, leading to a more efficient energy system (Yan et  al. 2012; Pramono 
et al. 2019; Xypolytou et al. 2017). The model selection varies within in each forecast-
ing horizon, meaning a single type of model cannot be identified. Instead, researchers 
have tested several statistical methods, machine learning algorithms, and different types 
and combinations of neural networks to reach accurate predictions, leading to a highly 
diverse research field with a wide range of applications and independent variables.

In the literature, several types of neural networks have been applied. One network 
type is the recurrent neural network (RNN), designed to work with sequential data. The 
strength of an RNN is that it can take information from prior inputs together with the 
input at a given timestamp to better decide on the output. Furthermore, one of the more 
popular networks is the Long Short-Term Memory (LSTM) network, a type of RNN 
specifically designed to deal with long data sequences. It was first introduced in 1997 
by Schmidhuber and Hochreiter and improved upon the regular RNN by dealing with 
the vanishing gradients problem (Hochreiter and Schmidhuber 1997). Gated Recurrent 
Units (GRUs) (Cho et al. 2014), which are another type of specialized RNN similar to 
the LSTM network, have also been applied to short-term load forecasting (Ribeiro et al. 
2020; Zhu et  al. 2019). Finally, a fully connected feed-forward network has also been 
a popular choice to forecast electricity load in the literature. Researchers have experi-
mented with different configurations and combinations of networks and algorithms to 
improve forecast accuracy. While many apply regular neural networks, some combine 
several into hybrid ones, as seen in Panapongpakorn and Banjerdpongchai (2019) and 
Pramono et al. (2019). Others transform the forecast into an image recognition problem 
and use state-of-the-art convolutional neural networks to predict the load (Li et al. 2017; 
Sadaei et al. 2019).

Methodology
This paper systematically identifies and selects data relevant to forecasting the elec-
tricity load of residential areas to build a strong foundation of supporting data to 
improve the performance metrics of the forecasting model. To identify the possible 
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features, the CSTEP framework proposed in Ma (2022) is used to analyze and evalu-
ate an ecosystem by mapping the features to the five influential dimensions: Cultural, 
Societal, Technology, Economy and Finance, and Policies and Regulation. For this 
paper, the CSTEP framework is extended with different data variables dimensions to 
include supporting, embedded, exogenous variables and the impact of the variables 
on the electricity load. Supporting variables include sensor readings and statistical 
data, i.e., weather and climate measurements or electricity prices. Embedded vari-
ables are data that can be embedded in the target variable or other data sources, for 
example, temporal features or the sun’s position. Exogenous variables are considered 
data that cannot be directly given as an input to a model but still impact the target 
or supporting variables. Finally, the impact on the target variable describes how each 
dimension and the different types of variables affect the increasing or decreasing elec-
tricity consumption of residential areas.

So far, no literature has systematically identified and selected the relevant data 
using the CSTEP framework. Researchers often rely on correlation analysis of fea-
tures or tree-based methods for determining feature importance to decide on 
independent variables for multivariate forecasting. Before identifying the CSTEP 
variables, the electricity load is analyzed to examine the composition of the aggre-
gated load. This step aims better to understand the performance of the model during 
inference.

Furthermore, this can help make the black box of neural networks more trans-
parent by understanding the inputs better. The analysis of the electricity load will 
be done using descriptive statistics and by clustering the daily load profiles of each 
household in the area to investigate the different load patterns. The algorithm applied 
for the clustering is K-Means using dynamic time warping as the distance method. 
Afterward, the identified CSTEP variables are examined for data availability and 
sourced for the subsequent data analysis. Afterward, the electricity load is used to 
conduct feature engineering of temporal features and lagged electricity load. Finally, 
all selected features undergo a feature selection process using correlation coefficients 
and tree-based methods for feature importance.

After the data processing and analysis section, the evaluation and selection of 
neural networks are conducted based on related works and the research gap. This 
paper tests the performance of four separate neural networks on the aggregated 
electricity load. Baseline models of a feed-forward network (FFN), recurrent neu-
ral network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit 
(GRU) are established and used as the starting point to tune hyperparameters and 
select the optimal architecture. Each tuned model is trained on the aggregated load 
data with and without including the selected CSTEP variables and used to forecast 
a single hour and 24 h. Then, each model is also trained on aggregated electricity 
consumption data containing households exclusively with heat pumps or electric 
heating.

