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The Energy Informatics.Academy Conference 2022 (EI.A 2022) [1] has 
collected great contributions from researchers and practitioners in var-
ious scientific, technological, engineering and social fields to dissemi-
nate original research on the application of digital technology and 
information management theory and practice to facilitate the global 
transition towards sustainable and resilient energy systems.
With the whole technical program committee’s effort, in total thirty-
two (32) high-quality papers (including full papers and short papers) 
are accepted and presented at the conference. Among the thirty-two 
papers, five poster papers cover four aspects of the energy informatics 
domain (shown in Table 1).
Table 1 Themes of the five abstracts from Energy Informatics.Academy 
Conference 2022 (EI.A 2022)

Theme Paper title

Software and applications in 
energy

Design of an intelligent trading 
platform for flexibility potentials 
of private households in the low-
voltage grid

Design of Data Management Service 
Platform for Intelligent Electric 
Vehicle Charging Controller—
Multi-charger Model

Big data and AI in energy Long Short-Term Memory on 
Electricity Load Forecasting: 
Comparison of Feature Scaling 
Techniques

Simulation and modeling in 
energy

Automatic Process Monitoring in a 
District Heating Substation Utiliz-
ing a Contextual Shewhart Chart

Energy informatics projects and 
analysis

A probabilistic approach to reli-
ability analysis of district heating 
networks incorporation censoring: 
A report of implementation 
experiences

The paper (Title: Design of an intelligent trading platform for flexibility 
potentials of private households in the low-voltage grid) presents the 
design of a low-threshold energy market for the intelligent trade of 
small flexibility potentials between grid operators and private house-
holds. The market design and the corresponding trading platform 
have been developed within the FlexChain project. The platform com-
bines traditional IT infrastructure with blockchain elements to ensure 
economically balanced trading of the low-price flexibility potentials.
The paper (Title: Design of Data Management Service Platform for 
Intelligent Electric Vehicle Charging Controller—Multi-charger Model) 
introduces a multi-charger architecture suitable for single-use and 
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shared Electric Vehicle Charging connection points. This multi-charger 
architecture allows using one or several common charging points by 
applying a mesh network of intelligent chargers orchestrated by a 
residential gateway. It can manage the generated data load and ena-
ble the data flow between several independent data producers and 
consumers.
The paper (Title: Long Short-Term Memory on Electricity Load Fore-
casting: Comparison of Feature Scaling Techniques) applies the Long 
Short-Term Memory machine learning algorithm with historical elec-
tricity load data from a residential area in Denmark to predict the 
current electricity load demand. It was found that the Robust Scaler 
scored the highest R-squared value between 0.90 and 0.95. The 
R-squared value of the Power Transformer Scaler was between 0.89 
and 0.92, whereas the R-squared value of the MinMax Scaler was 0.85.
The paper (Title: Automatic Process Monitoring in a District Heating 
Substation Utilizing a Contextual Shewhart Chart) presents a data-
driven process monitoring methodology called contextual Shewhart 
chart that is a modified version of the Shewhart chart with a district 
heating substation data in Denmark. The result shows that the shifts 
of a process variable’s normal operating range can not be captured 
by a regular Shewhart chart, but the proposed contextual Shewhart 
chart by using a contextual variable to vary the acceptable operational 
ranges based on the identified external factor.
The paper (Title: A probabilistic approach to reliability analysis of 
district heating networks incorporation censoring: A report of imple-
mentation experiences) employs a probabilistic proportional hazard 
modeling approach to district heating pipe reliability analysis. The 
approach can model the time-dependent survival probability of pipe 
assets as a function of asset-related and environmental predictors, 
which have been shown to influence failure probability in previous 
studies. However, the result shows that the application of this mod-
eling approach in district heating is challenged by several issues per-
taining to data.

List of abbreviations
EI.A: Energy Informatics.Academy
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Summary: With an increasing number of renewable energy sources 
entering the energy mix, the demand for novel, smart stabilization 
methods for the volatile electricity grid is as pressing as ever. In this 
paper, we present the design of a low-threshold energy market for the 
intelligent trade of small flexibility potentials between grid operators 
and private households. The market design and the corresponding 
trading platform have been developed within the FlexChain project. 
The platform combines traditional IT-infrastructure with blockchain 
elements to ensure economically balanced trading of the low-price 
flexibility potentials. As a key element of the trading platform, the 
blockchain technology provides verification of and trust in trading 
results. The developed design will be implemented and field-tested in 

the upcoming project phases and economically evaluated with regard 
to all stakeholders. In this evaluation, special focus will be placed on 
the different options of blockchain integration.
Keywords: Smart Grid, Flexibility, Energy Market, Home Energy Man-
agement System, Blockchain

INTRODUCTION
The fluctuating energy production from renewable energy sources 
makes the power supply in electricity grids increasingly volatile. The 
risk for periods of grid congestion is furthermore increased by a ris-
ing number of large electric consumers finding their way into private 
households, such as electric vehicles or heat pumps. However, these 
novel technologies not only pose problems for the future energy grid 
but bear large potentials for grid stabilization measures themselves. 
Electric vehicles, private photovoltaic systems and battery storages are 
flexibility assets, which can be activated given an economic stimulus 
for the household.
The research project “Blockchain-induced activation of small flexibili-
ties in the low-voltage grid (FlexChain)” [1] is funded by the German 
Federal Ministry for Economic Affairs and Energy (BMWi) and runs 
under the funding code 03EI6036A. Its research goal is the develop-
ment and in-field testing of a low-threshold energy market, providing 
distribution system operators (DSOs) a platform to incentivize the grid-
serving activation of small flexibility potentials in private households. 
In this paper, we report findings from the development and planned 
in-field testing of the low-threshold energy market and introduce its 
architecture, which has been developed within the first project phase.
A key challenge in the trade of small flexibility potentials is the crea-
tion of an economically balanced market, since the low traded value of 
micro flexibility runs the risk of being exceeding by the corresponding 
transaction costs. The performance of the presented market design for 
all stakeholders as well as further research questions will be evaluated 
in an in-field testing starting in the beginning of 2023. The acquired 
data will, among others, be used to evaluate the economic advantages 
of a blockchain-based trading environment over traditional, central-
ized technologies.

RELATED WORK
In addition to the traditional stabilization of the electricity grid by 
large, centralized generators [2], the possibility of stabilizing the grid 
by demand-side resources [3] is receiving more and more attention 
in research. These potential resources include households, which can 
be either traditional consumers or simultaneous electricity consumers 
and producers, so-called prosumers. Households can be motivated to 
show grid stabilizing behavior on transmission grid level and distribu-
tion grid level [4]. A wide range of appliances are suitable for provid-
ing flexibility assets in a household. In this context, different types 
of household appliances can be distinguished. A first differentiation 
can be made between appliances that are constantly controlled by a 
thermostat, such as water heaters and heat pumps, and those that are 
started and stopped manually [5]. These include, for example, washing 
machines and dishwashers. The flexibility potential of the latter varies 
strongly throughout the day, as they are not operated constantly and 
are therefore subject to uncertainties. However, their general flexibil-
ity potential has been demonstrated [6]. A high potential is acknowl-
edged to the supply of flexibility by private electric cars and battery 
storages [7]. In general, the versatile flexibility potentials of house-
holds have been discussed and presented extensively [8–10]. To be 
able to control and determine the residential flexibility potentials in a 
targeted manner, the advantages of the use of Home Energy Manage-
ment Systems (HEMS) have been pointed out [4, 11].
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Different goals can be pursued with the activation of residential flex-
ibility potentials. These range from optimizing private electricity gen-
eration and consumption of renewable energy sources to grid-serving 
applications. The latter is an important component of stabilization 
measures in future grid operation, especially in the context of the 
energy transition. In Germany, several government-funded research 
projects such as the Altdorfer Flexmarkt [12] or Flex4Energy [13] are 
already working on activating the flexibility potential of households 
for targeted grid stabilization. These projects differ primarily in terms 
of the devices considered for flexibility provision and the trading 
mechanism [14]. All related projects share the challenge of the eco-
nomic efficiency of such energy trading. Economic trading requires 
transaction costs not to exceed the economic value of the traded flex-
ibility. Since residential flexibility potentials are small, their economic 
value is low. Novel technologies such as blockchains are seen as a 
new possibility to master the economic challenge. Currently, German 
research projects such as pebbles [15] and European collaborative pro-
jects such as BRIGHT and eDREAM are already investigating the use of 
blockchain technology in the context of peer-2-peer energy trading 
[16]. In contrast to FlexChain’s focus of the grid-serving use of flexibil-
ity, these projects focus on increasing the rate of self-consumption of 
renewable energy or increasing the degree of autarky in local micro 
grids. In fully mapping the complex market mechanism with block-
chain technology, the referenced peer-2-peer projects are challenged 
by the economic viability of the trading [16]. It is therefore necessary 
to investigate whether the targeted use of blockchain technology in a 
minimally designed trading system can reduce transaction costs com-
pared to traditional technologies and thus ensure economically bal-
anced trading in micro-flexibility markets.

THE FLEXCHAIN APPROACH
The goal of the research project FlexChain is the activation of micro 
prosumer flexibility for grid-serving purposes. Thereby, conventional 
grid stabilization measures such as cost-intensive and time-consum-
ing infrastructure measures can be avoided and grid expansion can 
be kept at a minimum. Through the use of flexibility potentials in the 
distribution grid, the overall cost saving potential amounts to up to 
55% by 2035 [17]. The general idea of FlexChain is to allow the grid 
operator to purchase the flexibility available in participating house-
holds in a trade. If households reduce or increase their electric power 
consumption in accordance with the traded amount and activation 
time, the grid operator can use this to resolve bottlenecks in the grid. 
A prerequisite is the forecasting and activation of private flexibility 
potentials on the one hand, and on the other hand the capability of 
the grid operator to predict grid bottlenecks and determine its flex-
ibility demand based on this. A schematic of the FlexChain approach 
is shown in Figure  1. The matching of the available flexibility poten-
tials of the households and the flexibility required by the grid opera-
tor takes place in a trading environment with blockchain elements. 
The blockchain modules are intended to contribute to the economic 
efficiency, security and confidentiality of the trading system. Data 
exchange between the household and the trading platform as well as 
between the network operator and the trading platform must be com-
patible with the German standard for secure data communication via 
the Smart-Meter-Gateway (SMGW).
This described approach leads to the following research questions, 
which need to be answered for the practical implementation of the 
developed flexibility market:

	– Which household appliances are used as flexibility assets?
 	 – How is the price of a flexibility determined?
 	 – In which time frame does the trading take place?
 	 – What is the size of a traded flexibility?
	– How can trading be structured in a goal-oriented manner using 

blockchain technology?

Figure 1 Schematic of the FlexChain approach

DESIGN OF THE FLEXIBILITY MARKET
FlexChain’s first project phase has been dedicated to the analysis and 
determination of the requirements to the energy trading platform. In 
this phase, the project partners evaluated and specified the partici-
pants of the energy market together with their obligations and rights, 
potential flexibility assets, adequate market types, trading time frames 
and the integration of blockchain technology in the market’s IT-infra-
structure. The result of this project phase is the market design, which is 
presented in this section and will be implemented and field-tested in 
the upcoming project phases.
Figure 2 displays a schematic of the market design. Two types of roles 
participate in the energy trade: the flexibility provider, i.e. the private 
household represented by its HEMS, and the DSO. The flexibility pro-
vider is the end consumer in the low-voltage electricity grid and, in the 
case of an installed private photovoltaic system, a prosumer. The role 
of the second market participant, the DSO, is manifold: He acts as an 
administrator of the market platform and the implemented blockchain 
and is responsible for the grid simulation and forecasting of grid con-
gestion intervals. As these obligations exceed the standard purview of 
a DSO, the tasks are either outsourced to capable project partners or 
third-party providers in FlexChain.

