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Introduction
Traditional power systems are centralized since the electric flow is unidirectional, 
from bulk power plants to consumers. However, the transition into a modern power 
system enabled by Information and communication technology (ICT) and enacted 
policies to combat global warming increase Renewable Energy Sources (RES), distrib-
uted in many cases. These RES depend on weather conditions for their optimal opera-
tion and thus increase the challenge of sustaining power system stability. To meet this 
challenge, the energy system needs energy flexibility. Union of the Electricity Indus-
try—EURELECTRIC aisbl (2014) defines the term flexibility as the “[...] modification 
of generation injection and/or consumption patterns in reaction to an external sig-
nal (price signal or activation) to provide a service within the energy system”. Energy 
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flexibility provision thus can have many different sources. Whereas options such as 
the enhancement of transmission lines or the building of new electrical storages or 
power plants are cost-intensive to implement (Palensky and Dietrich 2011; Heffron 
et  al. 2020) (i.e., high investment costs), the adjustment of electricity demand has 
the advantage that the energy flexibility providing assets already exist (Heffron et al. 
2020). The so-called DR, as one part of Demand Side Management (DSM), describes 
short-term changes at the electricity consumption side (Palensky and Dietrich 2011).

In Germany, the industrial sector has the highest share of final electricity consump-
tion at 41% (Energiebilanzen 2021). Thus, it offers a high potential to impact a change 
of demand using DR. However, the identification and application of industrial energy 
flexibility are challenging tasks. Industrial companies have complex and a variety of 
industrial processes where industrial energy flexibility is not a core business for most 
of them. Hence, most industrial companies use tailored decision support systems to 
help them determine their optimal adjustment of electricity demand in terms of time 
and characteristics that require customized scheduling models. Thus, these tailored 
solutions pose a threefold challenge. First, they might require a relatively high invest-
ment, especially hurdling small and medium-sized companies (Bauernhansl et  al. 
2019). Second, they tend to lack interoperability features, notably in using a single, 
specific model to describe their energy flexibilities (Bauernhansl et al. 2019). This spe-
cific model instantly creates vendor lock-in problems (unable to switch between ser-
vice providers easily) (Potenciano Menci et al. 2021; van Stiphoudt et al. 2021). Third, 
tailored models and existing literature tend to be use-case-specific, resulting in case-
dependent models (Helin et al. 2017; Zhou et al. 2017; Xu et al. 2020) and the consid-
eration of single processes (Howard et al. 2021). Therefore, industrial companies find 
several barriers to realizing their energy flexibility potential. To address these chal-
lenges, there is a need for a holistic, interoperable, and generic use-case-independent 
model, which industrial companies can use to support their decision of where (i.e., 
which market) and when (i.e., which times) they can market their industrial energy 
flexibility.

We propose an optimization model for calculating an optimal adjustment of electric-
ity demand for industries that is generic, holistic, and interoperable for a given horizon. 
We achieve generality by building upon a generic data model that describes energy flex-
ibility, introduced by Schott et al. (2019). This generic data model allows us to decouple 
model generation (flexibility description) and optimization, letting industrial companies 
specify their level of detail in their model’s description. In addition, it enables us to con-
sider in the optimization model the inclusion of connected systems, including a wide 
range of storage types (e.g., energy, heat, compressed air, electric) and dependencies 
between different processes and/or machines. We consider the model holistic because 
it allows industrial companies to run the optimization for various scenarios consider-
ing different optimization horizons, energy markets, or flexibility descriptions to com-
pare potential benefits. Thus, it can assist industrial companies in selecting where and 
when to market their flexibility using the optimal schedule. By using defined and generic 
inputs and outputs to describe flexibilities, the model becomes interoperable: Compa-
nies that describe their energy flexibilities with the data model introduced in Schott 
et al. (2019) can apply this optimization model. Furthermore, industrial companies could 
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combine the optimization model we propose with other solutions which already use the 
same generic data model (Lindner et al. 2022; Bank 2021).