To assess the performance of the models in this paper, four different metrics will be 
used, presented in the equations below.
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Mean Absolute Error

Mean Absolute Percentage Error

Root Mean Squared Error

Adjusted R2 Score

The CSTEP framework

The CSTEP framework consists of five critical business ecosystems dimensions, which 
are: climate, environment, and geographic situation; Societal culture and demographic 
environment; Technology (Infrastructure, technological skills, technology readi-
ness); Economy and finance; Policies and regulation. Each dimension has several sub-
dimensions with specific explanations as defined in Table 1 in Ma (2022). Additionally, 
the dimensions can be viewed on a macro and micro level based on the focuses of the 
business ecosystems. For instance, the sub-dimensions of Climate, environmental and 
geographic situation can be divided into a macro level considering the general weather 
conditions and natural features of a place (climate and geographic situation). Meanwhile, 
the micro level considers the living, working and production environment or conditions 
(environmental situation). The macro and micro levels of a dimension differ depending 
on the perspective of either the ecosystem or the individual stakeholder, focusing on 
either the general or specific levels of the business ecosystem (Ma 2022).
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Analysis of electricity load

The electricity load data used in this paper is collected from two residential areas in 
Denmark in connection with a national project called Flexible Energy Denmark (Flex-
ible Energy Denmark 2019). The data ranges from January 1st, 2019, to May 15th, 2022, 
and includes 211 households after processing and cleaning the data. From the residential 
areas, the data set includes households without photovoltaic panels, electric heating or 
heat pumps, and non-electric vehicle (EV) owners who use home-charging. Households 
with any of these characteristics are separated from the pure electricity consumption 
with central heating or district heating.

These data are sourced by using the Danish building registry that collects information 
about all buildings in Denmark by law (Bygnings- og Boligregistret 2022). For EV own-
ers, a different method had to be used, as this information is not registered anywhere. 
Instead, each household’s data was analyzed to detect possible EV owners by cluster-
ing the load to identify outliers using K-Means. Subsequently, the load was searched for 
minimum–maximum consumption ranges that exceed 7.2 kWh, which is a typical con-
sumption pattern for EV charging. By separating the households that have adapted these 
DERs, the impact of their load on the ability to accurately forecast can be investigated.

Figure 1 shows each household’s average daily consumption profiles, where the red line 
indicates the average load within each cluster. The most typical consumption profiles 

Fig. 1  Clusters of daily load profiles
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can be seen in Cluster 2 and Cluster 5. Clusters 0 and 3 can be considered outlier pro-
files, while Clusters 4 and 1 are somewhere in between with equally many households, as 
seen in the distribution of clusters in Fig. 2.

The average consumption pattern over a year for the two residential areas can be 
seen from Fig. 3. In Denmark, household consumption usually increases during win-
ter and decreases when the summer nears. Many factors can influence the consump-
tion pattern, such as the sun, amount of light, temperature, rain, and wind. From 
the figure, a very distinct spike can also be seen towards the end of Christmas, a 

Fig. 2  Distribution of daily profile clusters

Fig. 3  Average yearly consumption pattern
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reoccurring pattern. These factors lead to several supporting data, for instance, the 
position of the sun, the weather, the length of days during the year, and special days, 
such as religious or national holidays.

Figure 4 shows the average aggregated daily load of the two residential areas. The pat-
tern shows a slight increase during morning hours and a peak at 17:00. The period in the 
afternoon is essential to forecast correctly, as this is where the grid is challenged by high 
electricity loads that approach the grid’s capacity. Each residential area is connected to a 
similar type of transformer with a capacity of 400 kWh.

Identification of CSTEP variables

As described earlier, any supporting data for the electricity load will be identified and 
mapped using the CSTEP framework. Table 1 shows the relevant variables identified for 
this research experiment. The variables are based on applications in related literature 
and from domain experts. The supporting variables include sensor readings or statistical 
data, such as weather and electricity prices. The embedded variables include data such as 
holidays, day lengths, demographics, and building information. The exogenous variables 
are data that cannot directly be used as an input for a model but add additional informa-
tion about the other variables. The variables in this dimension can help explain irregu-
larities or unexpected results. The final column describes how each CSTEP dimension’s 
identified data impacts the target variable, which in this case is the electricity consump-
tion of households.

