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Introduction
Many countries are dealing with the negative impacts of climate change driven by ris-
ing greenhouse gases (GHG) emissions. In Australia, electricity production accounts for 
33.6% of the total GHG emissions (CSIRO 2021). A major contributor to these emissions 
is electricity production, of which 74% is derived from burning coal and gas (AEMO 
2022c). The proportion of coal-based electricity production in other developed coun-
tries is very close to Australia’s with 75%, 74% and 71% for the USA, China and India, 
respectively (Mbungu et al. 2020). Commercial buildings are among the key users of this 
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electricity consuming approximately 25% of the electricity on the National Electricity 
Market (NEM) (Energy 2022). However, there is also a rising penetration of renewable 
generators, and the relative timing of their output means that the effective emissions 
intensity of generated electricity varies over the course of the day and from day to day.

The variation of this emissions intensity has important implications for end consum-
ers seeking to reduce their emissions or reach Net Zero Emissions (NZE) targets, and 
also for ensuring that investment in renewable generation achieves maximum benefit by 
offsetting the highest emission generation (Lu et al. 2021). Many building operators and 
companies are interested in reducing not only their total electricity costs, but also their 
emissions (Mbungu et al. 2020).

The extent to which minimising real-time emissions coincides with minimising the 
cost of electricity purchased from grid under typical electricity tariffs is an open ques-
tion especially while carbon prices remain relatively small compared to the overall elec-
tricity cost seen by the consumer. For example, although Australian’s de-facto carbon 
price (the ACCU) increased by 180% in 2021 (Fowler 2022), if it were charged directly 
to consumers it would still represent < 15% of a typical monthly electricity bill. Hence 
minimising electricity bill costs, even where carbon prices are included, does not neces-
sarily lead to minimising carbon emissions.

In this work, we consider the question; “Does using a battery storage system to mini-
mise electricity costs under existing tariff structures at a consumer site lead to minimis-
ing of emissions?”. To answer this, we first apply power flow tracing methods to calculate 
real-time consumption-based emissions intensity of the Australian National Electricity 
Market using the real-time generators’ supervisory control and data acquisition system 
(SCADA) data, and the interconnector flow and regional demand data provided by the 
Australian Energy Management Operator (AEMO). We then use these estimates com-
bined with electricity spot price and tariff data from the utility provider in a commer-
cial building case study where a battery storage system is controlled to minimise costs 
and emissions with varying weighting factor. A range of photovoltaic-battery systems are 
modelled, and a model predictive control (MPC) algorithm used to control the battery. 
Cost and emissions reduction for the site are explored along with the impact of param-
eters including increasing carbon price and reducing capital costs.

Previous work
Photovoltaic (PV) cells and battery storage systems are widely used for energy man-
agement in microgrids and commercial buildings (Antoniadou-Plytaria et  al. 2019; 
Sepúlveda-Mora and Hegedus 2021; Mariaud et  al. 2017). Typically these systems are 
used for minimising the cost of electricity via peak load shaving and energy arbitrage, 
sometimes in addition to providing reliability and backup functions. Recently Riekstin 
et al. (2018) considered control of PV-battery systems to minimise emissions ignoring 
costs, while a few studies have considered the problem of minimising both emissions 
and costs. For example, Nojavan et al. (2017) employed ε-constraint method and fuzzy-
based selection of the optimal solutions for optimizing a hybrid system of PV-battery-
fuel cell in terms of emission and cost. The authors applied their proposed methodology 
to a case study and found that a simultaneous reduction in total costs and emissions 
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was achievable. However, their work considered a single average grid intensity factor for 
emissions estimation (Ren et al. 2016).

Most research on controlling battery storage systems using MPC focuses on cost-
saving and peak load management as opposed to emissions reduction. Examples of the 
applications of stand-alone battery storage systems for cost saving and peak load reduc-
tion can be found in the works of Vedullapalli et al. (2018) and Elmouatamid et al. (2019). 
Vedullapalli et al. (2018) utilised a two-stage load forecasting approach, for short- and 
long-term trends and MPC for load management of a university building. The authors 
reported 13.5% annual savings. Elmouatamid et al. (2019) minimised the grid import in 
a simulated big-data centre employing a battery storage system controlled by an MPC 
strategy and showed that controlling the state of charge of the battery by the MPC strat-
egy could successfully decrease the import from the grid.

Several authors accounted for the gradual decrease in emissions intensity over time, 
for example due to commissioning of renewable energy projects. Allouhi (2020) used a 
genetic algorithm for optimizing PV design capacity based on a levelised cost of electric-
ity function and a cumulative environmental benefit function (accounting for emissions). 
To estimate the latter, the authors considered a linear regression model of the grid emis-
sion intensity factor. Mariaud et  al. (2017) used a mixed-integer linear programming 
approach to optimise the technology selection, capacity and operation of PV and battery 
systems for a distribution centre. They found that the optimised PV and battery system 
can reduce the import from the grid and carbon emission by 30% and 26% respectively, 
in exchange for a possible increase in overall costs. To account for the time-variances of 
the emission intensity factor of the grid, they assumed the emissions intensity factor as a 
step function with 1.5% yearly reductions.

In reality the emissions intensity of grid consumed electricity varies hour-to-hour 
over any given day, and hence the emissions reduction from displacing grid electricity 
through on-site PV generation or battery charging/discharging also varies over similiar 
time-scales.

Several researchers considered fitting a linear function for the hourly change in total 
CO2 emissions (∆E) against the hourly change in total network demand (∆D), in order to 
obtain marginal emission intensity factors (MEF) as ∆E/∆D (McKenna et al. 2017; Sun 
et al. 2019). This method was originally proposed by Hawkes (2010) and has been modi-
fied by several researchers (McKenna et al. 2017; Sun et al. 2019; Siler-Evans et al. 2012). 
Sun et al. (2019) employed this emission intensity modelling technique in conjunction 
with an emission arbitrage algorithm for studying the potential of PV-battery systems 
for emissions reduction. They concluded that the battery could fully repay its CO2 costs 
of manufacturing if it were controlled to minimise operational emissions.

The main issue with the Hawkes’ model and its modifications is that they do not con-
sider the power flows between different regions of the electricity network where differ-
ent combinations of generator types (with different emissions intensity factors) are in 
use. This issue is also present for the other MEF, and grid mix emission factor models 
introduced above. Moreover, the low temporal resolution of the linear and step models 
does not allow for time of use (TOU) optimisation of PV-battery operations. This was 
shown by Kopsakangas-Savolainen et  al. (2017), who employed an emission intensity 
model with daily variations (hourly resolution) in a TOU optimisation and demonstrated 
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a 3–8% emission reduction in a building based on the Finnish network. This implies 
the importance of developing real-time emission intensity models with high temporal 
resolutions.

