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Motivation
Businesses are under increasing pressure to offer carbon-neutral products and services. 
The industrial sector, which consumes 26 % (eurostat 2021) of final energy in the Euro-
pean Union and 24 %  (U.S. Energy Information Administration 2021) in the United 
States of America, has a special responsibility to reduce greenhouse gas emissions to 
counteract climate change. The proliferation of renewable power generation contributes 
to this reduction, but it comes with additional challenges, such as the stochastic avail-
ability of solar and wind energy (Degefa et al. 2021).

Demand response (DR), as part of Industrial Demand Side Integration, offers a solu-
tion by adjusting energy demand to the available generation capacity  (Walther et  al. 
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2022). Research regarding DR is ongoing and concerns many areas of factory operations. 
Shoreh et  al. (2016) gives an overview of DR applications in industry. An example of 
a more specific approach to optimizing energy consumption of a factory is presented 
in Summerbell et al. (2017), which applies DR to a cement plant. Corinaldesi et al. (2020) 
introduces methods for modeling industrial equipment flexibility and uses a rolling 
horizon approach for optimization. Lu et al. (2021) implements machine learning based 
forecasts in a rolling horizon decision making process. A rolling horizon optimization 
approach is a recurring optimization of the system with shifting optimization horizons 
and starting values representing the system’s current state  (Sethi and Sorger 1991). In 
general, it is well suited to DR problems and the short overview shows that it is often 
utilized. However, most articles publish mathematical models, but software implemen-
tations of the demonstrated use cases are typically not available.

Our goal is thus, to publish a framework, which enables rolling horizon optimization 
and can easily be utilized for many use cases. To achieve this, the framework must fulfill 
the following requirements:

•	 The framework must offer a representation of the factory and of the devices or 
machines inside the factory, for example, through a mathematical or simulation 
model. We call this representation the environment.

•	 It should have an interface to perform the optimization, which should also support 
different algorithms. We refer to this as the agent.

•	 The agent and the environment need to interact during the rolling horizon optimiza-
tion.

•	 The operation strategies determined by the agent have to be deployed to actual 
devices in the factory. For this, the framework must be able to communicate with the 
devices through industrial communication protocols such as Open Platform Com-
munication Unified Architecture (OPC UA).

•	 The system must be able to handle time-series (or scenario) data. Time-series data 
can describe external variables such as the weather or energy prices (or forecasts 
thereof ).

There are existing frameworks and libraries which fulfill some of the requirements; how-
ever, none of the existing solutions provide a sufficient basis to quickly implement rolling 
horizon energy-optimized factory operations in its entirety.

The gym framework by OpenAI specifies a standardized interface between agents 
and environments  (Brockman et  al. 2022). OpenAI developed the stable_baselines 
package based on this standard, which contains implementations of many different 
deep reinforcement learning (DRL) agents  (Hill et  al. 2018). The stable_baselines3 
package is based on stable_baselines and improves the agents (called algorithms in 
this case) (Raffin et al. 2021). The gym framework (Brockman et al. 2022) is very gen-
eral and does not provide functions for integrating simulation models or connections 
to actual devices, which are required for energy-optimized factory operations. The 
garage framework  (The garage contributors 2019) combines different environment 
interfaces, offers additional algorithms, and provides more customizable interfaces, 
but it remains specific to DRL and does not provide significant extensions for the 
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specification of environments. Other similar frameworks are keras-rl (Matthias Plap-
pert 2016), Coach (Caspi et al. 2017), ReAgent, which Facebook uses for optimization 
based on batch data rather than simulators  (Gauci et al. 2022), and Acme  (Hoffman 
et  al. 2022). dopamine  (Castro et  al. 2022) is meant for easy experimentation and 
supports only a subset of environments, tensorforce  (Kuhnle et  al. 2017) builds on 
tensorflow and offers multiple environment adapters (for example, with the Open-
Sim application programming interface (API)), JuliaReinforcementLearning  (Tian 
et  al. 2020) is a similar implementation for the Julia programming language. All of 
the above frameworks are specific to DRL and do not directly generalize to rolling 
horizon optimization. Therefore, they cannot readily be used with other optimization 
algorithms such as heuristics or linear and non-linear solvers. Most of the available 
frameworks and libraries are written in Python.

