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Introduction
Designing an energy system with the aim of a minimal ecological or economic impact 
is a very complex task. The increasing number of possibilities and complexity in energy 
form, time and space lead to an even more complex problem. These problems are chal-
lenging to solve analytically. Instead, mathematical programs can identify optimal 
solutions (Baños et  al. 2011). These programs can use Mixed-Integer-Linear-Problem 
(MILP) solvers, which can determine the optimal solution concerning their assumptions 
and model accuracy.

Abstract 

Using optimization to design a renewable energy system has become a computation-
ally demanding task as the high temporal fluctuations of demand and supply arise 
within the considered time series. The aggregation of typical operation periods has 
become a popular method to reduce effort. These operation periods are modelled 
independently and cannot interact in most cases. Consequently, seasonal storage 
is not reproducible. This inability can lead to a significant error, especially for energy 
systems with a high share of fluctuating renewable energy. The previous paper, 
“Time series aggregation for energy system design: Modeling seasonal storage”, has 
developed a seasonal storage model to address this issue. Simultaneously, the paper 
“Optimal design of multi-energy systems with seasonal storage” has developed a differ-
ent approach. This paper aims to review these models and extend the first model. The 
extension is a mathematical reformulation to decrease the number of variables and 
constraints. Furthermore, it aims to reduce the calculation time while achieving the 
same results.
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The optimisation problems can be solved for the complete time series or typical peri-
ods representing the time series (Lythcke-Jørgensen et  al. 2016). Typical periods are 
recurring time slots where characteristic charging and discharging patterns occur (Kot-
zur et al. 2018). Typical periods reduce the calculation time due to fewer variables and 
constraints to handle. One problem with these periods is the consideration of storage 
extending the period time. These storages are modelled with a linear behaviour. The 
classical cyclic modelling of storage with typical days would force the storage to have the 
same state at the period’s start, and end (Renaldi and Friedrich 2017; Harb et al. 2015; 
Fazlollahi et al. 2014; Nahmmacher et al. 2016). This constraint leaves the typical days 
unlinked to each other. A transfer of storage content of one typical period to another is 
impossible.

Kotzur et  al.’s model introduces two-time layers, one within the period and one for 
linking these periods (Kotzur et al. 2018). This model allows the solver to create a gra-
dient within the typical periods since the typical period no longer ends with the same 
storage state as it began. The time frame outside the typical periods can use this gradient 
to determine the state of charge after several periods. Disregarding the state of charge 
within the period can lead to overcharging or undercharging the storage. On the other 
hand, cyclic storage formulation would keep the same stored energy at the period’s start 
and end. In hydro power planning, multi-time horizon approaches have already been 
used but not modelled by MILP (Abgottspon and Andersson 2016; Beltrán et al. 2021; 
Flamm et al. 2018a; Bordin et al. 2021; Flamm et al. 2018b; Ming et al. 2021; Parvez et al. 
2019).

Kotzur et al.’s two-time layers enable seasonal storage calculation while deploying typi-
cal days. In (Beck et al. 2022; Göke and Kendziorski 2022; Wirtz et al. 2021; Neumann 
et al. 2022; von Wald et al. 2022; Hoffmann et al. 2020) the storage formulation of Kot-
zur et al. was applied to calculate seasonal storages. Gabrielli et al. (2018) developed a 
different approach to calculate seasonal storage with fewer constraints but more vari-
ables. The approach creates a storage variable for the entire year with its yearly time step. 
Besides, it links the charging and discharging power of the period’s time step to that 
yearly time step. This model is used, for example, in Borasio and Moret (2022), Foche-
sato et al. (2021), Petkov et al. (2021). Kotzur et al. (2021), Bistline et al. (2020) claim to 
review and validate these storage models.

Figure 1 explains the two-layer method. The day 0 until 100 and 200 until 280 are rep-
resented by period one. Period two represents the days 100 until 200 and 280 until the 
end.