Recently power flow-tracing methods Bialek (1996) have been applied to map electric-
ity flows and emissions in real-time from the original generation source to the point of 
consumption for the EU and US markets (Tranberg et al. 2019; Chalendar et al. 2019). 
Tranberg et al. (2019) applied  flow-tracing to compare the consumption-based and pro-
duction-based carbon emissions of the European electricity market. They showed that 
there is a significant difference between the consumption-based emissions (the emis-
sions associated with a unit of energy consumed at a given point on the network) and the 
production-based emissions (the emissions associated with a unit of energy generated 
within a given area of the network), particularly for countries with an imbalanced dis-
tribution of renewable to non-renewable generators. They developed a real-time frame-
work and online mapping service (Map 2022). The same methodology has been applied 
to the US market by de Chalendar et al. (2019) who also discuss the importance of con-
sidering the emission intensity of the source and cross-border (inter-regional) flows. The 
available toolboxes for mapping emissions in Australia include a native platform (NEM 
2022) which illustrates overall emissions of the country and the recently updated con-
sumption-based online platform developed by Tranberg et al. (2019). These platforms, 
however, do not allow with a detailed analysis of the spatial and temporal varying emis-
sion intensity of NEM.

Significance of the research
To our knowledge, consumption-based emission modelling of the Australian NEM has 
not been described in the literature. The online platform developed by Tranberg et al. 
(2019) provides limited information regarding the source of electricity being used in 
each NEM region. The NEM is a particularly interesting case study since it consists of 
regions and time-periods where there is a very high penetration of renewable generation, 
coupled to a  geographically diverse network with limited inter-connections between 
regions. For example between February 2021 and 2022, production was more than 99% 
renewable in Tasmania while in the neighbouring region of Victoria, 71% of electricity 
was produced from burning brown coal (AEMO 2022c). The NEM is also operated as 
an open market where electricity is traded over short timescales in response to fluctuat-
ing price signals. As such, analysis of this network can provide insights into how other 
networks around the world may operate in the future, particularly as renewable genera-
tion increases. This work informs consumers in different NEM regions on the emissions 
intensity of their grid consumed electricity allowing them to implement, for example, 
strategies to reduce emissions such as load shifting and load shedding.

This work extends the previous research on optimisation of PV-battery systems under 
different network tariffs (Bloch et  al. 2019; Young et  al. 2019; Parra and Patel 2016) 
to the case of both emissions and cost minimisation. Analysis of the time-correlation 
between different network tariffs and the real-time carbon emissions intensity can help 
the electricity market operator, regulators and energy companies to revise tariffs to bet-
ter align them with emissions reduction targets. Additionally, the consumption-based 
emission intensity model reveals the spatial and temporal evolution of the emissions 
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within different regions of NEM which could be used to guide planning of new genera-
tion installations. This capability cannot be realised via the existing production-based 
emission intensity models.

The organisation of the remainder of this paper is as follows: Sect. 4 provides the meth-
odology of the research. It describes the power tracing model for estimating consump-
tion-based emissions on the NEM and presents the methodology used in the PV-battery 
system analysis. Section 5 analyses the time-dependent emissions intensity on the NEM 
in comparison to network and wholesale-based tariffs. Results from the commercial 
building case study are described in Sect. 6. Finally, Sects. 7 and 8 provide discussions on 
the limitations of this research, recommendations for future work and conclusions.

Methodology
Overview

This section introduces the overall methodology of the research for developing a con-
sumption-based emission model of NEM and the utilisation of this model in a model 
predictive control (MPC) framework. A schematic of the modelling framework is shown 
in Fig. 1.

Historical site electricity consumption and gird emission intensity data were fed to a 
scheduler for simulated control of a battery charge/discharge actions to minimise bill 
and emission costs. The proposed scheduler is based on an MPC concept, also known 
as Receding Horizon Control. Through this algorithm the scheduler receives the cur-
rent and future states of the battery and the modelled PV generation and determines the 
optimal solution that minimises an objective function of the microgrid’s electricity and 
emission costs over a prediction horizon. After obtaining the best solution, the first con-
trol decision is selected. These steps are repeated until the end of the horizon.

In this modelled scenario evaluation framework, even though the complete historical 
data is available, at each time-step, only data two days ahead (the prediction horizon) 

Fig. 1  Schematic of the analysis framework, (1) data collection, (2) consumption-based emission intensity 
model, (3) MPC module for obtaining the cost-saving and emissions reduction results
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was provided to the scheduler. This allows for updating the demand charge due to the 
battery charging solution in a realistic way (without future knowledge). The following 
objectives were investigated:

1.	 The relative potential for electricity and emission costs saving using a PV-battery sys-
tem.

2.	 The influence of time of use versus wholesale-based tariffs on the cost and emissions 
saving.

3.	 The sensitivity of the savings to increasing carbon price.

Emissions intensity model

The flow-tracing method as described by Tranberg et al. (2019) is employed herein for 
modelling the NEM’s consumption-based emission intensity. The basis of the flow-trac-
ing method is the principle of proportional sharing, the details of which can be found in 
the work of Hörsch et al. (2018). The flow-tracing approach considers the rule of conser-
vation of electricity within a network, so that at each time-step the inflow to each region 
of the network should equal the outflow. This can be expressed as:

where Loadi is the operational demand in region i, Flowi→k is the outflow to the neigh-
bouring regions from region i,Flowj→i is the inflow from neighbouring regions to region 
i, and Generationi,tech is the power generated by a given end-use technology. By intro-
ducing the ‘colour mix’ matrix Qj,tech , which is the proportion of electricity generated by 
different technologies in each region, into Eq. (1), and re-arranging one can obtain the 
following Eq. (2):

where δi,j is the Kronecker delta. By solving the linear system in Eq. (2) for all the regions 
at each time-step, the colour mix matrix can be obtained. Multiplying Qj,tech by a matrix 
of carbon intensity factors of the corresponding region-technology pairs and summing 
the results for each region gives the consumption-based emission intensity of the grid 
for each region.

The NEM consists of five regions; New South Wales (NSW), Queensland (QLD), 
South Australia (SA), Tasmania (TAS) and Victoria (VIC), connected via six intercon-
nector routes. The network regulator, AEMO, provides real-time interconnector and 
demand power data with half-hourly resolution as well as a full list of participant gen-
erators and their SCADA data on its website (AEMO 2022a). Figure 2 shows the NEM’s 
regions, major electricity transmission lines and substation zones. Here we fetch, pro-
cess and store these data streams on a cloud server (CSIRO 2022) and apply the power-
flow tracing algorithm to compute the consumption-based emissions intensity estimates 
that are then also uploaded to the cloud in real-time.