Figure 2 Schematic of the market design

A flexibility trade follows a defined sequence. It is initiated by the 
DSO, who sends a flexibility request, calculated based on grid simula-
tions, to the platform environment. The grid simulation result includes 
information on households which are, based on their location in the 
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electricity grid, suitable for resolving the potential congestion event. 
It furthermore holds details on the requested flexibility, i.e. the corre-
sponding time slot and amount of flexibility, as well as market param-
eters adjustable by the DSO, which are the market type (fixed price 
or auction), the offered price and the minimum percentage of the 
requested flexibility that must be met by valid flexibility offers for the 
trade to be processed. The traded power and time units of the energy 
market are set to 0.5  kW and 15  min, respectively, corresponding to 
traded energy blocks with a size of 125 Wh.
Requests opened by the DSO are transferred to all suitable HEMS via 
the platform. When a HEMS receives a flexibility request, it internally 
calculates the flexibility potential of the flexibility assets connect to 
it and, if a matching flexibility potential is found, returns an offer to 
the central platform. The extension of existing HEMS software by the 
required functionalities, i.e. the forecasting of flexibility potentials as 
well as internal offer calculation, is one of the project’s research goals.
On the market platform, a matching algorithm, which was devel-
oped within the project, is run to select offers fitting a given flexibil-
ity request. The algorithm allows for a variety of offer selection modes 
such as first-come-first-served or minimal-number-of-required-con-
tracts in the case of a fixed-price market or lowest-bid selection in 
an auction market. The performance of the different selection modes 
for all stakeholders will be evaluated within the project. The achieved 
market result is communicated with the DSO and all bidding HEMS, 
which consequently activate their traded flexibility potential.
After a successful matching of a flexibility request and flexibility offers, 
a Merkel tree [18, 19] for the achieved market result is calculated on 
the market platform and passed to a dedicated blockchain. Using this 
Merkel tree imprinted on the blockchain, the market result can be 
verified through hashes generated with the market results received by 
the HEMS and the DSO. In this way, the consistency of the distributed 
market outcome can be confirmed. This mechanism is intended to 
increase user trust in the developed energy market. Economic aspects 
of a market concept, in which the entire market processing including 
offer matching, contract generation and contract execution is imple-
mented on a blockchain e.g. via smart contracts, has been evaluated in 
a preliminary analysis. These first investigations could not imperatively 
show the economic benefit of an exclusive use of blockchain tech-
nology, in which traded returns must balance transaction costs. The 
project consortium thus agreed on developing an agile, modular soft-
ware and hardware environment connected to a blockchain element. 
This infrastructure will be used to compare the financial balance of a 
non-blockchain, partly-blockchain and full-blockchain approach and, 
based on the result of this analysis, can be easily transformed into a 
full-blockchain setup.
Following a successful matching of flexibility requests and offers, par-
ticipating HEMS are obliged to activate the traded flexibility potential 
and provide proof of the activation. In return, the DSO must initiate 
the processing of the traded refund. The content and specification of 
the required activation proof is subject of current research activities.
To be able to react to short-term congestion in the distribution grid, 
the presented market follows an intra-day trading, which is charac-
terized by a fixed timeline for the sending of flexibility requests, offer 
placing, the trading period of a certain flexibility, the corresponding 
activation of the flexibility as well as the final confirmation of this acti-
vation. Since trading takes place within a defined time slot, which cor-
responds to the standard duration of 15 min, the computational effort 
and thus the transaction costs can be kept at a minimum.
In FlexChain, residential flexibility potentials are generated by private 
heat pumps, battery storages, charging stations for electric vehicles 
and photovoltaic systems. These flexibility assets are controllable via 
the HEMS, whose development is part of the project’s research aims, 
and can be managed with no or minor impact on user comfort. An 
integration of comfort-related household devices such as washing 
machines, kitchen devices or entertainment technologies lowers par-
ticipant acceptance and prevents device management without active 
residential participation. In order to provide a low-threshold entry into 
the energy market and guarantee its easy-to-use design, automated 
background administration of flexibility assets is set as a goal.

OUTLOOK
The presented energy market as well as accompanying research ques-
tions will be evaluated in a field test. Via economic incentives, e.g. 
reduced rates on the installation of a compatible battery storage sys-
tem, five to ten prosumers in the low-voltage grid administered by 
the Stadtwerke Saarlouis, a mid-sized DSO in FlexChain’s research con-
sortium, are invited to participate. A prerequisite for participation is a 
functioning private photovoltaic system at the start of the field test. 
Since the number of participants does not suffice neither to generate 
nor to solve a congestion event, synthetic grid congestion will be sim-
ulated via a scaling factor for the grid capacity.
The in-field testing serves the purpose of scrutinizing the entire IT-
infrastructure, the interplay of the different software modules and the 
fine tuning of all adjustable market parameters, such as time inter-
vals defining the trading process, in a real-life application. The main 
research questions to be answered concern the economic aspects of 
the presented energy market, e.g. to which extend a blockchain-based 
market economically outperforms traditional technologies or whether 
smart energy trading is an economic alternative to grid expansion.
To answer these questions holistically, in-field data is needed, which 
intrinsically respects non-simulatable aspects such as unpredicted 
user behavior.
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HEMS: Home Energy Management System
SMGW: Smart-Meter-Gateway
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Summary: Electricity load prediction can assist utility companies to 
estimate the electric power to be generated. The study used historical 
electricity load data from a residential area in Denmark, and employed 
a single feature, i.e., the previous hour’s electricity load, to predict 
the current electricity load demand. Due to the different data ranges 
found in the dataset, this manuscript intended to prove the impor-
tance of feature scaling technique selection that would impact the 
prediction results. A comparison was made on the prediction results of 
the scaled dataset using the MinMax Scaler, Robust Scaler, and Power 
Transformer Scaler. The machine learning algorithm, Long Short-Term 
Memory (LSTM), was applied because the input and output data were 
in time series, and the estimation of electricity load value was the 
expected output. It was found that the Robust Scaler scored the high-
est R-squared value between 0.90 and 0.95. The R-squared value of 
the Power Transformer Scaler was between 0.89 and 0.92, whereas the 
R-squared value of the MinMax Scaler was 0.85.
Keywords: LSTM, Electricity Load, Robust Scaler, Power Transformer 
Scaler, MinMax Scaler, R-squared

INTRODUCTION
In certain countries such as the United States, electricity generation 
contributes 25% of the primary sources of greenhouse gas emissions 
[1]. The greenhouse gas emissions impact climate change by trap-
ping heat that leads to global warming. The United Nations (UN) has 
introduced 17 Sustainable Development Goals (SDGs) that emphasise 
a holistic approach to achieving sustainable development for all. The 
seventh SDG goal is “Affordable and Clean Energy”. Renewable energy 
is currently being used in several countries, such as Denmark, which 
generates 45% of its electricity from wind [2].
Electricity load forecasting is important for electricity suppliers 
because it can assist them to generate electricity sufficiently as fore-
casted. Over generation of electricity incurs additional costs to the 
electricity suppliers in generating more than the demand, and addi-
tional carbon emissions will be produced during electricity generation. 
Electricity load forecasting happens in time series with the expected 

value of electricity load. The machine learning algorithms that support 
time series and regression include Recurrent Neural Network (RNN) 
and Long Short-Term Memory (LSTM) due to the capability of memo-
rising the information on each iteration. RNN and LSTM can perform 
training and testing by grouping based on the time steps. However, 
RNN has limitations in its memory unit. LSTM overcomes the draw-
back of RNN by providing the option to discard unmeaningful infor-
mation through the forget gate. LSTM falls under supervised learning, 
whereby the training is based on the historical electricity load dataset 
to identify the electricity load pattern. This study focuses on LSTM 
after the comparison study between LSTM and the feed-forward net-
work, Artificial Neural Network (ANN), showed that LSTM performed 
better than ANN [3].
Electricity load is represented by kilo Watt per hour (kWh). The elec-
tricity load range has a major difference between peak and non-peak 
hours. The feature scaling technique helps to minimise the impact of 
one significant number on the model by bringing the various features 
in the same standing. Many studies have applied MinMax scaler as fea-
ture scaling technique to obtain the best model performance in elec-
tricity load forecasting. The existing studies often stated the selected 
feature scaling technique; nevertheless, the studies did not always suf-
ficiently justify the effectiveness of the selected feature scaling tech-
nique by comparing it with other feature scaling techniques that may 
also influence the model efficiency. Other feature scaling techniques 
that are rarely used in electricity load forecasting are Robust Scaler 
and Power Transformer Scaler. Therefore, the major objectives of this 
article are:

 	• •	 to identify the range of the scaled dataset using the MinMax 
Scaler, Robust Scaler, and Power Transformer Scaler,

 	• •	 to compare the evaluation metrics of the model generated by the 
training dataset scaled using the MinMax Scaler, Robust Scaler, 
and Power Transformer Scaler, and

	• •	 to compare the electricity load between the actual and prediction 
values generated by the models.

The remainder of the article is organised as follows: the Review of 
Related Works section discusses similar works that applied the LSTM 
algorithm, feature scaling techniques applied, and evaluation metric 
used to evaluate the model. The Methodology section describes the 
proposal approach for LSTM in this study and its implementation. The 
Results section displays the implementation results including scaled 
dataset, model evaluation, and prediction values, followed by the 
Analysis and Discussion section. Finally, a conclusion is issued in the 
final section.

REVIEW OF RELATED WORKS

Long Short-Term Memory algorithm
Machine learning is a statistical approach for performing predictions 
using the model generated from supervised or unsupervised learning. 
Electricity load forecasting based on historical data is an example of 
the implementation of supervised learning. The output of electricity 
load forecasting is a numerical value that represents the prediction 
result. The most suitable method to predict the continuous values of 
electricity load forecasting is regression [4]. RNN is employed in time 
series prediction because it can save the output of a layer and feed it 
back to the input. It stores the previous input in the internal memory 
[5–7]. Throughout the learning cycles, the gradient values that carry 
information become too small and insignificant. LSTM can overcome 
the vanishing gradients issue in RNN by remembering information for 
extended periods [7–9]. LSTM works in the form of a chain of repeat-
ing modules of a Neural Network (NN) with four interacting layers that 
communicate with each other [7]. By using RNN and LSTM, the data 
input transforms from a two-dimensional (2D) array (features and 

https://doi.org/10.1109/icsgsc52434.2021.9490501
https://doi.org/10.1109/icsgsc52434.2021.9490501
https://pebbles-projekt.de/
https://www.dena.de/fileadmin/dena/Publikationen/PDFs/2019/Dena-ANALYSE_Regulatorischer_Handlungsbedarf_zur_Erschliessung_und_Nutzung_netzdienlicher_Flexibilitaet.pdf
https://www.dena.de/fileadmin/dena/Publikationen/PDFs/2019/Dena-ANALYSE_Regulatorischer_Handlungsbedarf_zur_Erschliessung_und_Nutzung_netzdienlicher_Flexibilitaet.pdf
https://www.dena.de/fileadmin/dena/Publikationen/PDFs/2019/Dena-ANALYSE_Regulatorischer_Handlungsbedarf_zur_Erschliessung_und_Nutzung_netzdienlicher_Flexibilitaet.pdf
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label) into a three-dimensional (3D) array (samples, time step, and 
feature).
Electricity load forecasting predicts in a sequence of time. Liu et al. [10] 
applied RNN to perform electricity usage prediction. The research by 
Hossen et al. [11] showed that LSTM performed better than RNN. Previ-
ous research by Lee and Choi [12], Zheng et al. [13], and Hossen et al. 
[11] compared LSTM with Gated Recurrent Unit (GRU). LSTM still dem-
onstrated the best result among other algorithms. Kumari et  al. [14] 
implemented deep learning by applying LSTM, and it produced a low 
error value for the model evaluation.