Kotzur et al.’s seasonal model allows a positive gradient over period one and a negative 
gradient over period two. Consequently, the storage state of these days is increasing for 
days represented by period one and decreasing for days represented by period two. This 
state stays constant using the cyclic storage model since gradients are unconsidered.

The new idea presented in this paper is to combine storage states of periods repre-
sented by the same typical period and located after each other within the year. Figure 2 
explains this approach. While the model of Kotzur et  al. needs 20 variables and their 
connected constraints for 100 days, the new model has one. This reduction is possi-
ble since typical days occuring in a row are merged. This combination of storage states 
should lead to fewer variables, constraints and calculation time reduction.
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This paper aims to review the model of Kotzur et al. with new load profiles and compare 
it to the model of Gabrielli et al. Furthermore, the new model is explained and compared to 
the current models. Therefore solving the problem with the new model should lead to the 
same results as the current model.

Storage models
The upcoming section explains the cyclic (called C) and three seasonal storage models 
(called S).

Cyclic storage model

The stored energy Et is calculated from the charging Pc
t  and discharging power Pd

t  . Charg-
ing and discharging losses are considered by the corresponding efficiencies ηcharge and 
ηdischarge . Furthermore, a self-discharging rate ηself  with the corresponding time step dura-
tion δt is considered.

The stored energy (Et) has to stay between zero and maximal capacity Emax.

(1)Et = Et−1 · 1− ηself · δt + Pc
t · ηcharge −

Pd
t

ηdischarge
· δt.

(2)0 ≤ Et ≤ Emax.

Fig. 1  Seasonal storage model of Kotzur et al. explanation

Fig. 2  Explanation of new seasonal storage model
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The storage must have the same state of charge at the period‘s start and end 
(Et=0 = Et=N ) . Additionally, this state of charge has to be the same for all periods.

Seasonal storage model of Gabrielli et al. (2018)

Seasonal storage model of Gabrielli et al. (2018) (called S-G) creates a storage variable for 
the entire year with its yearly time step (Eh) . Besides, it links the charging 

(

Pc
t =f (h)

)

 and dis-

charging power 
(

Pd
t =f (h)

)

 of the period’s time step to that yearly time step. The function f 

gets the time step of the year h as an input and is returning the corresponding period with 
its period’s time step.

The cyclic boundary condition is used to connect the last and first storage variable of the 
total simulation interval ( Eh=1 = Eh=end+1).

Seasonal storage model of Kotzur et al. (2018)

The seasonal storage model of Kotzur et al. (2018) (called S-K) contains three types of con-
straints. The first constraint links the typical day’s state of charge with the state of charge 
within these typical periods. The second constraint is limiting the state of charge within the 
typical days, which aims to avoid negative states of charge or overcharging. The last con-
straint considers the actual charging, discharging, and losses within the period. This equa-
tion applies to both models (S-K and the new one).

This charging and discharging constraint is formulated as follows:

where �Et is the stored or in case of negative values the extracted energy since the 
beginning of the period at the time step t. The charging Pc

t  and discharging power Pd
t  

have a charging ηcharge and discharging efficiency ηdischarge.
The stored energy at the end of each period ( Ep ) is implemented as follows:

N is the number of time steps in the period. The cyclic boundary condition is used to 
connect the last and first amount of stored energy of the total simulation interval 
( Ep=1 = Ep=end+1).

The boundaries during the period are implemented as follows:

This equation should avoid overcharging. Due to the calculated self-discharging rate for 
the entire period (N) this is not ensured. This equation does not hold for filled storage at 
the period’s beginning and a charging rate as high as the self-discharge loss of the period 
( �Et = (1−

(

1− ηself · δt
)N

) · Emax ). Equations (7) and (8) show this connection.

(3)Eh = Eh−1 ·
(

1− ηself · δt
)

+

(

Pc
t =f (h) · ηcharge −

Pd
t =f (h)

ηdischarge

)

· δt.