(1)Loadi +

k

Flowi→k =

tech

Generationi,tech +

j

Flowj→i,

(2)
∑

j

{(

Loadj + Flowj→k

)

.δi,j − Flowj→i

}

.Qj,tech = Generationi,tech,
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At each time-step the generators SCADA data is retrieved from AEMO’s database, for-
matted to remove inconsistencies, and grouped by region and generation technology. 
Regional load and interconnector flow data are also imported and formatted to obtain the 
regional colour mix. Occasionally missing data is filled using linear interpolation. After 
solving Eq.  (2) at each half-hourly time-step, the regional colour mix is obtained. At the 
final step, this matrix is multiplied by a matrix of average carbon intensity factors of the 
corresponding region-technology pairs, CIregion−technology obtained from AEMO (2022a). 
These values only include the emissions from burning fossil fuels for electricity production 
in the generators and therefore, the emission intensity factors of renewable generators are 
reported as zero. Although there are emissions associated with other operational activi-
ties and maintenance actions of the generators, to be consistent with AEMO reports and 
to allow for comparing the results, this research adopted the reported intensity factors by 
AEMO.

Battery predictive control module

The amount of power for charging/discharging the battery is modelled using the following 
discrete dynamic state of charge (SOC) equation:

(3)

SOCt+1 =SOCt + ηc

(

PF
PV−Battery
l + PF

Grid−Battery
l

)

�t −
PF

Battery−Load
l + PF

Battery−Grid
l

ηd
�t −

γ

24

Ecap

100
�t,

Fig. 2  NEM regions, major electricity transmission lines and substation zones (data provided by National Map 
2022)
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where  ηc and ηd are the charging and discharge efficiency factors ( ηc = ηd = 0.88) 
respectively, γ = 0.5% is the self-discharging rate, PFm,n

l  is the power flow from subsys-
tems m to n at time l, and Ecap is the energy storage capacity of the battery. The selected 
discretised SOC equation has been adopted from the work of Vahidi et al. (2006) and is 
bounded as follows:

We used a linearised version of the battery degradation model proposed by Schimpe et al. 
(2018) to address the capacity loss due to aging and other operational conditions and to 
obtain the cost of battery degradation. This semi-empirical degradation model incorporates 
cycle aging, temperature, current, and state of charge dependent factors for degradation 
modelling of Lithium-ion Phosphate batteries. The obtained capacity loss from the degra-
dation model at each time-step was converted to a financial cost using a predefined bat-
tery specific cost, in $ per kWh, together with estimated fraction of the overall life that the 
degradation amount represents, assuming no residual value at the end of service-life and an 
end-of-life capacity of 80% of the starting capacity. This methodology is outlined in detail in 
Goldsworthy et al. (2022).

PV power generation is estimated using irradiance and weather (temperature and wind 
speed) data for the site location from the BOM ACCESS-G and ADFD services (BOM 
2022) combined with a simplified model of PV module output (Urraca et al. 2018):

where PV gen is the PV direct current power, Ireff  is the effective in-plane irradiance, ηrel 
is the PV energy conversion factor, Pmod is the module power, and Top is the operational 
temperature of the module. The operational temperature of a module is usually different 
than that of the standard testing conditions and this difference should be accounted for 
when estimating the PV power generation (Urraca et al. 2018):

In Eq. (6) Irpa is the irradiance on the plane of array, Tam is the ambient temperature, Vh is 
the wind speed at the height of module and U0 and U1 are empirical constants. We used the 
model of Huld et al. (2011) to estimate ηrel as follows:

where ai, i = 1, . . . , 6 are regression constants reported by Huld et al. (2011), and param-
eters with a prime are normalised to the standard testing condition. Horizontal irradi-
ance was converted to in-plane irradiance assuming PV modules faced north at a height 
of 5 m above the ground with a slope equal to the local site latitude (32.928°) and using a 
ground reflectance factor of 0.5.

(4)0.02 ≤ SOCt ≤ 0.98.

(5)PV gen

(

Ireff ,Top

)

= Ireff ηrel
(

Ireff ,Top

)

Pmod ,

(6)Top = Tam +
Irpa

U0 +U1Vh
.

(7)
ηrel = 1+a1lnIreff

′

+a2ln
2Ireff

′

+a3T
′

op+a4T
′

oplnIreff
′

+a5T
′

opln
2Ireff

′

+a6

(

T
′

mod

)2

,
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Optimization function

The schematic of the MPC system designed herein can be found in Fig. 3. The battery is the 
only controllable sub-system in this MPC framework which was subject to the following 
energy balance equations:

In Eqs. (8) and (9) BLl is the building demand at time l = 1, . . . , t where t is the pre-
diction horizon, and PV l is the PV generation at time l. The following constraints were 
used:

where maxPFc and maxPFdc are the maximum charge and maximum discharge power of 
the battery respectively. Here maxPFc = maxPFdc = 0.5Ecap.

The MPC was used to minimise the following multi-objective cost function:

where EwCost is either the TOU or wholesale tariff costs (according to the scenario con-
sidered), EdCost is the demand exceedance cost applied in the TOU cost scenario, CCost 
is the carbon price, BCost is the battery degradation cost, Bw is the battery wear to be 
obtained from a battery degradation model and QNSW ,tech and CINSW ,tech are the network 
colour and emissions intensity matrices from the carbon emission model. The demand 
exceedance cost applies a large cost penalty if the net imported power during demand 

(8)BLl = PFPV−Load
l + PFGrid−Load

l + PF
Battery−Load
l

(9)PV l = PF
PV−Battery
l + PFPV−Grid

l + PFPV−Load
l

(10)0 ≤ PF
PV−Battery
l + PF

Grid−Battery
l ≤ maxPFc,

(11)0 ≤ PF
Battery−Grid
l + PF

Battery−Load
l ≤ maxPFdc,

(12)

t
∑

l=1

[

EwCostl

(

PF
Grid−Battery
l + PFGrid−Load

l

)

+EdCostl

(

PF
Grid−Battery
l + PFGrid−Load

l

)

+BCostBwl + CCostl
∑

tech

QNSW ,techCINSW ,tech

(

PF
Grid−Battery
l + PFGrid−Load

l

)]

,

Fig. 3  Schematic of the sub-systems and their interactions used in the MPC framework
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charging times (workdays between 2 and 8 pm) goes above the current maximum power 
over any 30 min period in the month. The penalty is applied as a squared value so that 
large exceedances are penalised more than small exceedances following the methodol-
ogy of Goldsworthy et al. (2022). This term means that Eq. (12) is non-linear. Here we 
solve Eqs. (10–12) using the MATLABⓇ QUADPROG function (MathWorks 2022), 
based on the method described in Kouzoupis et al. (2018).

Fig. 4  Daily average emission intensity of NEM regions between January 2021 and March 2022

Fig. 5  Mean hourly variation of grid emission intensity for the five NEM regions
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Emissions intensity on the national electricity market
Regional and time of day variations

The daily average emission intensities of the five NEM regions for 2021 and 2022 are 
shown in Fig. 4. VIC has the highest average daily carbon intensity with 0.88 kgCO2/
kWh followed by QLD (0.79), NSW (0.76), SA (0.43) and TAS (0.13). The overall 
higher emission intensity in VIC is due to the main source of electricity production 
in the state, which is brown coal. Compared with black coal which supplies 79% of 
the electricity production in NSW and QLD, brown coal is more emission-intensive 
due to its lower carbon content (AEMO 2022c; Jotzo and Mazouz 2015). The car-
bon intensity factor of the NEM’s brown coal-based generators is between 24.7% and 
40% higher than the black coal-based generators (insight gained from data in AEMO 
(2022a).