While there are frameworks for DRL, other research on rolling horizon optimization 
often implements an individual approach, creating duplicate work, and often not allow-
ing the deployment of optimization results to actual devices in the factory. The deploy-
ment requires connections to the devices, for example, using industrial communication 
protocols such as OPC UA and (Modbus TCP) or through APIs exposed by applications 
like Internet of Things (IoT) platforms. Some libraries which facilitate this process exist: 
The FreeOpcUa contributors (2021), for example, implements the OPC UA standard in 
Python, and Lefebvre (2018) is a Python library for Modbus TCP . IOT platforms, such 
as ThingSpeak  (The MathWorks Inc 2022) or Cumulocity IoT  (Software AG 2022), can 
collect data from devices and decrease the effort of data aggregation and pre-process-
ing. However, these platforms need to operate continuously and are usually deployed to 
separate devices or as cloud services. In addition, the integration of scripts for energy 
optimization is often manufacturer-specific and limited. Due to these factors, they are 
not well suited for fast-changing research applications.

Currently there are no software frameworks available that combine the requirements 
of rolling horizon optimization for energy-optimized factory operations. Thus, we pro-
pose the eta_utility framework, which combines the functionality of a DRL framework 
based on gym and stable_baselines3 with the ability to integrate other optimization algo-
rithms like linear or non-linear programming solvers. The framework includes a stand-
ardized connector interface that enables communication with devices via industrial 
communication protocols. It enables factories’ rolling horizon optimization and execu-
tion of DR measures. Links to the software repository are provided in the Availability of 
data and materials section.

In this article, we introduce the framework’s structure and demonstrate its usage with 
some examples. A live energy forecast of a machine tool in the Energy Technologies and 
Applications in Production (ETA) research factory shows an application of the con-
nectors module. A second example is the rolling horizon optimization of an industrial 
cleaning machine for DR. It includes a simulation model of the machine and a direct 
connection to the machine’s programmable logic controller (PLC). The code for these 
examples is published within the eta_utility repository (see Availability of data and mate-
rials). Finally, we present an overview of other applications realized using the eta_utility 
framework. In the conclusion, a summary of the presented work as well as an outlook on 
future research is given.
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Structure of the proposed framework
The eta_utility framework is developed in Python. Its structure is illustrated in Fig. 1 
and consists of the following modules:

•	 The eta_x module, shown on the left in Fig. 1 contains the rolling horizon optimi-
zation functionality. It uses the environment interface specified by the gym frame-
work (Brockman et al. 2022) and the agents provided by the stable_baselines3 (Raffin 
et al. 2021) library. The module contains additional agents and base classes that ena-
ble the fast creation of new environments for energy-optimized factory operations.

•	 In the top right of Fig. 1, the connectors module defines a standardized interface for 
connections between Python and industrial communication protocols and APIs. It 
uses the concept of nodes to uniquely identify a specific data point or variable on a 
specific device.

•	 The simulators module, bottom right in the figure, implements interfaces to simu-
lation models following the Functional Mock-up Unit (FMU) standard (Modelica 
Association 2022) and is based on the fmpy package (Dassault Systèmes 2018).

•	 The timeseries module, right-center in the figure, provides additional functional-
ity to handle time-series data using the pandas package (Jeff et al. 2022; McKinney 
2010).

•	 The servers can be used to publish optimization results and make output data, for 
example, from forecasting services, available to downstream services.

•	 Finally, the util module provides ancillary functions such as logging and data de-seri-
alization.

Fig. 1  Structure of the eta_utility framework. The rolling horizon optimization process is shown on the 
top left. Here, the algorithm selects actions Ak based on the current system state St and sends them to the 
environment, whereupon a new system state St + 1 is established. In DRL algorithms, a reward signal Rt 
or Rt + 1 is also transferred, which describes the quality of a system state. The modules are shown on the 
bottom and right
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The design considerations for the eta_x and connectors modules are explained in the 
following sections. The remaining modules are less complex, and we point to the docu-
mentation provided with the framework for more information about them.

The eta_x module

eta_x combines functions from the other modules and provides the rolling horizon 
energy-optimization functionality. It is based on the OpenAI gym framework  (Brock-
man et al. 2022) and the stable_baselines3 package (Raffin et al. 2021). Some extensions 
for stable_baselines3, such as additional policies, extractors, schedules, and agents, are 
also included in the module. An initial version of eta_x was developed by Panten (2019), 
where it was applied for DRL-based energy optimization of factory supply systems. 
In addition to the DRL agents, hysteresis controllers were implemented. This concept 
has now been extended to generalized rule-based controllers. Furthermore, algorithms 
for solving linear programming models, initially proposed by Kohne et al. (2019), were 
added to eta_x in Panten et al. (2022).
eta_x is built on the concept of experiments. An experiment represents a specific 

environment, agent, and scenario configuration. In this context, the scenario could be 
a specific time of year combined with electricity market data. The configuration can be 
provided in JavaScript Object Notation (JSON) files. Depending on the type of agent 
used for the experiment, the agent must be trained with the learn function before an 
optimized operating schedule can be simulated or deployed with the play function. 
This functionality is combined within the ETAx class, but its parts can also be used 
standalone.