Feature scaling techniques
Feature scaling technique, also known as scaler, shifts and rescales val-
ues into a certain range without alerting the distribution values [15]. 
It is used to scale the training data to achieve non-dimensionality and 
accelerate convergence. Feature scaler helps to minimise the gap in 
dataset values. A series of article reviews were made to identify the 
common feature scaling techniques used by other researchers. Nev-
ertheless, not all articles related shared the same scaler techniques 
applied in their studies.

Table 1 Summary of feature scaling techniques by other researchers

Scalers References

MinMax Salam and El Hibaoui [8], Wen, Zhou, Yang 
[16], Fekri et al. [17], Ozer, Efe, Ozbay [18], 
Peng et al. [19], Somu, Raman, Ramam-
ritham [20], Tang et al. [21], Somu, 
Raman, Ramamritham [22], Li et al. [23], 
He, Zheng, Xu [24]

Not specified
Rescaled between 0 to 1

Bai et al. [25], Eskandari, Imani, 
Moghaddam [26], Liu and Lin [27], Jana, 
Ghosh, Sanyal [28], He et al. [29], Wang 
et al. [30]

Not specified
Rescaled between -1 to 1

Dong, Ma, Fu [31]

Table 1 shows that 10 out of the 17 reviewed articles applied the Min-
Max scaler in their studies. The MinMax scaler technique transforms 

the values between zero and one.
The value X represents the current data to be scaled. Xmin denotes the 
minimum value of the dataset feature, while Xmax signifies the maxi-
mum value of the dataset feature. The scaled value of X is generated 
by the subtraction of the value X and Xmin. Finally, Xscaled is divided by 
the difference between Xmax and Xmin.
It is challenging to find related works that use Robust Scaler and 
Power Transformer Scaler in electricity load forecasting. The Robust 
Scaler minimises the distance between values in the scaled feature 
by performing the subtraction from the median, and the result is then 
divided by the interquartile range. This can reduce the importance of 
outliers [33]. The range of values for the feature is larger than what can 

be obtained with the MinMax scaler.
The Power Transformer Scaler transforms input and/or output vari-
ables to have a more Gaussian-like distribution. It is believed that this 

scaler can achieve better performance on a wide range of machine 
learning algorithms [35]. There are two types of transforms in Power 

Transformer, namely Yeo-Johnson and Box-Cox.
Equation 3 represents the Yeo-Johnson transform that supports posi-
tive and negative data, while Equation  4 denotes the Box-Cox trans-
form that only supports positive data [35].

Evaluation metrics
Machine learning requires training and testing phases. The output of 
the training phase is a model. This model needs an evaluation pro-
cess to determine its quality. The common evaluation metrics used for 
regression problems are mean squared error (MSE), root mean squared 
error (RMSE), mean absolute error (MAE), mean absolute percentage 
error (MAPE), and R-Squared (R2) [33]. MSE evaluates the model by 
indicating the average of the squares of the error found between the 
predicted and actual values, while RMSE performs the square root of 
MSE [33]. MAE indicates the average of the squares of the errors found 
between the predicted and actual values [33]. For MSE, RMSE, MAE, 
and MAPE, the model evaluates based on the error values between the 
test set and the actual value. The error results depend on the dataset 
range. If the dataset range is between zero and one, the data closer 
to zero have better results. However, it is challenging to determine 
the model quality based on the error values if the dataset range is not 
between zero and one. On the other hand, R2 indicates the coefficient 
of determination of the model by the ratio of the model’s MSE and the 
difference of the predicted values. R2 is the most relevant to regression 
algorithm because it indicates the quality of the algorithm by captur-
ing the difference of the predicted values [33].
In the related works, the values of evaluation metrics are incomparable 
because the dataset range is different. For example, RMSE applied in 
Lee and Choi’s [13] work gave a result of 0.9698. Tongta and Chooru-
ang [36] applied MAE, which provided a result of 36.98. On the other 
hand, Hossen et al. [12] applied LSTM and used MAPE as an evaluation 
metric that showed a result between 24 and 35%. Most of the studies 
were focused on finding the error values instead of finding the vari-
ance of the predicted values.

METHODOLOGY

Proposed approach for LSTM
Based on the review made in the previous section, two rarely used 
feature scaling techniques were considered in this study, which differ 
from the commonly used scalers in the similar case studies, i.e., Min-
Max Scaler, and their impact on the output of the selected algorithm, 
LSTM. The predictions obtained from such pre-processed input led 
to increased accuracy, as demonstrated by the results obtained. The 
hourly electricity load prediction was forecast using historical data 
from the previous hour, with seven days of memory used. The details 
of the experiments are discussed in detail in this section.
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Implementation of LSTM
The dataset used in this study was a residential area in Denmark 
between 2015 and 2018. The dataset consisted of only one feature: the 
previous hour electricity load that was represented hourly. The date 
and time were used as an index of the dataset to be used as a refer-
ence to compare the prediction results with the actual electricity load. 
The dataset used in the training phase was between 2015 and 2017, 

while the dataset in 2018 was used in the testing phase.
Figure 1 Navigation diagram of the LSTM implementation
Figure 1 shows the navigation diagram of the implementation of LSTM 
in this study. The highlighted processes are critical in achieving the 
objectives of this article. The dataset consisted of the date, time, elec-
tricity load data of the specific date and time, and the electricity load 
data of the previous hour. The data selection process selected the fea-
ture to be used in the training and testing phases. As mentioned in the 
previous sub-section, this study only used the previous hour electricity 
load as the feature. The electricity load data of the specific date and 
time was used as the label to be used in the training phase. The date 
and time were assigned as the index of the dataset.
Since the machine learning algorithm used was LSTM, the dataset 
needed conversion from 2D into a 3D array. The components of the 
3D dataset were sample, time steps, and feature. The time steps used 
in this experiment were 24 and 168 to compare the effectiveness of 
LSTM in memorising the electricity load pattern every 24 h and 7 days.
LSTM generated a model from the sequential layers of an input layer, 
hidden layer, and output layer. The hyperparameters for the LSTM lay-
ers were set based on Table 2.

Table 2 Hyperparameter used in each layer

Input layer Hidden layer Output layer

Number of neu-
rons

≈ (Total_train-
ing_data * 0.05)

≈ (Total_train-
ing_
data * 0.05/2)

1

Input shape Time steps, num-
ber of features

None None

Activation function Sinc Sinc None

Input layer Hidden layer Output layer

Return sequences True True None

Adam Optimiser was used in accelerating algorithm convergence 
during the training phase with the learning rate applied at 0.001. 
The Adam optimiser was employed due to its capability adopted 
from RMSProp, Stochastic Gradient Descent (SGD), and Momen-
tum Optimiser. The characteristics adopted from RMSProp were the 
abilities to reduce the accumulation gradient in a controlled order 
and adjust the learning rate accordingly. The Adam Optimiser used 
one sample at a time, similar to SGD. It adopted the behaviour of 
the Momentum Optimiser by stabilizing the gradient correction 
direction.
Another common issue in producing a model is overfitting. This exper-
iment used the epoch value of 100. The early stop mechanism was 
applied in this study to control the training session so as to not overfit 
the model.
The model quality from the training session was observed for all three 
scaled datasets in the model evaluation phase. The loss function that 
reflected the error between prediction and actual values was used.
Once the loss results showed improvement, the model was ready to 
be saved and it would be used in the testing phase. The models were 
named based on the scaler and time steps used. In the testing phase, 
the testing dataset was used. This testing set was included with an 
additional 2  weeks of the earlier dataset to warm up the model. The 
testing dataset was scaled using the scaled object created by the 
selected scalers. Then, the testing dataset was required to be reshaped 
into the 3D format to enable it to be used in LSTM. The next process 
was to perform the prediction of the reshaped data in getting the 
prediction values. The prediction values were evaluated using the 
selected evaluation metric, R2, to directly compare the prediction and 
actual values of electricity load hourly.

RESULTS
The comparison of scalers in affecting the model quality was the 
main objective of this study. The machine learning algorithm used 
was LSTM, which was expected to produce a more quality model as it 
could memorise more information. For this reason, the comparison of 
R2 values of 24 time steps and 168 time steps also became a concern 
in this study. The four months samples were used to represent a peak 
month in winter (January), spring (April), summer (July), and autumn 
(October). These four months were selected because they are not in 
the transition of seasons. In total, there were six models generated in 
this study: modelR24, modelPT24, modelMM24, modelR168, mod-
elPT168, and modelMM168.

Scaled dataset
The training and testing datasets were scaled to minimise the data gap 
values. The minimum and maximum values of the data that existed in 
the dataset are as shown in Table 3.

Table 3 Minimum and maximum value of scaled dataset

Robust scaler Power trans‑
former scaler

MinMax scaler

Minimum − 1.898697 − 7.349004 0.000000

Maximum 4.122344 3.518321 1.000000

Model evaluation
The first experiment started with the LSTM model generation using 
24  h of memory that was represented by time steps. The model 
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evaluation results were derived from the testing dataset that covered 
the sample of four months, executed monthly. Table 4 shows the eval-
uation metric of the testing phase dataset scaled using Robust, Power 
Transformer, and MinMax Scalers.

Table 4 Evaluation metric results of testing dataset for 24 time steps

Model 
name

N/A modelR24 modelPT24 modelMM24

Evaluation 
metrics

Sample 
month

Robust 
scaler

Power 
trans‑
former 
scaler

MinMax 
scaler

MSE January 124.44 118.45 189.86

April 37.58 45.33 140.73

July 17.05 22.86 63.26

October 41.71 47.39 152.38

MAE January 7.82 7.31 10.09

April 4.69 5.05 9.10

July 3.13 3.58 6.18

October 4.91 5.07 9.64

RMSE January 11.16 10.88 13.78

April 6.13 6.73 11.86

July 4.13 4.78 7.95

October 6.46 6.88 12.34

R2 January 0.88 0.88 0.81

April 0.93 0.92 0.76

July 0.94 0.92 0.78

October 0.93 0.92 0.73

The second experiment commenced with the LSTM model generation 
using 168 h of memory information represented by time steps. Table 5 
displays the evaluation metric of the testing phase dataset scaled 
using Robust, Power Transformer, and MinMax Scalers.