Part of VIC’s brown-coal dominant production also contributes to the relatively 
higher overall emission intensities of SA and TAS compared with the reported num-
bers from the production-based emission models (Map 2022). Greater inter-day vari-
ation occurs for SA and TAS. Production in SA and TAS is 60% and 99% renewable 
respectively, while the larger fluctuations are a consequence of the fluctuating imports 
from brown-coal dominated VIC (their only connection point).

Figure  5 shows the variation of mean daily emissions intensity by region. The 
trends for QLD, NSW and SA are similar except that for SA emissions don’t display 
an increase between midnight and 7:00 AM. VIC’s general trend is similar to TAS’s 
except with a less pronounced rise over the day peaking in early afternoon, and a 
more pronounced increase in the early morning. The former is due to a larger por-
tion of solar electricity generation in VIC which has more operating solar farms and 
rooftop solar panels, and higher average irradiance (AEMO 2022c; Solargis 2022). The 
same reason justifies the flatter trend for QLD, NSW, and SA (each with 6% annual 
utility solar contribution) as opposed to the VIC and TAS (with 3% and 0% annual 
utility solar contribution, respectively).

Electricity price and emissions intensity correlation

Scatter plots of the half-hourly emission intensity versus the half-hourly electricity 
wholesale (spot) price are shown in Fig. 11 (see Appendix). Lighter shading indicates 
more frequent occurrences. In VIC, the highest emissions factors (~ 1.25 kgCO2/

Table 1  Non-linear correlation between spot price and grid emissions intensity

State Hoeffding D

NSW 0.0216

VIC 0.0140

QLD 0.0125

TAS 0.1012

SA 0.1130
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kWh) occur at intermediate spot prices (between 20 and 50 $/MWh), while the emis-
sion intensities for very high spot prices are generally less than 0.8 kgCO2/kWh. The 
overall trend for QLD is similar to NSW, where the highest emissions factors (~ 0.95 
kgCO2/kWh) occur over a range of spot prices. In general, the emissions intensity fac-
tors are low (~ 0.7 kgCO2/kWh) when the spot price is less than $20/MWh or higher 
than $300/MWh. In TAS, the highest emission intensities occur when spot prices are 
low.

Overall, no strong linear correlation between the emission intensity and the whole-
sale price has been observed in all the studied regions. To study the dependence (fur-
ther to monotonic associations), a non-linear correlation parameter (Hoeffding D) 
was computed and is given in Table 1. This value generally ranges between 0 and 1 
with values close to zero indicating no correlation. These results indicate no depend-
ence between the wholesale price and emission intensity for NSW, VIC and QLD and 
a very small dependence for SA and TAS. This means that the wholesale electricity 
price signal does not currently drive consumers toward using energy at times when 
the emissions intensity is low.

Most electricity customers are not directly exposed to the spot market price, 
commonly they are charged pre-determined rates based on the quantity and time 
of energy  use. The mean and peak emission intensities of each region over typical 
peak and off-peak electricity charging periods is shown in Fig. 6. Except for SA, the 
mean emission intensities of all the regions during the peak period are lower than 
during the off-peak period. In TAS, the maximum emission intensity during the off-
peak period (0.48 kgCO2/kWh) is slightly higher than the maximum intensity during 
the peak period (0.46 kgCO2/kWh). This behaviour is unique to TAS. In general, the 
existing TOU price signals largely actually drive consumers toward using energy dur-
ing times when grid emissions intensity is higher.

Fig. 6  Mean and peak emissions intensity during typical peak and off-peak electricity tariff periods for NEM 
regions
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Operational demand and emissions intensity correlation

The contribution of different generators to overall demand and emissions intensity is also 
of interest since it provides insight into the scheduling of different types of generators. A 
cross-correlation analysis of the emission intensity and operational demand, resulted in 
Pearson correlation coefficient of approximately −0.4 for all the studied regions, except 
SA. That is, emissions tend to be lower at times of higher operational demand. For SA no 
statistically significant correlation was observed.

The correlation between specific emissions and operational demand can be related to 
the unique energy mix of each region, and/or merit order of generation in which cost 
of operation plays a major role. Open and combined-cycle gas turbines, which tend to 
have higher running costs, are typically employed during periods of higher operational 
demand. The emission intensity of these generators is, however, much lower than brown, 
and black coal-based generators that usually meet the majority of demand during low to 
moderate demand periods (Elliston et al. 2016; Nelson 2018). The correlation between 

(a) (b)

Fig. 7  Contributions of the different types of generators to operational demand in a TAS and b SA

Fig. 8  Contribution of different generators to operational demand and consumption and production-based 
emissions intensity for TAS on 3rd March 2022
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emission intensity and the operational demand is much less in SA which has a high con-
tribution of both renewables and gas-based generators.

Figure 7 shows the contribution of the major generator types to operational demand 
in TAS and SA for the first half of 2021–2022. TAS is only connected to VIC and has 
only one operating non-renewable plant (Bell Bay Three). Therefore, it is relatively easy 
to predict the emissions behaviour of this region. When operational demand is low, the 
imported brown-coal-based electricity from VIC is one of the main contributors to the 
local demand and consequently emissions intensity is expected to be high. In periods 
of moderate operational demand more local natural gas generated from Bell Bay Three 
plant is consumed and so emissions intensity is expected to increase. Finally, at times of 
high operational demand more hydroelectric generation is used and emission intensity 
is expected to decrease.

For SA (Fig. 7b), 40% of demand was met by local gas-based generators between 2021 
and 2022 as opposed to 1% for TAS. At low operational demand, there is a significant 
portion of local solar generation which tends to be offset by wind generation as demand 
increases. The high operational demand periods (00:00–6:30 and 19:00–23:30) occur 
when there is limited output from rooftop and large scale PV systems (AEMO 2022b). 
In contrast, the abundance of solar generation occurs midday when the operational 
demand is minimal. This explains the abrupt drop in the contribution of solar to the 
operational demand in Fig. 7b. For periods of high operational demand natural gas pro-
vides a higher fraction of demand but this is offset by a smaller reduction in imported 
brown coal which results in the emissions intensity being relatively constant.

The difference between the production and consumption-based emission intensities 
is also revealing. Figure 8 shows the contribution of the main generators to the demand 
in TAS on 3rd of March 2022 as well as the production and consumption based TAS 
emissions intensity. When there is no power imported from VIC and the Bell Bay Three 
gas generator is operating (5:30–9:30 pm) the consumption and production-based emis-
sions intensity values are the same at 25 kgCO2/MWh. However, when the state imports 
approximately 35% of power from VIC (10 am to 1 pm), the consumption-based emis-
sions intensity increases to 450 kgCO2/MWh while the production-based emissions 
intensity remains zero. This represents an 18 × increased in the daily maximum emis-
sions intensity.