For the moment, three types of algorithms are available:

•	 A generalized, abstract rule-based algorithm (RuleBased) facilitates the creation of 
rule-based agents by specifying one or more control rules.

•	 An interface for mathematical solvers (MathSolver) integrates external solvers like 
CPLEX (IBM Corporation 2019). This agent is based on the pyomo (Hart et al. 2017) 
library.

•	 DRL algorithms from stable_baselines3, like Proximal Policy Optimization (PPO) 
(see Raffin et al. 2021 for more information).

Environments in eta_x are abstract subclasses of OpenAI gym  (Brockman et al. 2022) 
environments and must be implemented to represent actual factories. The most impor-
tant concept is the handling and configuration of the environment state. Each environ-
ment variable is represented by a StateVar object that contains all relevant information 
about the variable. For example, whether the variable is read from scenario data or a 
simulation model or whether the agent should set it as an action. Most other aspects of 
the environment can be determined and executed from the information contained in the 
StateVar objects.

As shown by the blue arrows in Fig. 1, the environments use most other modules in 
eta_utility . There are simulation environments that use the simulators module or live 
environments that directly interact with devices in the factory using the connectors 
module. The framework can handle two environments at once, which is helpful, for 
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example, when deploying an agent trained on a simulation model to the actual fac-
tory. The secondary environment could then be used to extend data available from the 
factory or to check actions taken by the agent. Data is shared between the two envi-
ronments in this case, as indicated by the arrow in the lower right corner of Fig. 1.

The connectors module

The purpose of the connectors module is to enable communication between Python 
services and the actual environment. In the factory environment, these connections 
are often established using specific communication standards such as the stand-
ardized industrial automation framework OPC UA  (OPC Foundation 2008) or the 
Modbus TCP  (Modbus Organization, Inc 2006) communication protocol, which 
communicate via an Ethernet/IP network.

The connectors modules allows testing with real-time data and enables the deploy-
ment of energy-optimized operating strategies to the actual factory environment. For 
example, in the ETA research factory, we need to establish connections to read and 
write data from and to PLCs of production machines to implement an energy-opti-
mized production schedule or the building automation system to generate optimized 
control strategies for energy supply systems. Connections to other systems, such as 
IoT platforms or energy management systems like EnEffCo (ÖKOTEC 2022), are suit-
able to obtain historical time-series data or to store optimization results.

The connectors module in eta_utility is built on two central concepts. First, Node 
objects are definitions of a single data point or variable. A Node contains all informa-
tion to uniquely identify the Node and establish a connection to the data source. Sec-
ond, Connection objects are used to establish a connection to a data source (server) 
and to read, write or subscribe to Nodes from this server. All protocols and APIs can 
be treated equally for basic functionality like reading and writing data with these con-
cepts. The connectors module also provides classes to handle data subscriptions and 
can treat multiple connections with an interface similar to a simulation model from 
the simulators module. The interface is provided by the LiveConnect class, which 
provides additional configuration options to automatically set the state of more com-
plex systems of devices, which might require multiple Nodes to be set to specific val-
ues to achieve a certain system state.

Application of the framework
To demonstrate the framework’s capabilities, we present some examples of the usage 
of eta_utility . The live energy forecasting example illustrates capabilities of the con-
nectors module. The cyber-physical production system example uses the framework 
to optimize the operation of an industrial cleaning machine. The code for these exam-
ples is included in the eta_utility software repository. The repository also contains 
some additional example code and documentation.

We also describe other applications which were implemented using the framework. 
These applications have been published elsewhere; thus, we only provide summaries.
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Live energy forecasting

The forecasting example illustrates the usage of the connectors module. Forecasts of 
energy consumption or energy prices can be an essential element of the rolling hori-
zon energy optimization. They provide the information required for subsequent opti-
mization steps. Chang (2021) applies the connectors module to deploy an energy 
forecasting model on edge devices. The forecasting model, published in Dietrich 
et al. (2021), is a 100 s forecast of the electric load of a grinding machine in the ETA 
research factory based on a keras deep learning model. The forecast can be used for 
peak shaving or energy-optimal process scheduling. Input data for the forecast con-
sists of nine signals corresponding to the total electric load, and the electric load of 
sub-components of the grinding machine. The data is a consecutive sequence of 100 s 
with a frequency of 1 Hz.

For deployment of the model, (Chang 2021) implements a loop of reading data, 
model inference, and publishing the forecast and executes it with a frequency of 1 Hz. 
An OPC UA server on the grinding machine’s PLC and a Modbus TCP server on the 
energy metering device are the data sources.