After the systematic identification, each variable is investigated for availability and 
feasibility. Using openly available sources, the following CSTEP variables have been 
collected:

•	 Holidays (Denmark)
•	 Day lengths
•	 Sun azimuth

Fig. 4  Average daily load profile of the aggregated load
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•	 Sun altitude
•	 Electricity prices

While many researchers insist on the importance of weather data to support the elec-
tricity load forecast (Vanting et al. 2021; Friedrich and Afshari 2015), it is not necessar-
ily meaningful to include it in this experiment. The aggregated electricity load data is 
collected from two residential areas with some distance between them, meaning local 
weather data is unavailable. There may be a correlation between some weather data 
and the electricity load. However, causation cannot directly be determined in such an 
instance.

Feature selection and analysis

After selecting CSTEP variables, the data is analyzed with the aggregated electricity load 
using correlation coefficients and feature importance. The coefficients are calculated 
using Pearson’s R, and the feature importance is the gain from gradient boosted trees 
using the Python library XGBoost. Figure 5 shows a correlation heatmap of the coeffi-
cients of each variable. There are no strongly correlated features with the electricity load, 
but a slight negative relationship with day lengths and a slight positive relationship with 
the sun’s azimuth.

Looking at the relative feature importance of each variable in relation to the electricity 
load, the sun’s azimuth is calculated to be the most important feature, as seen in Fig. 6. 
The gain signifies the relative contribution of the feature over all decision-trees in the 
gradient boosting model.

Table 1  Systematically identified CSTEP variables

CSTEP dimension Supporting 
variables

Embedded 
variables

Exogenous 
variables

Impact on target 
variable

Cultural Weather
Temperature
Wind
Irradiation
Cloudiness
Humidity
Precipitation
Snow
Pressure
Indoor climate

Temporal
Holidays
Religious
National
Day length
Sun position
Working/living 
pattern

Location of weather 
station

Occupant behavior
Peak and valley load

Societal Demographics of the 
residential area
Number of occu-
pants
Number of house-
holds

Occupant behavior
Peak and valley load

Technology Heating
Construction
Energy label
Building size, layout 
and design
Electric vehicles

Type of electricity 
meter

Increased/decreased 
energy consumption

Economic Electricity prices
Oil and gas prices

Occupant behavior
Peak and valley load

Political Taxes
Fees

Increased/decreased 
energy consumption
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At this point, each feature has also been analyzed individually for any irregularities. 
The analysis resulted in a decision to discard the electricity price variable due to a sub-
stantial increase in the price in 2022. This increase would only be visible in the test data 

Fig. 5  Correlation heatmap of CSTEP variables

Fig. 6  Gradient-boosted feature importance
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set, potentially resulting in unexpected predictions, as the increase is not reflected in the 
electricity consumption. The variable is visualized in Fig. 7.

In summary, the target variable of the electricity load is analyzed using K-Means clus-
tering to identify different load profiles. The load profiles will give a better understanding 
of the input data to make the black box of neural networks more transparent. Further-
more, supporting independent variables have been systematically identified, selected, 
and analyzed using correlation coefficients and feature importance of gradient-boosted 
trees. Finally, each independent variable was analyzed for missing or broken data, poten-
tial irregularities, and seasonal patterns and trends, resulting in discarding the electricity 
price as an independent variable.

Model selection

The model selection is based on neural networks from related works, which are a fully 
connected feed-forward neural network (FFN), a recurrent neural network (RNN), and 
a long short-term memory network (LSTM). Finally, to fill a gap in the literature, a gated 
recurrent unit (GRU) is also included in the experiments of this paper.

Baseline performance and models

First, a baseline performance of the forecasting problem is conducted using a simple 
multivariate linear regression model to predict the electricity load based on the CSTEP 
variables as input. The baseline performance resulted in the metrics seen in Table  2. 
These baseline metrics are considered the minimum to beat by the proposed models.