Commercial building case study
Overview

The above results indicate that both time of use and wholesale electricity price signals 
do not necessarily correlate with the emissions intensity of grid consumed electricity. 
Hence, a trade-off likely existing between designing and managing demand side flexi-
ble loads and generators to minimise costs versus emissions. This section explores this 
trade-off for the case of PV-battery systems applied to a commercial site. The selected 
case-study is a commercial office and research laboratory site located in Newcastle, 
NSW, Australia. Pre the COVID-19 pandemic, the site had a typical office occupancy 
pattern with most staff on-site between 8am to 5 pm M-F. During the 2021 calendar year 
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considered, occupancy patterns were similar to the long-term trend but with total site 
occupancy reduced by approximately 50%, with the exception of September and Octo-
ber where the site had a nominal occupancy only. Analysis of occupancy patterns from 
November 2021 until the time of writing (April 2022) reveals that the total site occu-
pancy has not returned to pre-pandemic levels. For this reason, data from the 2021 cal-
endar year was chosen as being representative of the ‘new-normal’ site operation.

The site already generates 30–40% of its energy from existing PV arrays. It also has an 
existing commercial lithium-ion battery. Here we assess the potential for further mini-
misation of electricity and carbon emissions from the site through additional PV gen-
eration and battery storage. That is, the existing PV and battery system is treated as part 
of the baseline site operation for the purposes of this analysis.

Historical electricity net import power data at 5-min resolution between January 2021 
and December 2021 was obtained. To match the emission model output, the consump-
tion time-series data was oversampled to a 30-min resolution and linear interpolation 
was used to fill missing time-steps (less than 1.1% of the data). The average daily net 
import energy is shown in Fig. 9a. Net import was generally higher during the warmer 
months (particularly January to March), though there is considerable variation which is 
partially due to changes in site operations. The average daily net import was 1.8 MWh. 

(a) (b)

Fig. 9  a Daily net import energy and b scatter plot of net import power vs grid emission intensity coloured 
by frequency for the case study site.

Table 2  Case study electricity, capital, and carbon costs values

Parameter Value/range References

Battery specific cost $800/kWh Guinot et al. (2015)
Wood et al. (2015)

PV specific cost $1000/kW Helwig and Ahfock (2015)

Network tariffs Peak periods 2:00–8:00PM workdays
off-peak period 10:00 PM-6:00 AM
Demand charge during peak period

Energy retailer

Wholesale electricity price NSW Regional Reference Price AEMO

Carbon price $0 to $400 /tonne CO2 N/A
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The existing on-site generation does result in net export of power to the grid at certain 
times, although this is not apparent from the daily averages.

Figure  9b show a scatter plot of the half-hourly net import power vs the emissions 
intensity of the grid, with shading indicating the relative frequency of the points (com-
puted using a bi-variate kernel smoothing approach). Net export (i.e. negative import 
values) to the grid is apparent. It also shows that there are times of very high emissions 
intensity but that these are infrequent and tend to occur when net import is low or nega-
tive. By far the most frequent behaviour is for the net import power to be approximately 
90–110 kW which corresponds to the after-hours baseline site power demand, with grid 
emissions intensity ranging from approximately 0.7–0.9 kgCO2/kWh.

Simulation financial parameters

Simulation financial parameters are summarised in Table  2. The Australian Carbon 
Credit Unit (ACCU) price is the de-factor price of carbon in Australia and is updated 
daily through the national carbon market regulated by the Clean Energy Regulator. As 
of the 9th of February 2022 the price was $55.4 per CO2 tonne (Reputex 2022). To study 
the trade-off between placing more weight on minimising costs versus emissions, car-
bon prices in the range of $0 to $400/tCO2 were considered. That is, when a zero-carbon 
price is used in the optimisation, the resulting battery charging solution ignores emis-
sions. When a very high carbon price is used, the optimiser places a high importance 
on minimising emissions, though it still tries to minimise network (TOU) or wholesale 
costs (according to the scenario considered). Note though that when reporting the effect 

Fig. 10  Sensitivity of relative annual operational costs and emissions saving to the weighting factor used by 
the optimiser for minimising emissions (i.e. carbon price) for; a network tariff scenario and 150 kW PV array, b 
wholesale tariff scenario and 150 kW PV
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of changing the optimisation strategy on the annual operating cost the carbon cost was 
excluded to ensure a fair comparison.

We use two different electricity pricing structures: (i) a network (TOU) tariff consist-
ing of a daily fixed charge, TOU-based energy charges and a demand charge; and (ii) a 
tariff based solely on the wholesale regional reference electricity price (AEMO 2022a). 
For the network tariff, the TOU charges were applied based on the time of day and type 
of day. The demand charge applied to the highest net import power over half-hour peri-
ods within the peak TOU period over the current month. The network tariffs used are 
typical of a medium scale commercial site retail tariff. In this case there was no credit 
for energy exported to the grid. For the wholesale electricity tariff however, any export of 
power to the grid was assumed to be credited at the  full wholesale electricity price.

The capital costs associated with installation of new batteries and PV arrays were 
adopted from the literature and are representative of typical battery and PV installations 
in Australia. Finally, the payback period was calculated here using a net present value 
approach with a 3% Consumer Price Index (CPI), 5% interest rate and annual mainte-
nance costs of 2% of the annual operating cost.

Results
The trade-off between controlling the PV-battery system to minimise operating costs 
versus controlling to minimise greenhouse gas emissions was simulated by varying the 
carbon price used in the optimisation algorithm. To study the sensitivity to PV-battery 
system size, a range of different battery capacities (0, 130 kWh, 380 kWh and 640 kWh) 
and PV array sizes (0 kW, 150 kW, 250 kW and 560 kW) were considered.

The annual operational cost (excluding the carbon cost) and the annual emissions are 
shown in Fig. 10 as functions of the carbon price. Higher carbon price corresponds to 
the optimiser placing more weight on minimising emissions. The top two figures cor-
respond to the small (150 kW) PV array, the bottom two to the large (560 kW) PV array. 
The left and right figures are the network and wholesale tariff scenarios, respectively. 
Costs and emissions are normalised by those for the case with 0kWh battery and the 
same PV array size.

For all cases, the addition of the battery storage system leads to operating cost savings 
but an increase in overall emissions. This occurs because the opportunity for minimising 
costs (i.e. the variation in tariffs with time) is much greater than for emissions. Using the 
battery results in an overall increase in energy use due to system losses, and the emis-
sions reduction caused by shifting grid import to times of lower emissions intensity is 
not enough to offset this in this case.

Figure 10a shows that for the largest battery capacity and a 150 kW PV array, control-
ling the battery to minimise costs under a zero carbon price results in an 18% saving 
in operating cost and a 12.5% increase in emissions (compared to the 150 kW PV sys-
tem with no battery). Changing the optimisation strategy to favour reduced emissions 
decreases the cost saving to 16% but lowers the increase in emissions to 5%. For small 
battery capacity the magnitude of the effects is reduced because there is less potential 
to optimise either costs or emissions. For a larger PV array size, the magnitude of the 
changes is increased because excess PV generation is available to charge the battery, and 
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while this excess is assumed to reduce emissions via a carbon credit, it doesn’t reduce 
costs given the absence of a feed-in electricity credit.