Table 5 Evaluation metric results of testing dataset for 168 time steps

Model 
name

N/A modelR168 mod‑
elPT168

mod‑
elMM168

Evaluation 
metrics

Sample 
month

Robust 
scaler

Power 
trans‑
former 
scaler

MinMax 
scaler

MSE January 49.78 83.51 161.89

April 41.25 56.83 87.47

July 26.13 30.82 40.71

October 31.98 50.23 100.38

MAE January 5.24 6.54 9.65

April 4.76 5.50 7.62

July 3.98 4.24 5.03

October 4.22 5.14 8.00

RMSE January 7.06 9.14 12.72

April 6.42 7.54 9.35

July 5.11 5.55 6.38

October 5.66 7.09 10.02

Model 
name

N/A modelR168 mod‑
elPT168

mod‑
elMM168

Evaluation 
metrics

Sample 
month

Robust 
scaler

Power 
trans‑
former 
scaler

MinMax 
scaler

R2 January 0.95 0.92 0.84

April 0.93 0.90 0.85

July 0.90 0.89 0.85

October 0.95 0.92 0.85

Prediction results
Figure  2 represents the prediction results by the model generated 
using 168 time steps. The results were shown in kWh. The actual elec-
tricity load was labelled in red. The observation was made based on 
the similarity of the prediction values by each model with the actual 
data.
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Figure 2 Prediction results by modelR168, modelPT168, and mod-
elMM168. (a) Winter (b) Spring (c) Summer (d) Autumn

ANALYSIS AND DISCUSSIONS
The MinMax scaler only limited the data range to be scaled between 
zero and one. This resulted in the scaled value becoming too small. 
The Robust Scaler scaled the dataset between negative one and 
five, while the Power Transformer Scaler scaled the dataset between 
negative seven and three. This range was double as compared to the 
Robust Scaler.
As mentioned from the beginning, the result of the model evaluation 
metric focused on R2 since it compared actual and predicted values. 
The MinMax Scaler performed the lowest R2 value as compared to the 
other scalers for the 24 time steps and 168 time steps. The R2 value 
between the Robust Scaler and Power Transformer Scaler was very 
competitive for each sample month for both time steps. The highest R2 
value was scored by the Robust Scaler when the time steps were set to 
168, which represented one week of memory information. The LSTM 
model could learn better when it was fed with sufficient information 
through the 168 time steps applied. However, the MinMax scaler failed 
to reach the peak and valley values of all prediction samples.

CONCLUSION AND FUTURE WORKS
The impact of climate change is becoming obvious from day to day, 
which drives the UN to introduce the 17 SDGs that emphasise a 
holistic approach to achieving sustainable development for all. This 
research indirectly supported the seventh SDG goal of “Affordable and 
Clean Energy” by comparing the mechanisms that could better predict 
electricity load since electricity generation contributes to the primary 
source of greenhouse gas emissions. This study intended to compare 
the various feature scaling techniques and their impact towards the 
prediction values. The common feature scaling technique used in the 
reviewed studies was MinMax Scaler. The other feature scaling tech-
niques used for comparison were Robust and Power Transformer Scal-
ers. The Robust Scaler could minimise the outliers, while the Power 
Transformer Scaler could transform the dataset into a more Gaussian-
like distribution. The machine learning algorithm used in this study 
was LSTM because of its ability in memorising information to solve the 
regression problem. The details of the implementation of LSTM and 
the hyperparameters used were mentioned in this article. This study 
also proved that the ability of LSTM in memorising information for a 
certain period could improve the model quality. In total, there were six 
models generated in this study: modelR24, modelPT24, modelMM24, 
modelR168, modelPT168, and modelMM168. The best model gen-
erated was modelR168 with an R2 value between 0.90 and 0.95. This 
model was generated by the training session of 168time steps with 
the Robust Scaled dataset.
The current study used the Sinc activation function due to the nature 
of the dataset that had rises and falls in 24  h of electricity load con-
sumption, which looked similar to sine wave; s-shaped, smooth wave 
that oscillates above and below zero. Future studies should compare 
the effectiveness by using other activation functions such as rectified 

linear activation function (ReLU) and tanh hidden layer activation 
function (tanh). This is another opportunity to explore since this article 
has proven that the commonly used feature scaling technique, Min-
Max Scaler, is not always the best scaler to be used.
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Summary: Fault detection methods play a key role in enabling pro-
active maintenance in district heating systems. Faults are estimated 
to cause around 40 percent of energy consumption and it is there-
fore critical to employ methods to decrease this unnecessary waste of 
energy. For detection of these faults, a data-driven process monitor-
ing methodology is presented which uses a modified version of the 
Shewhart chart, which is called contextual Shewhart chart. A process 
variable’s normal operating range often shifts, and this can be due to 
external factors (e.g., outdoor temperature), and this is not captured by 
a regular Shewhart chart. However, the proposed contextual Shewhart 
chart can capture these effects by using a so-called contextual vari-
able to vary the acceptable operational ranges, based on the identified 
external factor. The methodology has been applied to real data from a 
district heating substation and has shown promising results.
Keywords: Fault detection, Process monitoring, District heating sys-
tem, Shewhart chart

INTRODUCTION
District heating (DH) can produce and supply heat more efficiently, 
compared to individual heating in an urban and sub-urban context. As 
the efficiency is much higher due to e.g., combined heat and power 
plants [1]. A large proportion of Danish households are supplied by 
DH, and it has been steadily increasing. Moreover, space heating and 
hot water use account for a great share of total consumed energy in 
the EU [2].
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Nonetheless, current district heating systems (DHS) are not running 
optimally. Faults are estimated to cause around 40% of energy con-
sumption in DHS [1], it is, therefore, critical to decrease this figure, to 
decrease unnecessary expenditure, energy usage, and CO2 emissions. 
According to [3] three-quarters of DH substations display faults, and 
they are critical in the delivery of heat to customers. Faults do not 
always lead to a disruption in operation and these faults can therefore 
remain undetected because the control system can often compensate. 
This could be a leakage in a pipe, where the flow is simply increased 
to ensure the supply of heat. Methods for identifying these faults are 
therefore needed to avoid unnecessary waste.
Process monitoring via the use of fault detection (FD) methods can 
help alleviate these faults. FD methods have been proven very useful 
for detecting unusual behavior energy domains.
The application of FD methods in DHS has been reviewed in [1]. FD 
methods can be subdivided into three main categories. Process his-
tory-based, quantitive model-based, and qualitative model-based. The 
use of model-based methods has proven to be very useful for fault 
detection in various energy domains, but are often not very general-
ized and scaleable, but are easily understandable due to the simple 
and well-known equations utilized. Whereas, process history-based 
methods can be extremely dynamic, and can capture complex phe-
nomena, that are not easily captured by simple equations [1]. For pro-
cess history-methods ensuring that the quality of the data is high is 
an extremely important aspect, and methods for this have been inves-
tigated in [4] for sensors in buildings. But in general, there are both 
pros and cons to the various types of methods. The research focus at 
the moment largely on process history-based methods in DHS. This 
coincides with the fact that a large quantity of data is collected in 
DHS which are not utilized to their full potential. According to [3] sen-
sor readings have the potential to enable proactive maintenance via 
fault detection methods. The current practice is reactive maintenance 
which is extremely inefficient.
It is noted in [1] that many of the process history-based approaches are 
not useful since training the models using simulated or laboratory data 
does not equate to good performance when applied to real data for test-
ing. However, they are slated to be able to solve the complex FD problems 
we currently face due to their advantages over model-based methods.
The following small selection of papers shows promising results for FD 
in DH, but there is still quite a large gap in research [1].
The use of gradient boost regressor for DH substations for FD has been 
investigated in [5]. Another paper looks at comparing different substa-
tion performances via the use of correlation analysis and identifying 
substations that differs from others as an indicator of faults [6]. They also 
investigate the use of a limit checking and cluster analysis approach via 
moving average and standard deviation of the energy usage. Both of 
these are used to detect faults. The paper [7] uses cluster analysis along 
with association analysis to decide operational rule patterns of district 
heating substations. A qualitative evaluation is then used to select signifi-
cant rules. [8] uses three different clustering methods to identify opera-
tional patterns and thereby identify faulty behavior in consumer data.
A Shewhart chart or control chart is a widely researched and utilized 
method for univariate FD [9], however no research using it in the 
domain of DH has been identified [1]. Exploring its FD capabilities in 
DHS is therefore needed. A downfall of regular Shewhart chart is that 
it is not flexible and dynamic, due to its inherent simplicity. Changing 
regular operational conditions of systems cannot be captured properly 
by the static control limits, and a methodology is therefore needed to 
capture this aspect.
This paper will fill the identified gaps by implementing a modified ver-
sion of the Shewhart chart, that creates individual/dynamic control 
limits for observations based on outside ambient temperature obser-
vation. This can be called a contextual Shewhart chart, as the sensor 
readings are put into the context of another variable that is known to 
affect the system’s operation and uses that fact to define dynamic con-
trol limit boundaries. For example, energy consumption of a system 
of 14 MWh for an hour is normal during the winter with low ambient 
temperatures, but not during the summer with higher ambient tem-
peratures. A regular Shewhart chart is not able to properly account 
for this complexity, as it assumes the process does not change normal 
operational behavior over time. The methodology will be applied to 

real data from a DH substation, which according to [3] have a very high 
proportion of faults. This, therefore, fills the gap/issue raised regarding 
simulated/laboratory data.
A similar methodology has been developed in [10], where the control 
limits are based on a piecewise linear regression given a contextual 
variable. The methodology developed in this paper is more flexible, 
because one does not need to manually inspect the data to deter-
mine the cutoffs for the “pieces”, and the control boundaries are more 
dynamic. The method in this paper can therefore be seen as a sort of 
improvement of the method in [10].
To summarize, the contributions of this paper is the usage of real-
world data, which includes a known fault for evaluation of the 
method. On top of this, the methodology proposed in this paper is a 
novel method and has therefore not been applied before in DHS.
The first section of the paper will discuss in more detail the methodol-
ogy of the contextual Shewhart chart. Then a case study is introduced 
and lastly application results for the case study.

METHODOLOGY

Ordinary Shewhart Chart
Shewhart charts or control charts are a univariate statistical process 
monitoring method that can be used for determining if a process 
variable is outside the regular operating range, based on upper and 
lower control limits [9]. The control limits (CL) can be determined by 
healthy training data and are calculated as seen in Eq. 1. The equa-
tion assumes only one control variable.

where x is the sample mean of the training data, S is the sample stand-
ard deviation of the training data, and r is the number of standard 
deviations, and r · S is the confidence interval. Where for r = 3 , 99.7% 
(level of significance) of the training data would be within the control 
limits, given a normal distribution. Choosing an r value is a trade-off 
between missed detections and false alarm rates. Increasing the r value 
decreases the false alarm rate and increases missed detections, and vice 
versa. The control limits can then be applied to potentially faulty test 
data. When an observation for the control variable is outside the control 
limits an alarm is raised, indicating that a fault is present. This can be 

visualized in Figure 1.