Secondly, each selected model is trained and evaluated on the data once without any 
hyperparameter tuning or feature engineering to assess the base performance of each 
neural network. From here, the baselines will be iteratively improved by tuning training, 
data, and model parameters. Table 3 presents the baseline metrics of each model using 

Fig. 7  Historical electricity prices
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the CSTEP variables as independent variables for the electricity load. At this point, all 
models perform equally without any feature engineering or hyperparameter tuning.

Model tuning

Each model from Table  3 will undergo a tuning process, where several parameters are 
tested in different combinations. To do this, the experiment tracking tool Weights and 
Biases is leveraged to find the best size and combination of the tunable parameters (Biewald 
2020). An iterative random search process can be conducted by setting up a training loop 
that tests all four models, ending with a greedy search. The tunable parameters are seen in 
Table 4 below. Each tunable parameter has several values that are chosen uniformly and 
randomly. The feature engineering includes lags from 1 to 168 h, and the temporal features 
have been encoded cyclically using sine and cosine transformations.

After running several tests and calculating metrics for each model, the best parameters 
could be found. Table 5 summarizes the tuned parameters for each model. These four tuned 
models are subsequently trained on data ranging from January 1st, 2019, to May 15th, 2021, 
and evaluated on the test data from May 15th, 2021, to May 15th, 2022. Each model will be 
trained four times, resulting in 16 different prediction results: a 1-h forecast using CSTEP 
variables, a 1-h forecast without CSTEP variables, a 24-h forecast using CSTEP variables, 
and a 24-h forecast without CSTEP variables.

Table 2  Baseline performance

Metric Multivariate 
linear 
regression

MAE 17.83 kWh

MAPE 21.03%

RMSE 22.84 kWh

Adjusted R2 0.464

Table 3  Baseline neural networks

Metric FFN RNN LSTM GRU​

MAE 8.82 kWh 8.88 kWh 8.66 kWh 8.68 kWh

MAPE 10.31% 10.4% 10.16% 10.14%

RMSE 11.36 kWh 11.36 kWh 11.19 kWh 11.06 kWh

Adjusted R2 0.867 0.868 0.872 0.875

Table 4  Tunable hyperparameters

Model parameters Training parameters Data parameters

Hidden layer size
Number of hidden layers
Dropout
Activation functions

Batch size
Optimizer algorithm
Learning rate
Gradient clipping

Type of data scaler
Feature engineering:
• Hour of day
• Day of week
• Month
• Number of lags
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Results
One‑hour forecast

The prediction results of the 1-h forecasts with and without the identified CSTEP varia-
bles are presented in Table 6. Overall, the metrics look similar for each model. For exam-
ple, the lowest error was found using the feed-forward network with CSTEP variables at 
3.9064 kWh mean absolute error and the highest adjusted R2 score of 0.9681. However, 
the same model without the CSTEP variables gives the highest error and lowest adjusted 
R2 score, while no substantial difference is seen in the recurrent neural networks. This 
change in performance can indicate that the FFN is more dependent on the CSTEP vari-
ables than the recurrent networks.

Figure  8 visualizes each model’s first week of hourly predictions with the actual 
load during the period. The models mostly capture the peaks and valleys with some 
larger errors, especially between the midday and afternoon peaks. Because these 
predictions look similar, it may be more interesting to investigate the performances 
on specifically challenging days to assess better the models, such as Christmas, 
which usually sees very high peaks in the afternoon to evening hours and differ-
ent consumption patterns throughout the day. Figure 9 presents the forecast during 

Table 5  Results of the hyperparameter tuning

Model Model parameters Training parameters Data parameters

FFN Hidden layer size: 512
Number of layers: 1
Dropout probability: 0.2
Activation: Leaky ReLU