Figure 10c shows that for the 560 kW PV array and largest battery capacity, the cost 
saving decreases from 31 to 20% and the emissions increase changes from 9.5% to 4.5% 
(relative to the 560 kW PV array with no battery). The comparatively higher cost saving 
at lower carbon price for the 380 kWh and 640 kWh batteries is due to demand charge 
savings that are lost as the battery is used increasingly for minimising emissions (i.e. for 
higher carbon prices) where it has less availability to reduce the demand charge.

For the wholesale cost scenarios (Fig.  10b, d) relative cost savings are greater while 
relative emissions savings are almost identical. This occurs because there is more oppor-
tunity for cost arbitrage with the wholesale prices which have a greater variation over a 
shorter period of time while the potential for carbon emissions-based arbitrage remains 
the same.

The trends shown in Fig. 10 are normalised relative to the same size PV system (i.e. 
either 150 kW or 560 kW) but without a battery. Evaluating savings relative to the case 
without any PV or battery system reveals that the PV system contributes a large por-
tion of the overall cost savings and significantly reduces emissions. For example, under 
the network tariff the 150  kW, 640  kWh battery system delivered 30% cost and 39% 
emissions savings relative to the system without any PV or battery when cost minimisa-
tion was the only objective. This compares to 27% and 43% for the highest carbon price 
case. This highlights the fact that in general, lowering grid import power to reduce costs 
through onsite PV generation has a clear commensurate benefit in terms of reducing 
emissions, and that the variation in grid emissions intensity for NSW does not provide a 
large opportunity to use a battery for carbon emissions-based arbitrage.

Studying the overall payback period for both the tariff scenarios shows that payback is 
largely determined by PV-battery size with larger PV lowering payback and larger bat-
tery increasing payback. In general, the variation in payback period with carbon price 
follows similar trends to the variation in operating cost. Considering the network tariff 
scenario, for the 640kWh battery capacity, varying the PV size from 250 to 0 kW resulted 
in the payback period increasing from 21 to more than 50 years. For a 250 kW PV array, 
varying the battery capacity from 0 to 640kWh resulted in the payback increasing from 
12.5 to 21 years. For the wholesale tariff, the payback periods were much longer since the 
overall operational costs were much lower (approximately half ). In practice, wholesale-
based tariffs are likely to include other charges that will affect this payback.

Finally, the influence of possible future reductions in PV and battery capital costs was 
considered. PV costs was assumed to be $700/kW and battery cost $300/kWh. For the 
130kWh, 150 kW PV-battery system, the resulting payback period reduced by 45% (net-
work tariff) and 56% (wholesale tariff). However, these changes to capital costs did not 
affect the operating cost-emissions trade-off.

Limitations and recommendations for further research

The case study analysis based on NSW prices and emissions found that controlling a 
battery to minimise either the network tariff or the current wholesale spot price did not 
lead directly to minimisation of emissions. Analysis of the variation of grid emissions 
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intensity over different times of the day and the correlation with the wholesale spot price 
indicates that similar results would be likely for VIC and QLD. Future research could 
include case study analyses for the other NEM regions, particularly SA and TAS.

This research did not consider the time-variable nature of the carbon price including a 
dynamic rather than fixed carbon price may influence the results particularly if the price 
fluctuations occur over timescales where battery-based arbitrage is feasible. Expanding the 
scope of ‘emissions’ to account for the embodied emissions contained within the distributed 
energy systems and also the indirect emissions associated with renewable energy generators 
would be a worthwhile topic of investigation. Finally, as the emissions intensity factor of the 
grid is gradually reducing over time, it is suggested to revisit the analysis in future years.

The assumption of a perfect emission intensity forecast should also be investigated 
since it will influence the extent to which theoretical savings can be achieved in prac-
tice. Additional considerations for practical deployments include handling data quality 
including data drop-outs, equipment and communications reliability issues and security, 
for example as discussed by Taylor et al. (2019). The time-series format of the emission 
intensity factors from the emission model allows for forecasting the emission intensities 
using different time-series prediction methods. Therefore, it would be possible to feed 
the forecast emission intensity data into the real-time demand response frameworks for 
real-time optimisation and control. Such a model could also consider uncertainty ranges 
associated with the emissions intensity forecasts, for example using information on the 
variability of generation mix, or more generic time-series uncertainty approaches.

This analysis used the calculated consumption-based grid emissions factors to opti-
mise costs and emission for a specific end-use application (i.e., a commercial site). An 
alternative analysis could consider the inverse problem of optimising the generation 
mix to achieve certain network level emissions targets while minimising overall costs. 
Expanding this further, it would be useful to develop a digital twin emissions model for 
the NEM. Such a model could be used, for example, in what-if scenario analysis to assess 
the cost, robustness, performance, and emissions reduction of novel energy projects. 
Finally, consideration of how time-dependent grid emissions intensity could be factored 
into network tariffs and the wholesale spot price would enable cost optimal and emis-
sions optimal outcomes to be more closely aligned.

Discussion and conclusion
This primary goal of this research was to investigate the extent to which a PV-bat-
tery system controlled to minimise electricity costs also results in carbon emissions 
savings (and vice-versa). This was simulated by varying the carbon price over a wide 
range and using the MPC framework to minimise the sum of the electricity bill cost 
and the cost associated with the emissions from consumption of grid electricity at the 
assumed carbon price for case study commercial site. That is, the carbon price was 
used as a weighting factor to incorporate the emission optimisation into the MPC 
framework. Two different tariff structures were considered. To account for the grid 
emissions at the site’s location a real-time consumption-based model of the NEM 
was first developed. The developed emissions model was to analyse how the emission 
intensity of the NEM varies over time, operational demand and with the wholesale 
spot price. Major findings were:
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•	 The general emissions intensity behaviour of the different regions varies over the 
day and this variation was associated with that region’s ratio of renewable to non-
renewable generation as well as its major source of local productions.

•	 Consumption and production-based emissions estimates vary considerably. While 
VIC had both the highest average consumption-based and production-based 
emissions intensity within the studied period, TAS and SA’s consumption-based 
emissions were found to be much higher than their production-based emissions. 
This has important implications for calculation of emissions, and, for example for 
measuring progress toward NZE for sites consuming grid purchased electricity.

•	 The emission intensity was found to be correlated with the TOU prices. How-
ever, the existing TOU price signals were found to encourage consumers to use 
energy during times when grid emissions intensity is higher, rather than when it is 
lower. This is mostly due to higher TOU price periods being in the evenings when 
renewable generation is less. In the case of wholesale prices, there was generally 
no correlation between the spot price and the emissions intensity.