Upper CL

Lower CL

Process average

Time

Value

Figure 1 Visualisation of a Shewhart chart. Red filled in circles are obser-
vations outside control limits which raise alarms

Modified Control Chart
A regular Shewhart chart is a quite straightforward methodology to 
implement because the control limits are static, and for many pro-
cesses, this might be satisfactory. However, some process variables 
in some domains, normal acceptable ranges change/shift, based on 

(1)
CL = x ± r · S, where S =

N

n=1(xn − x)2

N − 1
and x =

N

n=1xn

N
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external factors such as outdoor temperature or modified setpoints. 
This would change the mean, x , for the observations after the shift, 
and the control limits should therefore shift. This would not be cor-
rectly reflected in a regular Shewhart chart. A modified version of 
the the control chart is therefore needed to account for such chang-
ing conditions and the resulting acceptable behavior. One could do 
a rolling Shewhart chart, with the limits based on the last n observa-
tions’ mean and standard deviation. However, the methodology in this 
paper uses the identified external factor as a way to create dynamic 
control limits.
The modified Shewart chart presented in the following section creates 
individual control limits based on a contextual variable. It can there-
fore be called a contextual Shewhart chart. The structure of the input 
data can be seen in Eq. 2. Where x is a matrix containing the sensor 
data, with j number of process variables and N  observations. C con-
tains the so-called contextual sensor variable, which will be used to 
categorize the different observations in x . C1 is measured at the same 
time as x11 . . . x1j . Each row in x is an observation vector.

The proposed methodology for training is described in Table  1. For 
testing, only step 4) is applied to the new data. The control limits 
determined by the training methodology are then applied to the 
sorted test data. The manner in which the results are visualized can 
help with the understanding of the methodology, and the following 
section describes that aspect.

Table 1 Methodology overview. Creation of model (training)

1. Determine the contextual variable and sensors to monitor from inspec-
tion of cross correlation plots. The sensors that are appropriate for the 
methodology have either strong negative or positive correlation with a 
given contextual variable

2. Create intervals of the contextual variable from its maximum value to 
minimum value with certain interval size. Resulting in k intervals or bins. 
The term “intervals” will be used in this paper. (See discussion in results 
section for determining the interval size)

3. Create k number of empty matrices. Where the first matrix is associated 
with the first temperature interval, the second matrix for the second 
etc.

4. Sort each observation vector in x into the appropriate matrix according 
to what interval the corresponding observation value in C belongs to

5. For each matrix containing various number of observations, calculate 
the mean and standard deviation and thereafter the upper and lower 
control limits according to Eq. 1. This is done for each individual process 
variable

Figure  2 is an example of a way to display the contextual Shewhart 
chart for a return temperature sensor in a district heating pipe on the 
y-axis. Outdoor temperature intervals along the x-axis where the blue 
dots are test data. The upper and lower control limits are red, and the 
mean is the dashed line based on the training data. Figure 3 shows a 
more regular Shewhart chart but with control limits changing over 
time due to the different outdoor temperature intervals that apply to 
each observation. It is a cutout from the whole data series.
Some sensors can be labeled as so-called “zero sensors”, which obser-
vations are either at some significant mean value, or is at zero for a 
certain extent of time, these do not work well with the current meth-
odology as these zero observations could skew the control limits 

(2)x =








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significantly. An example of such a sensor could be a heat production 
unit that often shuts completely off or is hovering at a steady heat 
output otherwise. Control limits are only wanted for the periods the 
production unit is in use and only be based on training data for when 
the unit is in use, for the given contextual variable intervals. The meth-
odology is thereby changed for the identified zero-sensors to training 
with only the non-zero values and not labeling zero observations as 
faults in testing.

Figure 2 Contextual Shewhart chart example

Figure 3 Contextual Shewhart chart example 2. NOTE: only shows part 
of the data from Figure 2

Description of Case Study and Faults
Time series sensor data from a pumping substation in Odense, Den-
mark will be used for the application of the methodology. The data 
is from 16 sensors and is measured on an hourly basis for the year 
of 2021. A description of the different sensors can be seen in Table 2 
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and a general visual representation of the placement of a selection of 
the sensors at the substation in Figure 4. Sensors 4 and 5 are critical 
pressures at two nodes in the distribution system. The outdoor tem-
perature will be used as the contextual variable (it is therefore not 
numbered). It is chosen based on the fact there is seasonal variability 
in the system’s operation, and the outdoor temperature is a good indi-
cator for capturing this aspect. However, the use of other sensors as 
the contextual variable is also viable, but will not be showcased in this 
paper. More in-depth inspection of the cross-correlation plots are in 
the results section.

Table  2 Description of sensors. Zero sensors are marked red. 
RP = return pump

# Sensor description # Sensor description

(1) Forward flow ( m3/s) (9) Return pressure after RP1(bar)

(2) Forward temp. (°C) (10) Return pressure before 
RP1(bar)

(3) Forward pressure (bar) (11) Pressure after holding valve 
(bar)

(4) Forward pressure (NLM) (bar) (12) Forward temp. (°C)

(5) Forwards pressure (ROM) 
(bar)

(13) Forward pressure (bar)

(6) Mixing flow ( m3/s) Outdoor temperature (°C)

(7) Return flow ( m3/s) (14) Local production (MWh)

(8) Return temp. (°C) (15) Forward energy (MWh)

Figure 4 Visualisation of the substation and placement of sensors

In the data, a known fault exists for forward energy (15). This value was 
miscalculated (it is therefore not a physical sensor). This was due to a 
scaling error of the forward flow (1) in the smart meter. This resulted 
in the forward energy being lower than it should have been. There-
fore, for sensor 15 there is both data available with the fault and data 
without the fault (because it was properly calculated after the fault 
was detected manually). It is therefore possible for that sensor to apply 

the methodology for the training with the healthy data and testing 
with the faulty data. A visual representation of the correct and incor-
rect data for the testing data can be seen in Figure 5 along with the 
residual error.

Figure 5 A visual representation showing the known fault (red line) in 
the test data and the residual error

An important aspect that must be brought forth is the notion that 
there might be faults present in the training data. The most optimal 
scenario would be that the training data was fault-free, and encapsu-
lates the complete regular operational spectrum. The latter aspect is 
partially dealt with by including both winter and summer data in the 
training data. The data from the first half of 2021 will be utilized for 
training while the latter half will be used for testing.

RESULTS
Firstly, an overall summary of the faults from the various sensors will 
be presented, along with setting parameters for the methodology. 
Thereafter, more in-depth discussions regarding fault detection for a 
few sensors will be presented.

General Results and Parameters
As discussed in the previous section, the choice of contextual variable 
has been picked, however, the reason behind this can be visualized 
in Figure  6, in which it is apparent that there is a strong correlation 
between the sensor displaying a known fault (15) and the contex-
tual variable outdoor temperature. It is not the strongest correlation 
for sensor 15, however, a more interesting application example as it 
is an external variable, compared to utilizing forward flow, which has 
a cross-correlation of 1. Other potential candidates for a contextual 
Shewhart chart using outdoor temperature as the contextual vari-
able are sensors 1, 2, 6, 7, 9, and 12 as all have negative correlations of 
below − 0.9, while 10 and 11 are 0.9.
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Figure 6 Cross correlation plot

Firstly, an interval size has to be picked for the contextual variable. Too 
low values result in too few observations to train for each interval. A 
too large value is not desired either, because it defeats the purpose of 
the method and becomes too close to a regular Shewhart chart. A bal-
ance was struck at 2 °C through trial and error.
Figure 7 displays the general fault rates for the different sensors, how-
ever as mentioned, it is only interesting to look at the sensors which 
have the highest correlation with the contextual variable.
Operational parameters can change over time. This could be a setpoint 
for the forward temperature, this adjustment can result in the testing 
data displaying a significant number of faults. These changes inhibit 
the methodology from working properly, as they need continuous 
retraining due to changes in setpoints or other changes in system con-
figuration. This issue may also be present in the following data, as these 
changes could happen throughout the year. The significant alarm rates 
for sensor 3, 4 and 13 are mainly due changes in operational behaviour.
The extreme temperature intervals do not include many observations 
for training, and the alarms raised in testing for those intervals are not 
as robust as the intervals with more training data.

Figure 7 Fault rates for all sensors using outdoor temperature as the 
contextual variable

In-Depth Fault Results
Firstly, the sensor with the known fault will be discussed, to determine if 
it was able to detect the fault. It can be seen from Figure 8 that the overall 
test data is lower than the mean for each temperature interval, which falls 
in line with the expected result. And thereby a significant portion is out-
side the control limit. However, an inspection of Figure 10 is needed for 
more context, where the most severe alarms are visualized. The reason 
for these large drops in forward energy seen in the figure is due to local 
production, and it is therefore not attributed to the known fault. This 
behavior is not easily captured by the model. The magnitude of the fault 
is not large enough at most times for the method to detect it. A change 
in the confidence interval to 2σ is carried out to see how this affects the 
alarm rate and can be visualized in Figure 9. The alarm rate increases from 
14 to 31%, and it detects the known fault to a larger extent.
The interval plot for sensor 1 from the methodology section (Fig-
ure 2) also shows quite a significant number of observations under 
the control limit, and this is solely due to the local production, as 
flow from the transmission grid is not needed to the same degree 
when there is local production.

Figure 8 Shewhart chart interval plot for forward energy (15) with confi-
dence interval of 3σ

Figure 9 Shewhart chart interval plot for forward energy (15) with confi-
dence interval of 2σ
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Figure 10 Partial Shewhart chart for forward energy (15) with confidence 
interval of 3σ . NOTE: does not show the whole testing period

A possible example of changes in operational parameters for the sys-
tem is for sensor 2. The training and testing Shewhart chart interval 
plot can be seen in Figure  11 and Figure  12, respectively. A general 
overall decrease in forward temperatures for all intervals is observed, 
and this can be due to a decrease in setpoint temperature. However, 
the contextual Shewhart chart can capture the underlying dynamics of 
the system with larger allowed forward temperatures for lower outdoor 
temperatures. To reiterate, retraining of the model is needed when e.g., 
a setpoint changes, as the regular operating range could shift.

Figure 11 Training Shewhart chart interval plot for forward temp. (2)

Figure 12 Testing Shewhart chart interval plot for forward temp. (2)

Lastly, an example of what a resulting Shewhart chart looks like when 
the correlation is not strong. Sensor 8 is the sensor with almost the 
lowest detected fault rate. The training and testing Shewhart chart 
interval plot can be seen in Figure 13 and Figure 14, respectively. The 
correlation between the two variables is 0.65 and is therefore not a 
strong correlation. This equates to quite significant standard devia-
tions for each of the intervals and the mean is also quite similar (flat) 
for each of the intervals. Most observations in testing are thereby 
within the control limits due to the large standard deviation for each 
interval in training. Applying this methodology to this sensor is there-
fore not as useful. The contextual variable cannot/does not capture a 
general tendency/trend in the data.