The connectors module is used to connect to the data sources. The direct connec-
tion to the production machine’s PLC and sensor gateway is advantageous due to the 
flexibility it provides. It facilitates data processing, integration with the energy-opti-
mization and fast development times. Other solutions, for instance, using Telegraf 
to read OPC UA and Modbus TCP data directly to InfluxDB offer less flexibility and 
introduce additional points of failure.

Cyber‑physical production system for demand response

The second use case takes advantage of the entire eta_utility framework for energy-
flexible operation of an aqueous cleaning machine (Grosch et al. 2022). The aim is to 
execute DR measures on the cleaning machine MAFAC KEA in the ETA research fac-
tory by controlling its tank heater. Accordingly, the machine is extended to a cyber-
physical production system that includes:

•	 the physical machine and its automation program (implemented as an eta_x envi-
ronment with a connectors instance),

•	 an OPC UA server on the machine’s PLC to publish current operation steps, con-
ditions and energy consumption data (which we connect to with the connectors 
instance),

•	 a dynamic multi-physics simulation model of the machine (implemented as an 
eta_x environment with a simulators instance) and

•	 the DR service (agent) to control the machine that receives external energy prices 
for its optimization (implemented using the timeseries module).

The eta_utility framework manages the interaction between these components.
In Grosch et al. (2022), the DR service and the simulation model are executed on a 

PC connected to the machine’s PLC via Ethernet. The eta_utility framework is used 
as a cyber-physical interface to connect different hierarchy levels of the Reference 
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Architecture Model Industry 4.0  (DIN 2016): The machine modules controlled by 
the automation program and executed on the PLC are located on the field or control 
device level. The DR service and the simulation are located on the station level.

The authors of Grosch et al. (2022) use an automation data model for the hierarchi-
cal connection between the machine automation and the DR service. The automa-
tion data model consists of the automation data specification and the automation data 
dictionary  (Grosch et  al. 2022): The automation data specification is located on the 
machine’s PLC and its implementation leads to a hierarchically structured OPC UA 
server. The automation data dictionary is implemented using the LiveConnect class 
which is configured using a JSON file. It includes

•	 the name and the IP address of the OPC UA server(s),
•	 the user name and password to establish a connection,
•	 Node descriptions and data types for variables used by the DR service and
•	 a mapping between the Nodes and equivalent variables of the DR service.

The DR service fetches external energy prices to determine the state of the tank 
heater. It is switched on when the energy price is below 100 €/MWh and switched off 
when the price is above 100 €/MWh, as shown in Fig. 2. The DR service also interacts 
with the simulation model of the cleaning machine which simulates the thermal and 
electrical behavior of the machine. A forecast of the tank heater state from the simu-
lation model guarantees that temperature limits are not exceeded by DR measures. 
Overall, the field test shows a 19 % decrease in energy costs. The controller and the 
simulation model performed as expected and set safety values were obeyed.

Other applications

eta_utility permits comfortable implementation of various use cases, leading to 
substantially reduced time to obtain research results for energy-optimized factory 

Fig. 2  Tank temperature and machine’s electrical power consumption (top). Electricity price and tank heater 
state (bottom). The upper temperature limit of 65 °C is exceeded for 160 s. The tank heater is switched four 
times during low prices. Grosch et al. (2022)
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operations. In the following we present a selection of additional use cases built on the 
functionality of eta_utility.

Low‑cost energy monitoring based on offline trained prediction models

In order to reduce the costs of monitoring energy flows in the factory, Hybrid Virtual 
Energy Metering Points (VMPs) can be used. VMPs are offline trained models that pre-
dict the energy consumption of energy consumers like industrial production machines. 
They are set up empirically by correlating a temporary power consumption measure-
ment with machine-internal process and state signals (Sossenheimer et al. 2020). Further 
research shows how other data sources can be used for training and deploying VMPs in 
case of insufficient machine data availability (Sossenheimer et al. 2021). The overall goal 
of using VMPs is to save costs by deploying trained black-box machine learning models 
to predict the energy consumption instead of installing physical metering devices. The 
connectors module is used to read the necessary machine data to the VMPs and the 
servers module to publish the predicted power consumption via OPC UA.