The key findings from the case study analysis were:

•	 Controlling a battery to minimise operating costs comes at the expense of increas-
ing emissions. This occurs for both the network (TOU) and wholesale tariff sce-
narios and is not affected by capital costs.

•	 Whereas PV arrays directly reduce both costs and emissions by reducing use of 
grid electricity, the ability of batteries to reduce cost and emissions is contingent 
on the time variation of the network or wholesale tariffs and the time variation 
of the grid emission factor. These variations must be large enough to overcome 
the increased overall energy use that is associated with batteries (due to charge/
discharge inefficiencies) before any savings can be realised. Here cost savings were 
apparent but not emissions reductions.

•	 There is a much greater potential to use a battery to reduce costs for larger PV 
arrays with regular net export under network tariffs where there is no feed-in 
credit. However, the assumption of a carbon credit for emissions reduction due 
to exported power means that a similar increased potential to use the battery to 
reduce emissions for large PV arrays was not apparent.

Overall, the analysis shows that there is potential for existing common tariff structures 
to be modified to provide greater incentive for consumers to shift grid electricity con-
sumption to times when grid emissions intensity is lower. In the short to medium term 
while the overall load shifting capacity from distributed consumers remains small, there 
is unlikely to be significant feedback effect from this load shifting on either the price 
signals or the grid emissions intensity factors. Hence it is reasonable to consider them as 
decoupled. In the long-term the influence of fluctuating price signals due to large scale 
demand shifting will need to be considered. Ultimately the benefit will be to increase the 
value of low emissions generation specifically at times where it can have the most emis-
sions reduction benefit.



Page 21 of 23Aryai and Goldsworthy ﻿Energy Informatics            (2022) 5:11 	

Appendix
See Fig. 11.

Abbreviations
ACCU​	� Australian Carbon Credit Unit
AEMO	� Australia Energy Market Operator
BOM	� Bureau of Meteorology
GHG	� Greenhouse gas
QLD	� Queensland
MEF	� Marginal emissions intensity factor
MPC	� Model predictive control
NEM	� National Electricity Market
NSW	� New South Wales
NZE	� Net zero emissions
SA	� South Australia
SCADA	� Supervisory control and data acquisition system
TAS	� Tasmania
TOU	� Time of use
VIC	� Victoria

Acknowledgements
Not applicable.

Author contributions
MG and VA wrote the main manuscript text. VA developed the NEM emissions model. MG developed the MPC model. 
Both authors reviewed the manuscript. Both authors read and approved the final manuscript.

Fig. 11  Scatter plot of grid emissions intensity vs the wholesale (spot) price for NEM regions. a NSW. b QLD. c 
VIC, d SA. e TAS. Shading indicates frequency of occurrence



Page 22 of 23Aryai and Goldsworthy ﻿Energy Informatics            (2022) 5:11 

Funding
Funding for the work was supplied by the authors institution (CSIRO).

Availability of data and materials
The AEMO data-sets used in this study are available from the supplied references. The calculated electricity network 
consumption-based emissions intensity data-set and the commercial building baseline power consumption data-set are 
available from the corresponding author upon request.

Declarations

Ethics approval and consent to participate
The study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and 
its later amendments or comparable ethical standards. This study did not involve work with animals or human partici-
pants or data and so did not require internal ethics approval or consent from participants.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Received: 2 May 2022   Accepted: 1 July 2022

References
AEMO (2022a) Data dashboard [cited 2022 February]; Available from: https://​aemo.​com.​au/​energy-​syste​ms/​elect​

ricity/​natio​nal-​elect​ricity-​market-​nem/​data-​nem/​data-​dashb​oard-​nem
AEMO (2022b) Negative electricity demand in South Australia [cited 2022 June]; Available from: https://​aemo.​com.​

au/​newsr​oom/​news-​updat​es/​negat​ive-​elect​ricity-​demand-​in-​south-​austr​alia.
AEMO (2022c) Fuel mix. [cited 2022 February]; Available from: https://​www.​aemo.​com.​au/​energy-​syste​ms/​elect​ricity/​

natio​nal-​elect​ricity-​market-​nem/​data-​nem/​data-​dashb​oard-​nem
Allouhi A (2020) Solar PV integration in commercial buildings for self-consumption based on life-cycle economic/

environmental multi-objective optimization. J Clean Prod 270:122375
Antoniadou-Plytaria K et al (2019) Chalmers campus as a testbed for intelligent grids and local energy systems. In: 

2019 International Conference on Smart Energy Systems and Technologies (SEST). IEEE
Australian Government (2022) National Map [cited 2022 March]; Available from: https://​natio​nalmap.​gov.​au/
Australian Government (2022) Government priorities - Commercial buildings [cited 2022 February]; Available from: 

https://​www.​energy.​gov.​au/​gover​nment-​prior​ities/​build​ings/​comme​rcial-​build​ings
Bialek J (1996) Tracing the flow of electricity. IEEE Proc Gen Trans Distrib 143(4):313–320
Bloch L et al (2019) Impact of advanced electricity tariff structures on the optimal design, operation and profitability 

of a grid-connected PV system with energy storage. Energy Informatics 2(1):1–19
BOM (2022) The Australian Bureau of Meteorology [cited 2022 February]; Available from: http://​www.​bom.​gov.​au/
CSIRO (2021) What are the sources of Australia’s greenhouse gases? [cited 2022 February]; Available from: https://​

www.​csiro.​au/​en/​resea​rch/​envir​onmen​tal-​impac​ts/​clima​te-​change/​clima​te-​change-​qa/​sourc​es-​of-​ghg-​gases
CSIRO (2022) Senaps [cited 2022 February]; Available from: https://​senaps.​io/
de Chalendar JA, Taggart J, Benson SM (2019) Tracking emissions in the US electricity system. Proc Natl Acad Sci 

116(51):25497–25502
Elliston B, Riesz J, MacGill I (2016) What cost for more renewables? The incremental cost of renewable generation—

an Australian National Electricity Market case study. Renewa Energy 95:127–139
Elmouatamid A et al (2019) A model predictive control approach for energy management in micro-grid systems. In: 

2019 international conference on smart energy systems and technologies (SEST). IEEE
Fowler E (2022) Australian carbon price surges 180 per cent  [cited 2022 February]; Available from: https://​www.​afr.​

com/​policy/​energy-​and-​clima​te/​austr​alian-​de-​facto-​carbon-​price-​surges-​180-​per-​cent-​20211​221-​p59jal
Goldsworthy M, Moore T, Peristy M, Grimeland M (2022) Cloud based model predictive control of a battery storage 

system at a commercial site. Appl Energy
Guinot B et al (2015) Techno-economic study of a PV-hydrogen-battery hybrid system for off-grid power sup-

ply: Impact of performances’ ageing on optimal system sizing and competitiveness. Int J Hydrogen Energy 
40(1):623–632

Hawkes AD (2010) Estimating marginal CO2 emissions rates for national electricity systems. Energy Policy 
38(10):5977–5987

Helwig A, Ahfock T. A case study: Is energy storage affordable for further Australian sustainable energy development? 
In: 2015 Australasian Universities Power Engineering Conference (AUPEC). 2015. IEEE