Figure 13 Training Shewhart chart interval plot for return temp. (8)

Figure 14 Testing Shewhart chart interval plot for return temp. (8)

The contextual Shewhart chart can be compared and is slightly related 
to machine learning prediction, in which the contextual variable is 
the independent variable in this case. Instead of fitting with e.g., lin-
ear regression which is continuous (whereas this methodology is not), 
this methodology separates the independent variable into different 
intervals and uses the mean of the dependent variable from training in 
each of the intervals as the prediction.
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CONCLUSION AND FUTURE WORK
The proposed contextual Shewhart chart methodology has been 
implemented on real data from a district heating substation, and 
it has proven to be able to detect a known fault, with some adjust-
ment of control limits. In general, it has displayed its capabilities in 
being able to better capture normal operational trends and system 
behavior for the various process variables. It is therefore a significant 
improvement over regular Shewhart charts for systems in which 
normal operational behavior changes based on external/internal 
factors, such as outdoor temperature. Limitations. A downfall of 
the methodology is that it is does not work well with changes in 
set points, as they can result in vastly different normal acceptable 
operational behaviour. The model needs to be retrained to take into 
account such a change. The methodology is easy to implement for 
any number of sensors and is very dynamic in nature.
Future work includes being able to determine the severity of the 
faults, as the rate of faults is so significant that it is not possible to 
assess them all. To increase the confidence that a fault is a true posi-
tive, multiple FD methods could be employed. On top of this, more 
testing with known faults from real-world data or manually induces 
fault is needed for validation of the methododology.
List of abbreviations
DH: District heating
DHS: District heating system
FD: Fault detection
CL: Control limit
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Summary: Reliability analysis has the potential to provide action-
able insight into the failure probability of assets in district heating 
networks. Information about the failure rate and its trend may help 
operators and asset managers replace assets at the optimal time, 
which can increase the security of supply, save resources, and reduce 
operational and maintenance costs. In this paper, we employ a proba-
bilistic proportional hazard modeling approach to reliability analysis, 
which has not been used for district heating pipes before, explore its 
potential and report our experiences. The model allows us to model 
the time-dependent survival probability of pipe assets as a function of 
asset-related and environmental predictors which have been shown 
to influence failure probability in previous studies. We find that the 
application of the model in this domain is challenged by several issues 
pertaining to data, one of which we attempt to remedy with a simple 
imputation strategy.
Keywords: Reliability analysis, District heating, Predictive mainte-
nance, Data collection

INTRODUCTION
Breaks and leaks in district heating systems can cause losses of tens 
to hundreds of thousands of cubic meters of water yearly. Aside from 
water being expensive to replace, breaks in district heating pipes can 
decrease the supply to a level where consumers do not have access 
to the heat they require. While repairing breaks is expensive, pre-emp-
tive replacement of pipes is inefficient in terms of both cost and other 
resources. Determining when the optimal time is to replace a pipe 
requires information about the expected time to failure, frequency of 
failure, time-dependent survival probability, or similar. “Reliability” or 
“survival” analysis sets out to determine exactly this optimal replace-
ment time.
Survival analysis is a branch of statistics that is native to the medical 
industry but is also used (under other names) in other disciplines e.g., 
in the engineering domain it is referred to as reliability analysis. Purely 
physics-based models are rarely used to find the expected time to 
failure because they are very time-consuming to implement and can 
have unrealistic requirements for sensor input. Nevertheless, if the 
sensor data is available, physics-based degradation models have very 
high accuracy.
A common alternative to physics-based models is statistical models, 
which can be roughly divided into deterministic and probabilistic 
models. Deterministic models employ regression techniques such 
as least-squares regression to fit e.g., a Poisson-generalized linear 
regression model or a multivariate linear regression model [1, 2]. The 
probabilistic alternative to statistical modeling uses e.g. Monte Carlo 
simulation or Bayesian statistics [3–5], the former potentially including 
methods for Markov Chain Monte Carlo simulation of the conditional 
density of regression coefficients [3].
Rimkevicius et  al. developed a methodology for assessing reliability 
of energy networks which was applied to a district heating network. 
The method consisted of both deterministic and probabilistic model-
ling elements and was able to identify the most failure-prone pipe sec-
tions and to estimate failure consequences at the consumer level [6]. 
Postnikov et al. used Markov random process theory to model the reli-
ability of systems of district heating assets [7]. The simulated reliability 
study of combined assets showed that the reliability of district heat-
ing systems is mostly affected by individual assets with poor reliability. 
Valincius et al. used simple statistical analysis to identify failure-prone 
pipes in a district heating network and subsequently deterministically 
model only the most failure-prone pipes [8].

https://doi.org/10.1016/j.egypro.2018.08.187
https://doi.org/10.1016/j.apenergy.2017.08.035
https://doi.org/10.1016/j.apenergy.2017.08.035
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Event time information in survival data is rarely complete. E.g. a pipe 
can have been broken for several months before it is noticed, in this 
case the actual time the pipe broke is unknown, which can be referred 
to as incomplete event time information. This phenomenon biases 
survival models. To reduce the bias some probabilistic survival models 
account for incomplete event time information using censoring [3–5, 
9, 10], which will be explained in more detail later in this paper.
A sub-category of probabilistic models referred to as Proportional Hazard 
Models (PHM) are unique in that they explicitly parameterize the effects of 
a set of covariates on survival time. These covariates typically explain the 
material type, nominal dimensions, etc. when employed for pipes [4, 5].
Recently there have also been some applications of machine learning 
for survival analysis of pipes, e.g., [2] in which a neural network was 
used for binary classification and remaining-life prediction. Recently, 
a combination of survival modeling and machine learning involving 
random survival forest techniques was applied to survival analysis 
of water pipes [11]. Random Forest considers the log-rank statistics 
between cumulative hazard functions of child nodes when perform-
ing splits, which means the model can be used on censored data.
In recent work on relative fault vulnerability prediction, our results cor-
roborated that the environment surrounding district heating pipes 
seems to affect their failure rate [12]. These environmental features can 
be integrated into the survival modeling of district heating pipes using 
the PHM approach, as has been done for water distribution systems [1].
In this paper, we implement the censor-adjusted Weibull Proportional 
Hazards Model (WPHM) in the district heating domain which, to the 
best of the authors’ knowledge, has not been done before. We use 
the PHM approach to model environmental lying conditions’ effects 
on district heating pipes. We explore the challenges that arise from 
working with a relatively new district heating network, i.e., a network 
in which only a small fraction of the pipes has reached the wear-out 
stage of their lifecycle. Furthermore, we consider the potential influ-
ence of suboptimal data collection, discuss the use of imputation, and 
suggest several criteria for good data concerning survival analysis.
The paper is structured as follows: First, we explain the methodology of 
applying the survival model, then we introduce the case study to which 
survival model is applied. Lastly, we present and discuss the results, 
emphasizing finding reasonable explanations for the discrepancies that 
we observe between the values predicted for life expectancy of district 
heating pipes according to our model and industry belief.

RELIABILITY MODEL FOR MAINTENANCE OF DIS-
TRIBUTION SYSTEMS
In this section, the theory behind the probabilistic survival analysis 
employed in this paper and its application is introduced. Kabir et al. [3] pre-
sent a summary of survival analysis methods applied to water distribution 
systems. They find that the exponential model, Weibull model, Cox pro-
portional hazard model (cox-PHM), and the Weibull proportional hazard 
model (WPHM) are particularly well-regarded and widely employed. The 
proportional hazard models share an interesting characteristic, in that they 
integrate a predictor term in their hazard function that depends on a set 
of covariates, meaning they can model the correlation between, e.g., pipes’ 
lying conditions or asset information and their reliability directly [13].
The cox-PHM is described in [14]:

where h(t|X) is the time- and covariate-dependent hazard 
function, h0 is the baseline hazard function, t is time with 
reference to when the study period begins, and X and β 
are the covariates and the covariate coefficient vectors, 
respectively. From (1), it can be seen that the second factor 
is independent of time, i.e., the covariates’ effect on the 
baseline hazard function does not change over time [4]. The 
survivor function is given by:

(1)h(t|X) = h0(t)e
Xβ

where S0 denotes baseline survivor function.
In the WPHM, the survivor function is given by [15]:

where µ is a constant called intercept and σ is a scale parame-
ter. The WPHM is derived from the log-linear relations [15]:

where ǫ is an error term. The log-linear relationship shows 
that there is an interaction between the covariates and time 
in the WPHM which is not present in the cox-PHM. This 
is one reason the WPHM is gaining more attention [3]. For 
this study, we also use WPHM.
The parameters for the WPHM can be estimated using maximum like-
lihood estimation, the likelihood function of the WPHM is given by:

where δi is a censoring indicator and fi is the density of the 
log time, given by

where i is an index ordinal denoting a specific observation.

Censoring
Figure 1 illustrates the concept of censoring. Since most of the pipes in 
the case study have not failed yet, the observations in the data are pre-
dominately right-censored, meaning that the time, ti , of a right-censored 
observation can be considered to be the pipe’s minimum lifetime. Since 
the thermography measurements are not performed continuously but at 
regular intervals, when a fault is observed, the actual time of the fault is 
anywhere between the time of observation and the time of the previous 
observation of the pipe. This should be treated with interval-censoring. 
Pipes that have failed and been replaced without any record are omit-
ted from the study and the dataset is therefore defined as left-truncated. 
Pipes that are currently installed and have failed before observations 
began should be left-censored since the fault has happened before t = 0. 
In reality, faults have been repaired before the start of the study period, 
which means that pipes that should have been left-censored can only be 
represented as right-censored considering the available information.

Figure 1 Illustration of types of censoring and truncation typically 
encountered in survival analysis. The black arrows represent observations, 
and the crosses represent faults

(2)S(t|X) = S0(t)e
Xβ

(3)
S(t|X) = e−e
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(4)log(t) = µ+ βX + σǫ

(5)L(β ,µ, σ |data) =

n
∏

i=1

fi
(

log(ti)
)δi Si

(

log(ti)
)1−δi

(6)fi(ti) =
1

σ
e

(

log(ti)−µ−Xiβ
σ

)

−e

(

log(ti)−µ−Xiβ
σ

)



Page 18 of 25Energy Inform  2022, 5(Suppl 3):36

The likelihood function, adapted to account for interval censoring, 
expressed as only right, and interval-censored observations can be 
described as [16]:

where δi = 1 denotes right censoring and δi = 0 denotes 
interval censoring. ti,lb and ti,ub denotes the lower and upper 
bound for the survival time of pipe i respectively, assuming 
the pipe failure is immediately noticeable. The left prod-
uct, therefore, pertains to right-censored observations only, 
and the right product pertains only to interval-censored 
observations.

Posterior sampling
To maximize insight into the parameters of the posterior distribution, 
maximum likelihood estimation (MLE) is first used to get an initial esti-
mate of the parameters. Subsequently, samples are taken from the 
posterior distribution:

using the Metropolis–Hastings random walk algorithm [15], because 
of its efficiency and popularity [17]. This enables studying the uncer-
tainty of the parameter estimates of the survivor model. We use a 
normal proposal density, define by a mean vector of zeros and the 
variance–covariance matrix of the parameters σ , µ , β . As suggested 
by [15] we set the scale parameter of the proposal density so that 
the acceptance rate of simulated draws is in the range 20–40%.
In summary, an asset’s survival probability is calculated using (3), the 
parameters of which are determined using the Metropolis–Hastings 
random walk algorithm, with the initial parameter estimate deter-
mined using the maximum likelihood estimation of (7). We use the 
Metropolis–Hastings random walk algorithm to simulate 10,000 draws 
from the posterior density (8), meaning the parameters of the model 
given in (3) given a specific dataset. Predictions are obtained by solv-
ing (3) for each simulated draw of the posterior density (7, 8) and char-
acterizing the statistical distribution of the output survival probability.