(4)�Et = �Et−1 ·
(

1− ηself · δt
)

+

(

Pc
t · ηcharge −

Pd
t

ηdischarge

)

· δt,

(5)Ep = Ep−1 ·
(

1− ηself · δt
)N

+�Et=N ,

(6)0 ≤ Ep−1 ·
(

1− ηself · δt
)N

+�Et ≤ Emax.



Page 5 of 14Blanke et al. Energy Informatics  2022, 5(Suppl 1):17	

Using the current time step within the period (t) instead of the total number of time 
steps within a period (N) as an exponent for the self-discharging rate avoids this over-
charging. The resulting equation is:

New seasonal storage model

The new model (called S-N) checks for periods of the same type during the year in a row 
( M > 1 ). If those periods occur, Eq. ( 5) which links the stored energy from the period to 
the inter period one, reformulates to:

The summation over the self discharging rate can be simplified to (F):

This simplification leads to:

.
The new model summarizes the periods of the same type within a row. Ensuring no 

overcharging or negative state of charges needs two new boundaries within the period. 
The first one ensures the current states for the first summarized period and the second 
one for the last. Equation (9) is accomplishing this for the first one. The second one 
needs the storage state at the beginning of the last summarized period. Equation (5) 
determines this state. The combination of this equation with Eq. (10) leads to the follow-
ing equation:

(7)Emax ·
(

1− ηself · δt
)N

+

(

1−
(

1− ηself · δt
)N

)

· Emax = Emax ≤ Emax.

(8)

Emax ·
(

1− ηself · δt
)1

+

(

1−
(

1− ηself · δt
)N

)

· Emax

= (1+
(

1− ηself · δt
)1

−
(

1− ηself · δt
)N

) · Emax �≤ Emax

∀ηself > 0 and N > 1.

(9)0 ≤ Ep−1 ·
(

1− ηself · δt
)t

+�Et ≤ Emax.

(10)Ep = Ep−1 ·
(

1− ηself · δt
)N ·M

+�Et=N ·

M−1
∑

i=0

(

(

1− ηself · δt
)N

)i
.

(11)F =

M−1
∑

i=0

(

(

1− ηself · δt
)N

)i
=

1−
(

1− ηself · δt
)N ·M

1−
(

1− ηself · δt
)N

.

(12)Ep = Ep−1 ·
(

1− ηself · δt
)N ·M

+�Et=N · F .

(13)

0 ≤ Ep−1 ·

(

1− ηself · δt
)N ·M

(

1− ηself · δt
)N

· F
·
(

1− ηself · δt
)t

+
Ep ·

(

1− 1
F

)

(

1− ηself · δt
)N

·
(

1− ηself · δt
)t

+�Et ≤ Emax.
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Methodology
This paper considers the C, S-G, S-K, and S-N model. It evaluates three system designs. 

1	 The first system considers a combined heat and power system with a boiler as 
backup. Furthermore, a hot tank stores the heat. An industrial hall building’s electric 
and thermal demand has to be covered (Reger et al. 2020, 2019). The system has a 
connection to the power grid and gas grid.

2	 The second system is a heat pump system. It consists of an air heat pump, an electric 
heater, and a hot tank as thermal storage. The power grid or a photovoltaic system 
covers the electric demand. An industrial hall building’s electric and thermal demand 
has to be covered (Reger et al. 2020, 2019).

3	 The third system is an island system. It contains a battery, photovoltaic, wind tur-
bines, electrolyser, fuel cell, and hydrogen storage. The island system has a connec-
tion to the power grid. It can cover at maximum 10 % of the electric demand. This 
boundary forces the system to be grid independent. The electric demand of an exam-
ple district has to be covered.