Hörsch J et al (2018) Flow tracing as a tool set for the analysis of networked large-scale renewable electricity systems. 
Int J Electr Power Energy Syst 96:390–397

Huld T et al (2011) A power-rating model for crystalline silicon PV modules. Sol Energy Mater Sol Cells 
95(12):3359–3369

https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/data-dashboard-nem
https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/data-dashboard-nem
https://aemo.com.au/newsroom/news-updates/negative-electricity-demand-in-south-australia
https://aemo.com.au/newsroom/news-updates/negative-electricity-demand-in-south-australia
https://www.aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/data-dashboard-nem
https://www.aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/data-dashboard-nem
https://nationalmap.gov.au/
https://www.energy.gov.au/government-priorities/buildings/commercial-buildings
http://www.bom.gov.au/
https://www.csiro.au/en/research/environmental-impacts/climate-change/climate-change-qa/sources-of-ghg-gases
https://www.csiro.au/en/research/environmental-impacts/climate-change/climate-change-qa/sources-of-ghg-gases
https://senaps.io/
https://www.afr.com/policy/energy-and-climate/australian-de-facto-carbon-price-surges-180-per-cent-20211221-p59jal
https://www.afr.com/policy/energy-and-climate/australian-de-facto-carbon-price-surges-180-per-cent-20211221-p59jal


Page 23 of 23Aryai and Goldsworthy ﻿Energy Informatics            (2022) 5:11 	

Jotzo F, Mazouz S (2015) Brown coal exit: a market mechanism for regulated closure of highly emissions intensive 
power stations. Econ Anal Policy 48:71–81

Kopsakangas-Savolainen M et al (2017) Hourly-based greenhouse gas emissions of electricity-cases demonstrating 
possibilities for households and companies to decrease their emissions. J Clean Prod 153:384–396

Kouzoupis D et al (2018) Recent advances in quadratic programming algorithms for nonlinear model predictive 
control. Vietnam J Math 46(4):863–882

Lu B et al (2021) A zero-carbon, reliable and affordable energy future in Australia. Energy 220:119678
Mariaud A et al (2017) Integrated optimisation of photovoltaic and battery storage systems for UK commercial build-

ings. Appl Energy 199:466–478
MathWorks (2022) Quadratic Programming [cited 2022 February]; Available from: https://​au.​mathw​orks.​com/​help/​

optim/​ug/​quadp​rog.​html.
Mbungu NT et al (2020) An overview of renewable energy resources and grid integration for commercial building 

applications. J Energy Storage 29:101385
McConnell D, Holmes a Court S, Tan S, Cubrilovic N (2022) An Open Platform for National Electricity Market Data 

[cited 2022 February]; Available from: https://​openn​em.​org.​au/​about/
McKenna E, Barton J, Thomson M (2017) Short-run impact of electricity storage on CO2 emissions in power systems 

with high penetrations of wind power: a case-study of Ireland. Proc Inst Mech Eng Part A J Power Energy 
231(6):590–603

Nelson T (2018) The future of electricity generation in Australia: a case study of New South Wales. Electr J 31(1):42–50
Nojavan S et al (2017) A cost-emission model for fuel cell/PV/battery hybrid energy system in the presence of 

demand response program: ε-constraint method and fuzzy satisfying approach. Energy Convers Manage 
138:383–392

Parra D, Patel MK (2016) Effect of tariffs on the performance and economic benefits of PV-coupled battery systems. 
Appl Energy 164:175–187

Ren H et al (2016) Optimal operation of a grid-connected hybrid PV/fuel cell/battery energy system for residential 
applications. Energy 113:702–712

Reputex (2022) Carbon plus electricity price intelligence. [cited 2022 February]; Available from: https://​www.​reput​ex.​
com/

Riekstin AC et al (2018) Time series-based GHG emissions prediction for smart homes. IEEE Trans Sustain Comput 
5(1):134–146

Schimpe M et al (2018) Comprehensive modeling of temperature-dependent degradation mechanisms in lithium 
iron phosphate batteries. J Electrochem Soc 165(2):A181

Sepúlveda-Mora SB, Hegedus S (2021) Making the case for time-of-use electric rates to boost the value of battery 
storage in commercial buildings with grid connected PV systems. Energy 218:119447

Siler-Evans K, Azevedo IL, Morgan MG (2012) Marginal emissions factors for the US electricity system. Environ Sci 
Technol 46(9):4742–4748

Solargis (2022) Global Solar Atlas [cited 2022 February]; Available from: https://​globa​lsola​ratlas.​info/
Sun SI et al (2019) An emissions arbitrage algorithm to improve the environmental performance of domestic PV-

battery systems. Energies 12(3):560
Taylor Z, Hejazi H, Cortez E, Alvarez L, Ula S, Barth M, Mohsenian-Rad H (2019) Customer-side SCADA-assisted large 

battery operation optimization for distribution feeder peak load shaving. IEEE Trans Smart Grid 10
TMROW APS (2022) The electricity map online app [cited 2022 February]; Available from: https://​app.​elect​ricit​ymap.​

org/​map
Tranberg B et al (2019) Real-time carbon accounting method for the European electricity markets. Energ Strat Rev 

26:100367
Urraca R et al (2018) Quantifying the amplified bias of PV system simulations due to uncertainties in solar radiation 

estimates. Sol Energy 176:663–677
Vahidi A, Stefanopoulou A, Peng H (2006) Current management in a hybrid fuel cell power system: a model-predic-

tive control approach. IEEE Trans Control Syst Technol 14(6):1047–1057
Vedullapalli DT et al (2018) Adaptive scheduling of the battery for peak shaving using model predictive control. In: 

2018 IEEE Electronic Power Grid (eGrid). IEEE
Wood DL III, Li J, Daniel C (2015) Prospects for reducing the processing cost of lithium ion batteries. J Power Sour 

275:234–242
Young S, Bruce A, MacGill I (2019) Potential impacts of residential PV and battery storage on Australia’s electricity net-

works under different tariffs. Energy Policy 128:616–627

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://au.mathworks.com/help/optim/ug/quadprog.html
https://au.mathworks.com/help/optim/ug/quadprog.html
https://opennem.org.au/about/
https://www.reputex.com/
https://www.reputex.com/
https://globalsolaratlas.info/
https://app.electricitymap.org/map
https://app.electricitymap.org/map

	Controlling electricity storage to balance electricity costs and greenhouse gas emissions in buildings
	Abstract 
	Introduction
	Previous work
	Significance of the research
	Methodology
	Overview
	Emissions intensity model
	Battery predictive control module
	Optimization function

	Emissions intensity on the national electricity market
	Regional and time of day variations
	Electricity price and emissions intensity correlation
	Operational demand and emissions intensity correlation

	Commercial building case study
	Overview
	Simulation financial parameters

	Results
	Limitations and recommendations for further research

	Discussion and conclusion
	Acknowledgements
	References