CASE STUDY
We implemented the reliability model using data from a district 
heating network on the island of Funen, which represents Danish 
district heating pipe networks well. The network supplies more than 
100,000 consumers and consists of more than 140,000 pipes. The 
pressure ranges from < 25 bar in the transmission pipes to < 6 bars 
in the distribution pipes. The dataset covers a span of 5 years.
In a previous study [12] we created a dataset based on the geographic 
information system (GIS) of the district heating system, its historical 
maintenance record, and relevant GIS data representing the external 
environmental lying conditions of the pipes. Detailed information 
about the environmental datasets is given in [12]. The raw datasets 
were retrieved from [18–20]. The environmental conditions give 
insight into the chemical and mechanical stresses the pipes may be 
exposed to.
Using this dataset, in [12] we predicted number of faults and ranked 
the pipes according to their relative vulnerability. Using our rank-
ing method on this dataset showed that 30% of the network was 
responsible for 60% of the historical faults in the test data. In this 

(7)
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paper, we use a subset of that dataset consisting of the 8 most 
important, non-redundant, features. These are listed in Table 1.

Table 1 Descriptions of selected features

Feature Description

Number of joints Number of joints along a pipe 
section

High-risk area Whether a pipe is located in an area 
with a high failure risk

Nominal dimension The nominal internal dimension of 
a pipe

5 Meter minor road proximity The proportion of a pipe that is 
closer than 5 m to a minor road

Level Ordinal encoding of the hierarchical 
classification of a pipe, e.g., trans-
mission level or distribution level

Mean redox depth The average depth to anaerobic soil 
conditions along a pipe section

1 Meter track proximity The proportion of a pipe that is 
closer than 5 m to a track

DSG type soil coverage The proportion of a pipe that is 
located in meltwater-sand and 
-gravel

RESULTS AND DISCUSSION
This section presents results relevant to the evaluation of the survival 
model, comparing the model with results from our previous work [12]. 
The median survival probability as a function of time for the entire 
population of pipes is investigated and compared with life expecta-
tions by the Danish district heating association. Lastly, we explore 
the distribution of age and faults in the data, and test an imputation 
method to identify the reason for the discrepancy between predic-
tions of expected lifetime according to our model and industry belief.
Figure 2 shows the survival probability for the most and the least at-
risk pipe according to our previous study [12]. The plots are produced 
by calculating the survival probability, using (3), at various times for 
each simulated draw of parameters given by the posterior density (8).

Figure 2 Survival probability, calculated using the WPHM with simulated 
draws of its parameters, for the most at-risk pipe (red) and the least 
at-risk pipe (blue) according to our previous study. The lines denote 
median survival probability, and the areas denote 90% confidence 
intervals

Both pipes seemingly have incredible long lifetimes, with expected life 
being approximately 300 years for the most at-risk pipe and well past 
400 years for the least at-risk pipe, here expected life is define as the 



Page 19 of 25Energy Inform  2022, 5(Suppl 3):36	

time where the survival probability falls below 50%. This is not aligned 
with experts’ knowledge, which is that the pipes likely will not survive 
hundreds of years. The Danish district heating association, “Dansk 
Fjernvarme”, claims that the expected lifetime of Danish district heat-
ing networks is 50–100 years [21]. The Danish district heating associa-
tion claim 50–100 years is a long expected lifetime and that it is in part 
credited to the relatively low temperatures that Danish district heating 
networks are operated at, 70–80 degrees celsius.
Figure 3 visualizes all pipes’ predicted median survival probability as a 
function of service life. According to the WPHM, the expected median 
survival probability at 400  years is close to 90%. This emphasizes 
the order of magnitude for the difference between the expected life 
according to the model the expectation of industry experts.

Figure 3 Violin plot of median survival probability of the entire popula-
tion of pipes at different service lives. The horizontal lines represent max 
(top), median (middle), and min (bottom) median survival probability

Three reasons, in particular, can explain why the observed trend 
deviates so much from what is expected. Firstly, the maintenance 
record, i.e., thermographic imaging in this case, only spans 5 years, 
while the oldest pipes are more than 40 years old, see Figure 4. The 
data is in that sense, predominately left-censored, which results in 
a discrepancy between the observed number of failures and the 
actual number of failures, with actual failures including failures that 
happened before the study period. This biases the model towards 
a longer survival time, as pipes that broke and were repaired or 
replaced before the study period began are not represented with 
accurate failure times. Since it is unknown which pipes broke and 
were repaired before the study period began, the pipes that should 
be left-censored are represented as right-censored observations, 
and pipes that have been replaced before are truncated.

Figure 4 Histogram of the age distribution of the district heating pipes. The 
blue dots denote the number of historic faults for pipes in that age bin

To study the magnitude of the bias introduced due to left-censor-
ing, we employ a basic imputation strategy and reevaluate the 
parameters of the WPHM. The imputation strategy makes use of 
the observed time-dependent failure rate, visualized in Figure  5. 
The figure shows the failure rate as a function of age. Since the fault 
observations span multiple years, note that the individual pipes at 
a specific age change from year to year. The histogram, therefore, 
shows the average length of pipes at each bin.

Figure 5 Histogram of the distribution of average length for each 
observation bin of 1 year. The blue dots denote the failure rate for each 
age bin

A population of pipes that are older than the observation period can 
be assumed to have developed faults at about the same rate, so the 
number of faults in those pipes in a given year can be calculated as 
the product of the failure rate of pipes at the age the pipes were at 
that time and the total length of the same cohort of pipes. This can be 
expressed as:

where nf  is the number of faults, �yb is the failure of pipes 
aged yb , and Lyb is the total length of pipes aged yb . This 
assumption is used for all years in which the failure statis-
tics for a population of same-age pipes was not recorded. 
Employing this imputation strategy results in 1075 addi-
tional faults scattered over the lifetime of the pipes. The 
feature vectors of all imputed fault observations are sam-
pled randomly from the distribution of the observed pipes 
that have failed. This is an attempt to avoid wrongfully 
impacting the covariate coefficients of the WPHM.
Figure 6 shows the median survival probability based on the imputa-
tion of left-censored observations Compared to Figure 3, the survival 
probability declines faster, which means that expected life is low-
ered. This suggests that the imputation of left-censored observations 
can reduce the bias toward longer expected lives of survival models. 
Nevertheless, the expected life is still incredibly high, so the bias from 
left-censoring cannot alone explain the deviation between the model 
outcome and industry belief.

(9)nf = �ybLyb
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Figure 6 Violin plot of the median survival probability of the entire 
population of pipes at different service lives based on parameters 
determined based on the imputation of left-censored observations. The 
horizontal lines represent max (top), median (middle), and min (bottom) 
median survival probability

Another potential reason for the discrepancy is that the vast major-
ity of pipes have likely not reached the wear-out stage of their lifecy-
cle. The lifecycle is generally believed to be described by the bathtub 
curve, as presented in [22], which has three distinct stages. The first 
stage is described as infant mortality, which is caused by manufactur-
ing or installation faults. The second stage is characterized by a con-
stant failure rate, and the last stage, the wear-out stage, describes an 
increasing failure rate as the materials reach the end of their lifetime.
Firstly, infant mortality is not observed, see Figure  5. This is because 
these faults are detected using insulation resistance monitoring with 
copper wires integrated into the insulation and this datatype was not 
available for this study. The technology was adopted fairly recently, so 
it primarily pertains to the newest pipes. This is, of course, one reason 
why the number of observed faults is lower than the actual number 
of faults in this study and is likely to bias the model towards longer 
expected lives.
The failure rate is close to constant until the pipes reach an age of 
approximately 40  years. At this point, the amount of data used to 
calculate the failure rate is fairly low (low number of pipes and cor-
respondingly low number of faults), meaning that the failure rates 
are very uncertain. This, coupled with the information that lifetime 
is expected to be 50 years at the very least, renders it challenging to 
confirm whether a small portion of the pipes has reached their wear-
out stage. The time following the expected lifetime of the pipes is 
an important object of study, as it represents the wear-out stage’s 
increase in failure rate, and this object of study is unavailable in the 
dataset, as very few if any, pipes have reached the wear-out stage of 
their lifecycle.
Survival data for pipe networks are widely analysed in the water distri-
bution domain. Old maintenance records are very helpful contributors 
in this context [10], as they can cover decades of maintenance data [3, 
9, 10]. However, several studies emphasize that an extensive mainte-
nance database is not necessary for accurate survival modeling [4, 2, 
23], e.g. [4] states that “short maintenance records (5–10 years) give as good 
results as long maintenance records”. Additionally, multiple studies sug-
gest that survival analysis can be useful even under left-censoring or 
left-truncation [4, 23]. However, left-censoring and left-truncation can 
still create bias in survival modeling by underestimating the appar-
ent time to failure, which we show is not the only bias in the current 
model.
The general characteristic of the water distribution domain’s survival 
data is that at least parts of the pipe network are older than their 
expected life [3, 9, 10]. A concrete example of this is the network in [2], 
which is more than 50 years old while the expected lifetime of the net-
work’s pipes is approximately 30 years. This means that the evolution 

of the pipes’ failure rates is well expressed in the maintenance and 
asset data. Performing survival analysis on relatively young pipe net-
works, therefore, runs the risk of not having the pipes’ wear-out phase 
represented in the data.
While this can explain a model bias towards much longer estimates 
of the service life of district heating pipes, it is also possible that the 
district heating network is much more reliable than initially thought. It 
is possible that the Danish district heating association have underesti-
mated the expected life of the district heating grid. However, the order 
of magnitude difference between the expectations and the model 
output makes it very unlikely that this is the only explanation.

CONCLUSION
This paper explored probabilistic survival modeling for pipes used in 
district heating and found that the model predicted a much longer 
service life for the pipes than the industry expects. We identified sev-
eral reasons for this discrepancy, with truncation and censoring bias 
being two of them. This bias can be reduced by imputating censored 
observations—however, even with imputation, the model was still 
biased towards much longer lifetimes than expected. A short review 
of survival analysis in the water distribution domain suggested that 
the primary reason for the large discrepancy is that the case network 
is relatively young, so the increase in failure rate during the wear-out 
stage of the pipes’ lifecycle is not well represented in the data. Good 
data collection for survival analysis, based on the work presented in 
this paper, entails tracking all failures from when the pipe network is 
commissioned, though imputation can help if this is not done. Lastly, 
survival analysis is more applicable for relatively old infrastructures for 
which the data describes all parts of the pipes’ lifecycle.
Future research might perform survival analysis using more com-
plete data, with less need to censor observations, which represent an 
older network. This would provide a case study, where the findings of 
this paper could be corroborated. Additionally, the value of censor-
adjusted survival modeling could be studied and demonstrated.
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Summary: The electric charging solutions for the residential market 
imply, in many situations, an increase in the contracted power in order 
to allow to perform an efficient charging cycle that starts when the 
charger is connected and ends when the VE battery is fully charged. 
However, the increase in contracted power is not always the best 

solution for faster and more efficient charging. With a focus on the 
residential market, the presented architecture is suitable for single-
use and shared connection points, which are becoming common in 
apartment buildings without a closed garage, allowing for sharing 
the available electrical connections to the grid. The multi-charger 
architecture allows using one or several common charging points by 
applying a mesh network of intelligent chargers orchestrated by a resi-
dential gateway. Managing the generated data load involves enabling 
data flow between several independent data producers and consum-
ers. The data stream ingestion system must be scalable, resilient, and 
extendable.
Keywords: EVSE, Electric Vehicles, Intelligent Charging, Load Man-
agement, Mobility, Mesh, Data Management, Fog Computing