Blanke (2022) provides the used time series for the heating loads, electrical loads, the 
typical periods, and the python code. The TSAM aggregates typical periods with 24 h as 
time step (Hoffmann et al. 2021, 2022, Institute of Energy and Climate Research 2021). 
TSAM is a python package to aggregate typical periods from a time series. The cluster-
ing method is k-medoids. No extreme periods are integrated. The same number of typi-
cal days as in Kotzur et al. (2018) (3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 21, 27, 36, 48, 60, 90, 120, 
180, 365) are considered. Taking into account three typical days means each day of the 
year is assigned to one of these three typical days (Hoffmann et al. 2022). The optimiza-
tion models, efficiencies and costs are taken from Kotzur et al. (2018). The only excep-
tion is the hydrogen system, where the investment costs are reduced by 10 %. Therefore a 
self-discharging rate of 1 % per day is considered. This modification enables the possibil-
ity to evaluate the seasonal storage models with a self-discharging rate. Considering the 
self-discharging rate should ensure the same results for S-models while using this rate.

The Gurobi solver 9.5.1 is chosen. Neither heuristic nor presolve algorithms are 
applied since the heuristics matches are random and the presolve is resulting in longer 
calculation times for a small number of typical days. The MIP-Gap is set to 1 %. Default 
values are applied to the rest of the solver settings. The hardware consists of two test 
machines containing 32 GB RAM with an AMD Ryzen 7 1700 Processor and 64 GB 
RAM with an Intel Xeon W-2155 Processor, respectively. Furthermore, the optimization 
uses 12 threads.

Equations (6) and (13) are simplified as explained in section Constraint reformulation.

Results and discussion
The results of the three systems are presented and discussed in the following section. 
All S-models lead within the numerical accuracy to the same results. Therefore the cost 
results are just shown for the one S-model (S). The time results are the mean of the two 
hardware configurations, whereby two runs on each configuration are performed. The 
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reference model ( ref. ) optimizes the entire year with the original, hourly data without 
merging similar time series to typical days or typical periods. The modified model (mod.) 
optimizes the entire year with the hourly data aggregated by the typical days. This model 
allows the determination of the storage model usage error. The cost results are compared 
to both the reference and modified model. Costs are the combination of operating and 
component costs and the optimization objective. The relative error is calculated by the 
following equation:

A relative cost error of 2 % implies that the total cost difference between the refer-
ence ( ref. ) or modified (mod.) model to the considered storage scenario ( sce. ) (different 
model/ number of typical periods) is 2 %. This error will vary over the number of typical 
days since it compares the costs and not the energy system component sizes (like X kWh 
of battery). If the photovoltaic size is smaller than in the reference case, but the battery 
size is larger, this can lead to the same costs but with different component sizes.

For all cases, the ratio of the number of variables and constraints compared to the S-K-
model is always lower than one. The ratio is less for the cyclic case since the storage is 
not linked. For the S-N-model, the ratio is logarithmically increasing over the number of 
typical days up to one since the number of the same typical periods in a row decreases 
with increasing typical days. For the S-G-model, it is slightly decreasing.

In General, the C-model is the fastest. The S-N-model is faster or nearly as fast as the 
S-K-model. Besides, the S-G-model is the slowest one.

CHP system

Figure 3 shows the calculation time for all storage models (a) and the total costs error 
(b). In most cases, the calculation time for a number of typical days below 27 is less than 
35 % of the time of the complete year calculation. Especially the C-model stays below 5 % 
of the calculation time. This time reduction results from fewer variables and constraints 
used by the C-model. For the most number of typical days, the total cost error is less 
than 1 % compared to the reference model and less than 2.5 % compared to the modi-
fied model. The S and C-models lead to nearly the same error for a number of typical 
days less than 8. Afterwards, they differ. All S-models lead to an error of less than 0.2 %, 
which is slightly better than the C-model error of 0.6 %. This same error indicates that 
the primary storage usage is daily and not seasonal.