Optimized control of a central cooling system

In Weigold et al. (2021), the eta_x module is used and the DRL algorithm PPO is suc-
cessfully applied to a simulation of an industrial cooling supply system. Significant 
reductions in electricity costs by 3 % to 17 % as well as reductions in CO2 emissions 
by 2 % to 11 % are achieved. The DRL-based control strategy is interpreted and three 
main reasons for the performance increase are identified. The DRL controller reduces 
energy cost by utilizing the storage capacity of the cooling system and moving electric-
ity demand to times of lower prices. Additionally, the DRL-based control strategy for 
cooling towers (CT) as well as compression chillers (CC) reduces electricity costs and 
wear-related costs alike (compare Fig. 3). To achieve these results, the cost function to be 
minimized was designed as a weighted sum of temperature restriction cost ( CT ), energy 
cost ( CE ), switching cost ( CS ) and other cost ( CO ), each multiplied by individual weights 
(w):

(1)C = wTCT + wECE + wSCS + wOCO.

Fig. 3  Control signals of a 3 day test episode. In comparison to the conventional (Conv.) controller, the DRL 
controller preferably utilizes one cooling tower pair up to its highest power level before activating the next. 
This keeps unneeded water pumps inactive, reducing energy cost. This approach also allows for fewer total 
switching operations, improving switching cost (Weigold et al. 2021)
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Comparative study of algorithms for optimized control of energy supply systems

In Kohne et al. (2020), the eta_x module is used to obtain a standardized comparative 
study of different controllers (rule-, model- and data-based) for optimized operation 
strategies by connecting them to dynamic simulation models of two industrial energy 
supply systems of varying complexity. The first energy supply system consists of a heat-
ing, gas and electricity grid which are supplied by a combined heat and power unit, a 
gas boiler and an immersion heater. In the second energy supply system, a cooling grid 
with a cooling tower, a compression chiller and a heat pump between heating and cool-
ing grid are added. The rule-based controller activates or deactivates the respective 
energy converters based on the temperatures in the top and bottom of the thermal stor-
ages depending on a priority list. The objective function of the model-based controller 
(mixed-integer linear programming (MILP)) is explained by Eq. (2), which contains costs 
for gas ( CG ) and electricity ( CEl ) as well as taxes ( CP ) on procured energy and charges 
for peak loads. Additionally, non-direct costs for switching ( CS ) are added. As not every 
optimization run might result in feasible solutions due to grid constraints, infinite sinks 
and sources ( CSS ) are modeled to ensure system stability of the optimization process, 
resulting in

The cost function of the data-based DRL controller is designed as a sum of weighted 
terms, similar to Eq. (1) with costs for energy, switching, temperature limits and other 
cost (Panten 2019). The results indicate that controllers based on DRL and MILP have 
significant potential to reduce energy-related costs of up to 50 % for less complex (Fig. 4) 
and around 6 % for more complex systems.

Conclusion
In this paper, we presented a software framework for research on energy-optimized 
factory operations. The eta_utility framework is based on the OpenAI gym environ-
ment and follows a rolling horizon optimization approach. It is developed in Python 
and consists of six modules: eta_x, connectors, simulators, timeseries, servers, and 

(2)min C = CG + CEl + CP + CS + CSS.

Fig. 4  Distribution and mean value of overall and specific cost per episode for the smaller system. Cost in 
this case are interpreted as negative rewards. Thus, increasing performance is indicated by higher values 
(Kohne et al. 2020)
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util. As shown in the examples, eta_utility allows fast and simple implementation of 
rolling horizon optimizations for energy-optimized factory operations, and to deploy 
the results by controlling devices in the factory. For this, the framework provides 
connectors for multiple communication protocols including Open Platform Com-
munication Unified Architecture and Modbus via Transmission Control Protocol. It 
also integrates simulation models through the Functional Mock-up Unit standard. 
Within the paper, we explained the overall structure, functionality of eta_utility and 
the design decisions for the main modules eta_x and connectors.

To demonstrate the capabilities of the framework we introduced several exam-
ples for the usage of eta_utility . Code for the two main examples is included in the 
eta_utility software repository (see Availability of data and materials). The examples 
show that all modules of the software framework are applicable for different use cases 
and applications. Use cases for transparency such as forecasting are shown as well as 
the energy-optimization of factories. The latter is carried out both in simulation and 
in the application to real systems within the ETA research factory. The implementa-
tion of the examples proves the effectiveness of our approach.

Nevertheless, there are still some useful expansion options that could necessitate 
further research. Agents in eta_utility can utilize vectorized environments, however 
it is currently not possible to check multiple solutions in a single thread. This func-
tionality would be needed for more efficient execution of heuristics. Additionally, the 
framework does not yet offer multi-agent optimization.

By publishing the eta_utility software framework we hope to contribute to further 
research on energy-optimized factory operations outside our research group. We 
will continue our research and to improve the framework to make it applicable for 
broader use cases in energy-optimized factory operations.
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