INTRODUCTION
Electric Vehicle (EV) are environmentally friendly since they do not 
emit any gas directly into the atmosphere, have fewer maintenance 
needs and operating expenses, and offer a quieter driving experience 
[1, 2]. These are the primary advantages of EV, which are becoming 
more and more attractive as the technology evolves. Even though 
they presently represent only 2.7% of global sales, according to the 
Bloomberg report by [3], the tendency is for them to grow. It is pre-
dicted that by 2025, EV will account for 10% of worldwide passenger 
vehicle sales, growing to 28% in 2030 and 58% in 2040, respectively. 
According to an analysis conducted by the Association of Electric Vehi-
cles User (UVE) for Portugal, the sale of EV increased by 80% in Novem-
ber 2020 when compared to the same month in 2019 [4].
In many situations, the EV charging solutions for the home market 
implies an increase in the contracted power to allow for an efficient 
charging cycle that begins when the charger is connected and stops 
when the EV battery’s maximum charge is reached. Increased con-
tracted power is not necessarily the most effective approach for charg-
ing faster and more efficiently. A limited power grid connection shared 
among a large number of tenants makes it difficult to implement elec-
tric charging solutions able to solve challenges such as, controlling 
expenses by user, optimizing charging time, and even balancing the 
load based on the energy available at a given time [5, 6].
The authors in [7] present two distinct Intelligent Electric Vehicle 
Charging Controller (IEVCC) system configurations. This work focuses 
on the Mesh version intended for use in condominiums. In this sce-
nario, tenants do not have access to parking spots with independent 
electrical connections, and the only solution available is to share the 
building’s common grid. With the difficulties identified when design-
ing and implementing multi-client solutions in mind, this work pro-
poses a technical architecture capable of managing high data loads. 
The solution must be resilient and scalable to address the mesh instal-
lation problems and optimize grid usage. These aspects will benefit 
the end consumers and also assist the electricity distributors.
Multiple architectures were described using protocols like MQTT or 
Zigbee [8, 9]. The common gap is the detailed description of the soft-
ware stack and how each layer interrelates. Some more detailed arti-
cles [10], in what relates to the software stack don’t approach high 
data load scenarios where the scalability and flexibility of the solution 
is critical.
The planned solution is considered a streaming analytics system, typi-
cally consisting of three layers: ingestion, processing, and storage. The 
ingestion layer is the gateway to streaming. Data flow from inputs to 
processing and storage levels is decoupled, automated and managed. 
The processing layer receives the ingestion layer’s data streams and 
transfers the output or intermediate results to storage. The storage 
layer keeps data in memory for iterative calculations or in databases 
for long-term storage. The analytics findings are given to a range of 
display and decision-assistance tools [11, 12].
This paper is organized as follows: after this introduction, the dif-
ferent data stages are presented in Section II. In Section III the full 
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architecture diagram is presented and discussed, finally, the Conclu-
sions are presented in Section IV.

CHARGING DATA STAGES
According to [13], on the Internet of Things, there are five primary 
data processing architectures, fog-based processing, middleware-
based processing, cloud-based processing, cloudlet computing, and 
mobile-edge computing.
The current data load comes from chargers, electrical counters, 
and message handling devices (broker). While systems operate, it is 
vital to log and store not only charging data, but also device status 
and usage metrics. To minimise damage in the event of network or 
device failures, the local setup (device layer) must be able to store 
and recover from failures. The final architecture proposal will take 
that into consideration.
The next natural step is to store data in the cloud, but once again, 
due to the sensitive nature of data and the significant load caused 
by each local instance, transmitting gathered data straight to cloud 
servers has proven to be challenging [14]. The same article discusses 
how fog computing may help minimize cloud reliance while improv-
ing performance. Nevertheless, the paper concludes that cloud and 
fog are complementary and can help deliver better and more com-
plete services.

Fog Architecture
Cloud computing and fog computing infrastructures do not compete 
with each other, and they’re complementary architectural solutions. 
IoT applications connect across fog nodes, and devices must be linked 
to at least one of these fog nodes (Fig. 1). Any device part of the IEVCC 
solution may connect to fog nodes which may be used in specific geo-
graphical cloud areas [15]. Because each fog node is a single point of 
failure, its spread and replication across regions should be considered 
for failure recovery and redundancy.

Multi-Charger Model
The multi-charger installation includes multiple chargers and may 
also include multiple electrical counters. Figure  2 illustrates how 
each device connects to the “heart” of the device layer (Device Man-
ager). This device is responsible for message handling and forward-
ing. At the same time, it manages authorized devices and clients 
during charges.
Each instance can be configured with custom load balancing rules, 
charger priority, and energy source selection when more than one 
source is available or when the provider shares the current source 
through an Application Programming Interface (API) endpoint. All 
data is stored locally and forwarded to remote instances for data 
cleansing and transformation. Electrical communication usage, sys-
tem logs, and client usage are then available for access by clients 
and providers.

DESIGN OF DATA MANAGEMENT SERVICE 
PLATFORM
In order to allow data flow between several independent data pro-
ducers and consumers, a data stream ingestion system must be scal-
able, resilient, and extendable. Chargers and electrical counters are 
the primary focus of the current configuration. However, the Device 
Manager design ensures that more Internet of Things devices will be 
able to connect and integrate into the solution in the future.

Figure 1 Fog architecture

In order to demonstrate how to integrate the Fog Architecture into 
the Multi-Charger Model, the Fig.  3 depicts the position of each 
entity within the three Fog Architecture levels. Each colored section 
maps the three distinct layers (Device, Fog and Cloud layers), where 
generated data is saved and then forwarded to the subsequent layer 
instances. It is crucial to clean and aggregate each record to be stored 
in the database during this process. It is also important to note that 
while generated data flow in one direction only, it is mandatory 
to authenticate users, devices, charging sessions, and others. This 
responsibility is taken care of by the Device Manager through the API 
instance in the cloud layer.

Device Layer
The device layer includes all the devices that support the local area 
network, like routers, switches, wireless access points or extenders, 
and all the smart devices connected locally. The smart ESP32-based 
devices are chargers and electricity meters for the current solution. 
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Multiple other IoT devices may be integrated into the solution in the 
future.
The solution’s heart is the Device Manager. Raspberry Pi version 
3 boards were tested during development with no performance 
issues while handling device auth, messages, local storage, and 
data forwarding to the fog layer. For the Manager role, it is clear that 
power consumption and price will affect the board choice. Given 
that architecture compatibility is not an issue, the minimum require-
ments must meet the Raspberry Pi 3 specifications, as well as the 
ability to run Docker.

Figure 2 Multi-charger model

Fog Layer
The Fog Layer comprises devices in an intermediate layer between 
the cloud and the Device Layer. In this case, data is transferred to 
and processed by a computer or data center regionally located. 
Splitting this processing power across multiple regions decreases 
the total load each fog node will handle while increasing redun-
dancy, a significant concern when dealing with critical data.
Fog node hardware must meet the minimum system requirements 
set for the distributed event streaming platform and the applica-
tions for cleansing and transforming data. Our prediction suggests 
each node has 8 GB of RAM, 4 CPU cores, 1 TB of storage, and 1GbE 
connection.

Cloud Layer
The cloud computing infrastructure builds on top of large-scale clus-
ters that run various applications and pursue the core foundation 
that enables computing resources to be used to their full potential. 
Cloud customers expect the entire system to be reliable, with redun-
dant network and hardware. These cloud solutions allow companies 
to access data storage, resources, and on-demand services over the 
internet. Although cloud providers offer a variety of solutions for 
several operations, based on the presented Mesh-Model (Fig. 3), the 
core business activities in the Cloud Layer include database services 
and API web applications. The Cloud Layer is sub-layered into 3 lay-
ers: Infrastructure as an Infrastructure as a Service (IaaS), Platform 

as a Service (PaaS), and Software as a Software as a Service (SaaS). 
Choosing the best cloud layer depends on the budget, resources, 
the size of the operations, and multiple other factors.

Figure 3 Mesh-model diagram

Tech Stack
A tech stack is a company’s choice of technologies to develop and 
manage an app or project. A tech stack often includes programming 
languages, frameworks, databases, front-end and back-end tools, and 
apps linked through API [16].
In a top-to-bottom analysis of Fig. 4, in the Device Layer, the current 
charger and electricity meter devices are programmed in C++, while 
the Device Manager is currently being developed in Python 3.8, with a 
tested compatible version range from Python 3.6 to Python 3.10. MQTT 
message broker (Mosquitto MQTT) and InfluxDB, an open source Time 
Series Database, both run on the same hardware. Each fog node in the 
Fog Layer will provide one or more Apache Kafka instances, an open-
source distributed event streaming platform. Apache Kafka advertises 
necessary core capabilities like high throughput with low latency 
(2 ms), being prepared to scale, and delivering high availability. It’s also 
important to mention the built-in stream processing that enables the 
processing of event streams using joins, aggregations, filters, transfor-
mations, and exactly-once processing. It is also worth mentioning that 
the Kafka Connect interface is pre-integrated with hundreds of event 
sources and sinks, including Postgres, Java Message Service (JMS), 
Elastic-search, and Amazon Web Services (AWS) S3.
As previously stated, in the Cloud Layer, our solution’s core depends 
on a Post-greSQL database instance and the possibility to host web 
applications like client portals or API to access and store information. 
The best cloud solution for PostgreSQL service is still open for further 
analysis, howsoever it is mandatory to have scalability possibilities, 
backups, and snapshots. Multi-region availability and synchronization 
will be decisive when dealing with thousands of clients. Region and 
response time are essential factors in web application hosting, but so 
are high availability with load balancing, security, and scalability.
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Figure 4 Tech stack

DISCUSSION
During the investigation process, we analyzed multiple designs for 
software solutions with similar requirements. Despite the simplicity 
of adopting one component for the software stack instead of another, 
work must be done while trying to describe how each layer inter-
relates. The specification of infrastructure needs for a large data load 
is a difficult undertaking that involves numerous factors and criteria, 
such as data types, scalability and type of processing, communication 
between tasks or processes, and so on. Software engineering is crucial 
in ensuring that such workloads make the most use of the underlying 
hardware resources. As an example, data created by the current setup 
is handled by a cloud solution setup designed to leverage dynamic 
and adaptive cluster resource management, dimensioning, and con-
figuration based on economic cost, quality of service, and availability 
requirements. Agile frameworks are typically used in this application 
design to lower barriers between development and operations teams, 

accelerate workflows (i.e. high deployment rates for faster feedback, 
better code quality leading to fewer errors and lower costs, and so on), 
and increase the reliability, stability, and resilience of the production 
environment.

CONCLUSIONS
Ingestion of data is critical for businesses and organizations that 
gather and analyze massive amounts of data. Continuous data streams 
are often ingested into big data processing and management systems 
from external sources. They are either processed incrementally or used 
to create a persistent dataset and related indexes. In order to keep up 
with vast amounts of rapidly changing data, stream processing sys-
tems must be able to ingest, analyze, and persist data continuously.
This work presents an architecture and the corresponding tech 
stack designed to handle massive time-critical data while perform-
ing cleansing and transforming operations, then storing it in a cloud 
database service. The innumerable options for each entity in the tech 
stack open new paths to different approaches and bench-marks. This 
will also help choose the best-tailored cloud provider for the solution’s 
specific needs.
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