Figure 3c shows the number of variables (Var.) and constraints (Const.) as well as the 
calculation time relative to the S-K-model. In most cases, the S-N-model is more than 
10 % faster and the C-model up to 80 %. The S-G-model is more than 40 % slower than 
the S-K-model in most cases.

Air heat pump system

Figure 4 shows the calculation time for all storage models (a) and the total costs error 
(b). For a number of typical days below 28, the calculation time amounts to less than 40 
% of the time for the complete year calculation. Especially the C-model stays below 5 

(14)Crel =

∣

∣

∣

∣

∣

1−
COperationsce. + Cinvestment sce.

COperationref./mod.
+ Cinvestment ref./mod.

∣

∣

∣

∣

∣

.
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% of the calculation time. The total costs error stays below 2 % for the most number of 
typical days compared to both the reference and modified model. The S- and C-models 
reduce this error below 1 % for 27 or more typical days. Both models lead to almost the 
same error. The concordance between the errors indicates that the storage usage is daily 
instead of seasonal.

Figure 4c shows the number of variables (Var.) and constraints (Const.) as well as the 
calculation time relative to the S-K-model. In most cases, for less than 10 typical days, 
the S-N-model is about 20 % faster than the S-K-model. For more than 10 typical days, 
the S-N-model is as fast as the S-K-model. The C-model is up to 80 % faster in most 
cases. The S-G-model is about 100 % slower than the S-K-model in most cases.

Island system

Figure 5 shows the calculation time for all storage models (a) and the total cost error (b). 
The total cost error amounts to 45 % at its maximum. This error is significantly higher 

Fig. 3  Calculation time (a) and total costs error (b) for the different storage models and relative share of 
number of constraints and variables as well as time for C, S-G- and S-N- to S-K-model (c) for the CHP system
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than the CHP and the Air heat pump system error. However, for the most numbers of 
typical days, the total cost error remains below 12 % compared to the reference model. 
Only in the case of more than 48 typical days does the cost error of the S-model differ 
from the C-model. The concordance between the errors in cases of up to 21 typical days 
indicates the storage usage as daily storage instead of seasonal storage. This statement is 
underlined by Fig. 6 since hydrogen storage is chosen for the number of typical days of 
48 and more.

The cost error for a number of typical days less than 10 is below 2 % compared to the 
modified model. For a number of typical days of more than 48, the S and C-model errors 
differ. This trend indicates that the costs error for a number of typical days less than 10 
is caused by the typical days and not by the storage models. For a number of typical days 
higher than 48, the error is caused by the storage model. So, the seasonal storage model 
has a lower error here.

Fig. 4  Calculation time (a) and total costs error (b) for the different storage models and relative share of 
number of constraints and variables as well as time for C, S-G- and S-N- to S-K-model (c) for the air heat pump 
system
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For a number of typical days below 36, generally, the calculation time is lower than 14 
% of the full-year calculation time. Especially the C-model stays below 5 % of the calcula-
tion time.

Figure 5c shows the number of variables (Var.) and constraints (Const.) as well as the 
calculation time relative to the S-K-model. Up to 12 typical days, the S-N-model often 
calculates at least 10 % faster than the S-K-model. It is approximately as fast as the 
seasonal model for more typical days. The calculation time reduction decreases by an 
increasing number of typical days because of nearly the same number of variables and 
constraints for both models. The C-model is up to 90 % faster in most cases, and the 
S-G-model is, on average, 230 % slower than the S-K-model.

Figure 6 shows the total cost-share of the C-model, S-model, modified, and reference 
model. Until 21 typical days, the total costs increase for both storage models. Besides, 
the backup is used from a number of 6 typical days on. For less than 6 typical days, 
photovoltaic, wind turbine, and battery storage define the system. Hydrogen storage, 

Fig. 5  Calculation time (a) and total costs error (b) for the different storage models and relative share of 
number of constraints and variables as well as time for C, S-G- and S-N- to S-K-model (c) for Island system
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electrolyser and fuel cell are the components allowing seasonal storage. As of 21 typical 
days, the seasonal storage components are included in the system optimized using a sea-
sonal storage model. The seasonal storage model leads to nearly the same results as the 
reference case for a number of typical days of 48 and more. The C-model cannot get the 
same result because it cannot consider hydrogen storage as seasonal storage.