Batch size: 256
Optimizer: AdaGrad
Learning rate: 0.01
Gradient clipping: 0.1

Robust scaler
Hour of day
Day of week
24 lags

RNN Hidden layer size: 1024
Number of layers: 2
No dropout
Activation: ReLU

Batch size: 256
Optimizer: Adam
Learning rate: 0.01
Gradient clipping: 0.1

Robust scaler
Hour of day
Day of week
24 lags

LSTM Hidden layer size: 256
Number of layers: 2
No dropout
Activation: Tanh

Batch size: 256
Optimizer: Adam
Learning rate: 0.01
Gradient clipping: 0.1

Robust scaler
Hour of day
Day of week
24 lags

GRU​ Hidden layer size: 256
Number of layers: 2
No dropout
Activation: Tanh

Batch size: 256
Optimizer: Adam
Learning rate: 0.01
Gradient clipping: 0.1

Robust scaler
Hour of day
Day of week
24 lags

Table 6  One-hour forecast metrics

Model MAE (kWh) MAPE (%) RMSE (kWh) Adjusted R2

With CSTEP variables

 FFN 3.9064 4.65 5.2668 0.9681

 RNN 4.1338 5.14 5.4095 0.9663

 LSTM 3.9887 4.72 5.4451 0.9659

 GRU​ 4.0633 4.91 5.3968 0.9665

Without CSTEP variables

 FFN 5.1670 6.43 6.6406 0.9494

 RNN 4.3655 5.49 5.6194 0.9637

 LSTM 3.9674 4.71 5.3706 0.9669

 GRU​ 4.0991 4.94 5.4944 0.9653
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Christmas 2021, where there is a greater difference in the models’ ability to forecast 
hourly. The actual load is shaped differently than on a regular day. December 23rd 
and 25th have much flatter peaks, where the morning and afternoon are similar, and 
the 24th with a high afternoon to evening peak. The FFN, RNN, and LSTM mod-
els cannot capture these peaks as well as on a regular day. However, the GRU pre-
dicts the high increase of the afternoon peak surprisingly well. This factor could be 
another performance metric to consider when assessing the performance of differ-
ent neural network architectures, as this cannot be seen from the error metrics and 
adjusted R2 scores.

Fig. 8  First week of 1-h forecasts

Fig. 9  One-hour forecasts during Christmas
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24‑hour forecast

Table 7 presents the prediction results of the 24-h forecasts using CSTEP variables and 
excluding the CSTEP variables. Generally, the errors are higher than the 1-h forecasts, 
which is expected due to the multi-step predictions giving higher uncertainties at each 
timestep. However, the FFN is slightly more accurate out of the four models. Further-
more, the FFN’s performance changes when excluding the CSTEP variables is not as vis-
ible in the 24-h forecasts compared to the 1-h forecast.

The forecasts for the first 24 h of the test data set are visualized in Fig. 10 below, where 
the point of the multi-step forecast starts on May 15th 23:00. There is no substantial dif-
ference in the first day of prediction for all four models. The ability to predict 24 h accu-
rately using the same model architecture as for the 1-h forecasts means that the models 
are flexible in their application. To further assess the ability of the 24-h forecast models, 
they will also be investigated during Christmas 2021. Figure 11 presents the forecasts on 
Christmas day with the first prediction starting at midnight on the 24th of December 
2021. The 24-h forecasts generally underestimate the actual load but follow the pattern 
correctly. The GRU neural network performs the best during this period, coming much 
closer to the peak load than the other models. Error metrics and R2 scores are critical 
indicators to assess the performance of models. However, they are not the only factor to 
base performances on for electricity load forecasting. Looking solely at the error met-
rics, one would choose the FFN model as it shows the lowest overall error. However, 
DSOs might think it necessary to predict as accurately as possible on specific days when 
the grid is nearing capacity, such as Christmas. Because of this, the GRU model might be 
the better model to use.

Comparison with electric‑based heating

All four models are tested on a data set of household electricity consumption containing 
heat pumps and electric heating to determine the importance of analyzing the composi-
tion of the aggregated electricity load and investigating the prediction performance of 
electrically heated households. It must be noted that the sample size has decreased com-
pared to the original dataset, from 211 to 22. Because of the smaller sample size, the ini-
tial data set was sampled to have the same size, and all models were applied to the subset 
to compare them better.