The paper is structured as follows. The “Related Work” section provides a brief over-
view of related work in energy flexibility optimization and scheduling. The “Model” 
section introduces the optimization and scheduling model formulation based on a 
mixed-integer linear programming approach. The “Use cases and results” section 
focuses on implementing the model under different use cases to evaluate its output. The 
“Discussion” section focuses on the discussion about the features of the proposed model 
based on the simulation results from the previous section. Finally, the “Conclusions” 
section summarizes the results but also acknowledges the limitations of the proposed 
model in addition to the research outlook.

Related work
Energy flexibility optimization focused on demand (household, industrial, etc.) or in 
combination with supply is a widely investigated topic within literature. In this context, 
DR applied to industrial energy flexibility refers to the deviation in the consumption 
patterns of an industrial consumer to take part in energy flexibility markets (any mar-
ket trading power and capacity) (Fridgen et  al. 2017; Commission et  al. 2022; Shoreh 
et al. 2016). In this regard, a production plant can shift its production plan to make a 
monetary profit by taking part in current electricity markets (e.g., wholesale) and in new 
potential markets (e.g., local flexibility markets) with its energy flexibility (Bauernhansl 
et al. 2019).

Industrial companies mostly optimize their industrial processes focusing on efficiency 
regarding other production inputs than energy, which often prevents their industrial 
processes from being energy flexible. Additionally, industrial processes have different 
characteristics, limiting the availability of complete generic models (i.e., any model that 
can accept any process) (Schott et al. 2019).

One characteristic of industrial processes and their energy flexibility is the connec-
tion between industrial processes and/or machines (Shoreh et al. 2016). Each link cre-
ates a dependency. There is a need to consider these dependencies between processes 
and/or machines to create generic models for industrial energy flexibility. Nevertheless, 
for simplification purposes, many authors do not consider dependencies in their models 
and thus limit their models’ general application. For instance, in Angizeh et al. (2019), 
authors propose an energy flexibility scheduling method for industrial consumers con-
sidering on-site generation. However, they do not consider the dependency between 
loads. Likewise, the models proposed in Shrouf et al. (2014) and Varelmann et al. (2022) 
focus on optimizing the production scheduling and participating in different markets 
considering a single industrial machine, respectively. Therefore, they contribute to con-
sidering aspects such as different power states, load shifting, and participating in differ-
ent markets but do not consider the dependencies within the industrial process.

Other authors employ material flow models to tackle such dependency problems 
in their optimization. Material flow models are one possible way to model dependen-
cies. For example, using a material flow model, authors in Mitra et  al. (2012) investi-
gate an optimal production planning method for energy-intensive industrial plants (e.g., 
air separation plant and cement plant). Similarly, authors in Wanapinit et  al. (2021) 
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present a modular energy flexibility model for industrial end-users using a material flow 
model. Their model covers energy flexibility features such as ramp rates and time lim-
its for energy flexibility activation. Authors in Ashok and Banerjee (2001) proposed a 
method to minimize the electricity costs considering the process, storage, and manu-
facturing constraints. In Ruohonen et al. (2011), the authors present a model for cost-
effective scheduling of paper pulp mill. The authors in Ramin et  al. (2018) investigate 
the DSM of industrial processes considering production constraints. Authors in Khatri 
et al. (2021) propose a coupled generic modeling library and optimal control to react and 
control based on fixed or variable price signals. Their generic modeling library enables 
industrial companies to model down to individual machines and how to control them. 
Their optimization provides a schedule allowing the control model to act accordingly. 
Similarly, authors in Castro et al. (2009) proposed a resource-task-network approach to 
schedule continuous production plants based on electricity price. Nevertheless, their 
optimizations in many cases using material flow models could hurdle the generality of 
their model. This is because material flow modeling needs a detailed description of each 
industry. Thus, it might result in case-specific models.

Further improvement of generic industrial energy flexibility modeling has to do with 
the inherent features of the industrial energy flexibility such as ramping of the machines, 
energy storage modeling, and limited run-time of the machines, which the authors in 
Moon and Park (2014) and Barth et al. (2018) considered in their proposed model.

Moreover, there are contributions in the optimization domain that employ heuristic 
approaches (Gong et al. 2019). Heuristics’ ability to calculate fast solutions has increased 
their application mostly in large-scale problems (Küster et al. 2021). Although heuristics 
might be a fast solution, they cannot guarantee the global (optimal) solution and might 
result in a locally optimal solution.