Conclusions
The presented work reviewed the classical cyclic storage formulation using typical days, 
the seasonal storage model by Kotzur et al., and the seasonal storage model of Gabri-
elli et al. Furthermore, it presented and evaluated an extension of the seasonal storage 
model of Kotzur et al.

The review of the model of Kotzur et al. leads to the same results and conclusions:

–	 The seasonal storage model is not reasonable for system designs where seasonal stor-
age is not an economical option. This model results in the same outcomes but with 
more calculation time than the not linked storage model.

–	 For a system that relies on seasonal storage, a seasonal storage model is a feasible 
option. It significantly reduces the computational time for a high number of typical 
days. Furthermore, it leads to nearly the same system design.

This conclusion also applies to Gabrielli et  al.’s seasonal storage model. All seasonal 
storage models lead to the same results. Gabrielli et al.’s model reduces the number of 

Fig. 6  Comparison of total costs share for cyclic and seasonal storage model for Island system
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variables and constraints by 5–10% compared to Kotzur et al.’s model. The calculation 
time of this model is significantly higher than for the model of Kotzur et. al. The new 
seasonal storage model summarises storage states of days in a row represented by the 
same typical period. It reduces the number of constraints and variables by more than 20 
% for a small number of typical days. In this case, the calculation time is low for all mod-
els. So, this new algorithm is beneficial for an energy system with many seasonal stor-
age components. So, it is valuable for extensive case studies. Also, the calculation time 
reduces by more than 10 % on the most numbers of typical days.

If seasonal storage should be considered, the seasonal storage model of Kotzur et al. 
should be used instead of the model of Gabrielli et al. The new model is a good choice, 
especially for a low number of typical periods or if many typical periods of the same type 
occur in a row.

Appendix
Constraint reformulation

This Eq. (6) can be reformulated using a support variable r to the following two 
equations:

This Eq. (13) can be reformulated using a support variable r to Eqs. (16) and (17):

Abbreviations
MILP	� Mixed-integer-linear-problem
TSAM	� Time series aggregation module
Eh	� Stored energy at the time step h within the year [J]
Ep	� Stored energy at the beginning of period p [J]
Et	� Stored energy at the time step t [J]
Emax	� Maximal stored energy [J]
F	� Self discharging factor for more then one period [–]
M	� Number of same period i in a row [–]
N	� Number of time steps in the period [–]
P
c
t
	� Charging power at time step t [W]

P
d
t
	� Discharging power at time step t [W]

�Et	� Stored or extracted energy from beginning of the period to time step tJ.
δt	� Time step length [s]
ηcharge	� Charging efficiency [–]
ηdischarge	� Discharging efficiency [–]

ηself
	� Self discharging rate [1/s]

f	� Function that returns the period time step for the input hour h [–]
h	� Time step within the year [–]
r	� Supporting variable to simplify constraints [J]
t	� Time step within the one period [–]
C	� Cyclic storage model

(15)r + Ep−1 ·
(

1− ηself · δt
)N

+�Et = Emax.

(16)r ≤ Emax.

(17)

r + Ep−1 ·

(

1− ηself · δt
)N ·M

(

1− ηself · δt
)N

· F
·
(

1− ηself · δt
)t

+
Ep ·

(

1− 1
F

)

(

1− ηself · δt
)N

·
(

1− ηself · δt
)t

+�Et = Emax
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S	� Seasonal storage model
S-G	� Seasonal storage model of Gabrielli et al. (2018)
S-K	� Seasonal storage model of Kotzur et al. (2018)
S-N	� New seasonal storage model as and extension of Kotzur et al. model
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