Table 7  24-h forecast metrics

Model MAE (kWh) MAPE (%) RMSE (kWh) Adjusted R2

With CSTEP variables

 FFN 5.1261 6.15 6.5972 0.9282

 RNN 5.5766 6.7 7.1415 0.9146

 LSTM 5.4739 6.55 7.0274 0.9157

 GRU​ 5.3879 6.49 6.8899 0.9203

Without CSTEP variables

 FFN 5.2146 6.22 6.725 0.9252

 RNN 5.7518 6.92 7.3522 0.9082

 LSTM 5.5011 6.6 7.0516 0.9158

 GRU​ 5.4639 6.53 7.0212 0.9172
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Table  8 presents the error metrics of the models applied to electric-based heating 
household load and the sampled non-electric-based heating electricity consumption. 
The results give several insights. Firstly, the sample size of the aggregated load data 
affects the prediction ability of the models. For instance, the subset of the data set with a 
sample size of 22 has an adjusted R2 of 0.8273 for the FFN model, while the same model 
on the full data set reaches a score of 0.9681. This change is seen across all models, indi-
cating the sample size of the aggregated load to be an essential factor. Secondly, mul-
tiple metrics are crucial to correctly assess neural networks’ performance. Due to the 
increased average hourly load for electric-based heating households, the absolute and 
squared errors change relative to the load. For the sampled data set, the average hourly 

Fig. 10  First 24-h forecast

Fig. 11  24-h forecast during Christmas
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load is around 0.37 kWh, whereas the electric-based heating households have an aver-
age load of around 0.96 kWh. Thirdly, while there is a difference in absolute and squared 
errors, the adjusted R2 score does not substantially change when predicting electric-
based heating and district heating households. Finally, the addition of CSTEP variables 
impacts the performance differently depending on the model.

The FFN model sees a slight performance increase when removing the CSTEP vari-
ables. The error of the RNN model increases without the CSTEP variables. The LSTM 
model has the worst performance, but the error slightly decreases when removing the 
supporting variables. Finally, the GRU model sees almost no change in performance 
with or without the CSTEP variables.

Discussion
This paper systematically identified and analyzed data to forecast the aggregated elec-
tricity load of residential areas using the CSTEP framework. The data were used as 
inputs with feature-engineered variables to predict the next hour and 24 h. Four differ-
ent neural networks are tuned, trained, and evaluated on the data sets with and without 
the CSTEP variables to assess the impact of the systematic identification process. It is 
found that 1-h forecasts perform equally well when looking at the error metrics and the 
adjusted R2 score; however, further investigations into the predictions show the GRU 
model capturing the actual load better. An additional factor can be included in model 
performance assessment by examining the models on certain days such as Christmas, 
which usually sees very high consumption peaks. Finally, 24-h forecasts are also con-
ducted to examine the flexibility of the models. Overall, the metrics show minimal vari-
ation across the models, but comparing the predictions through visualizations indicates 
where the models may differ.

Furthermore, to determine how the composition of the aggregated load data affects 
the forecast, a separate data set containing households with heat pumps or electric heat-
ing was used to predict. It was found that the number of households in the aggregated 

Table 8  Comparison metrics with electric heating load

Model MAE (kWh) MAPE (%) RMSE (kWh) Adjusted R2

Electric heating and heat pumps with CSTEP variables

 FFN 2.8042 14.64 3.7258 0.8274

 RNN 2.7791 14.37 3.6699 0.8326

 LSTM 3.0864 16.07 4.1075 0.7902

 GRU​ 3.0004 15.52 3.9931 0.8018

Electric heating and heat pumps without CSTEP variables

 FFN 2.7671 14.33 3.6854 0.8311

 RNN 2.8852 15.36 3.7831 0.8221

 LSTM 3.0414 15.61 4.104 0.7906

 GRU​ 2.9284 15.47 3.8826 0.8126

Sampled aggregated load data (22 households)

 FFN 0.9375 11.01 1.3061 0.8273

 RNN 0.9212 10.99 1.2584 0.8397

 LSTM 1.0009 11.84 1.3922 0.8038

 GRU​ 1.0132 11.96 1.4121 0.7982
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load affects the forecast, meaning a smaller sample size increases the forecast error. To 
validate this, 22 households were sampled from the initial data set to match the electric 
heating households and subsequently compared to each other. Here, no substantial dif-
ferences were found in the adjusted R2 scores; however, MAE, MAPE, and RMSE met-
rics differed due to the increased average load of households with heat pumps or electric 
heating. The systematically identified CSTEP variables did not increase the forecast 
significantly; however, they gave the authors an increased understanding and explain-
ability of the target variable. The complexity of the consumption pattern can be better 
understood by considering as many factors as possible. This understanding can lead to 
explaining why there are increases or decreases in the electricity load during specific 
periods, changing behavioral patterns of residents, or to identify peaks and valleys in the 
load pattern.

Furthermore, the FFN model saw an increase in error after removing the CSTEP vari-
ables, indicating that the recurrent neural networks rely less on the supporting variables. 
The popular neural network architectures in the literature are LSTMs and FFNs; how-
ever, this paper has shown that GRUs perform very well on performance metrics and 
when visualizing the predictions to understand where the model predicts well. Further-
more, this paper demonstrated that choosing the optimal neural network architecture is 
not as important as curating good data inputs, which was shown by testing the models 
on different load profiles with and without electric heating or heat pumps. Moreover, it 
was found that the aggregated load’s sample size impacts the forecast’s accuracy, with 
smaller sample sizes giving more volatile consumption patterns.

The systematic identification and selection of supporting data were valuable with cer-
tain neural network types, such as the RNN and FFN. As described in the literature, the 
LSTM and GRU networks are specialized in long data sequences due to their ability to 
remember patterns, which could explain that they do not have to rely on the CSTEP 
variables as much. The results of this study were not very encouraging because the test 
of the systematic identification process did not significantly impact the performance 
metrics as expected. However, the process gave a better understanding of the complex 
electricity load forecasting problem. The data sets used for this study were cleaned and 
filtered to consist of households without DERs and only the households’ pure electricity 
consumption, meaning no electricity-based heating installations. The results prove that 
the sample sizes of the aggregation play a large part in the forecasting accuracy.

Moreover, the challenge of predicting different consumption patterns, such as house-
holds with heat pumps or electric heating, was rejected because the adjusted R2 was 
found to be close to equal for both load patterns. However, this study achieved excellent 
results in forecasting the electricity load for the next hour and next 24 h, which is under-
lined by the satisfying low errors and high adjusted R2 scores. Furthermore, after visual-
izing the predictions, it was shown that the models could get very close to the actual 
load.

Conclusion
The purpose of the study was to test a systematic data identification and selection pro-
cess to forecast the aggregated electricity load of two Danish residential areas. In the lit-
erature, the data selection process often relied on correlation analysis of the supporting 
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data. However, this paper added an initial step to building a robust data foundation fore-
cast using the CSTEP framework. Forecasting with neural networks is a major research 
field, and this paper tested and compared different types of neural networks from the 
literature. The research has shown that the systematic identification of variables has 
potential but does not substantially affect the models’ performance metrics. However, 
the process did give a greater understanding of the target variable, which can help curate 
better data in the future. Testing multiple neural networks results indicate that choosing 
the optimal architecture is not as impactful as having good data inputs. The findings of 
this study will be of interest to researchers who seek to make their data processing and 
analysis more systematic by applying the CSTEP framework.

Moreover, the findings will underline the importance of curated data for researchers 
and the industry, e.g., DSOs. The limitation of this study is the data availability for the 
target variable and some of the supporting data. The target variable had a small sample 
size for electric-based heating households, which meant that the original data set had 
to be sampled to be of equal size. Larger sample sizes would give a more evident answer 
to the differences between load patterns. Furthermore, the CSTEP variables were lim-
ited by sources of external data, such as the weather data. A majority of researchers use 
weather data for their forecasting models, but for this research, it was not feasible due to 
the location of weather stations. Finally, the results of this study are based on electricity 
consumption from Danish residential areas, meaning they are not directly generalizable 
to all parts of the world.

Despite these limitations, the study shows the models’ flexibility on different con-
sumption patterns, multiple types of independent variables, and by forecasting one hour 
to 24  h ahead. Further research should be conducted using the CSTEP framework to 
systematically identify independent variables to better assess the method’s impact on the 
forecasting problem. Furthermore, the findings suggest that better performance metrics 
are needed to compare the predictions of neural networks, as the intricacies could only 
be seen by visually inspecting the forecast. For future work a more complex selection of 
models with more complicated data sets to test the forecasting ability further is planned. 
Finally, to improve on the limitations of this study, a larger sample size of residential 
houses should be used.
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