Nevertheless, demand modeling requires data transfer regardless of the feature selec-
tion and optimization model. To enable the data transfer between various sectors and 
provide standardization, having a data model is highly important but imposes a chal-
lenge. For instance, authors in Huber (2018) briefly explored the necessary parameters to 
describe a flexible data model for DSM. More extensively, authors in Schott et al. (2019) 
propose a generic data model which can describe various energy flexibility aspects, 
improve the information exchange, and enhance energy flexibility automation. This 
generic data model enables cross-sectoral usage (i.e., residential and industrial), facilitat-
ing targeted cross-sectoral optimizations. They challenged their proposed data model 
against the feature-checklist developed by Barth et al. (2018) and were able to include all 
features in the proposed data model. Authors in Lindner et al. (2022) for instance, lever-
age the potential of the generic data model to propose a possible merging service that 
could combine various descriptions into one. Authors in Bank (2021) propose a con-
ceptual step step-wise approach to integrating the generic data model for production 
planning.

In summary, many authors solve their optimizations in a simplified yet efficient 
and fast manner, considering specific use cases. Within these specific use cases, many 
authors select a limited number of relevant features for their models to solve their opti-
mization problems and thus, develop tailored solutions. These specific use cases face a 
threefold problem (Bauernhansl et al. 2019). First, they limit the holism of their model 
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due to their selection of relevant features for simplification and fast optimization solu-
tions. Second, their models tend to lack interoperability across different demand types. 
Since their models usually only focus on one demand-type, it delimits the feature selec-
tion and optimization method. Third, they hurdle their model’s replicability since it is a 
tailored solution across the same industry. This tailored model would require, in some 
cases, extensive modifications to adjust to other boundary conditions. Therefore, many 
demand models, even those focused on industrial demand flexibility, face holistic, inter-
operable, and replicable (transferable) limitations. According to Helin et al. (2017), such 
attributes are necessary for industrial flexibility modeling.

Model
The proposed optimization model (artifact) takes three different inputs and produces 
two different outputs, depicted in Fig.  1. The optimization uses a generic data model, 
the Energy Flexibility Data Model (EFDM) from van Stiphoudt et  al. (2021); Schott 
et al. (2019). The EFDM is the core for describing (1) the flexibility potential and (2) the 
specific power profile the flexible loads have to follow, known as flexible load measure. 
Therefore, the EFDM offers companies an entire framework in JavaScript Object Nota-
tion (JSON) to work with flexibilities descriptions (Schott et  al. 2019). We considered 
the guidelines proposed in Hevner et al. (2004) to design the optimization model. More-
over, we followed the iterative methodology for developing and evaluating the model 
proposed by Peffers et al. (2007). However, we only describe in this manuscript the final 
optimization model and not the multiple iterations needed for the model development. 
Hereafter, each subsection covers the inputs the optimization model uses, the mathe-
matical description of the optimization model, and the optimization output. We coded 
the model in Python using the Gurobi solver (Gurobi Optimization 2022) and tested it 
on a computer with a Core i7 CPU @ 2.6 GHz processor and 32 GB RAM.

Inputs

Energy market prices

The first input to our optimization model is the energy market prices (i.e., electricity 
markets). Notably, the optimization can use the power exchange prices (i.e., European 
Power Exchange (EPEX)) from the spot market contained in the wholesale market as 
well as price forecasts expressed as time series. It supports data intake from the day-
ahead and intraday (auction and continuous) since it allows for different time resolutions 

Optimization Model

Electricity Market Prices

E
FD

M

Dependencies

Storages

Flexible Loads

OutputsInputs

E
FD

M

Flexible Load Measure

Profit from Flexibility Scheduling

Futher Input

Fig. 1 Input and outputs of the optimization model
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(i.e., 15-min and 1-h values). The data input enables the analysis of price volatility in the 
electricity markets and the identification of the best possible marketing time, which may 
include times with negative prices.

EFDM: flexible loads, storages and dependencies

The second input of the optimization model is the flexibility description. Industrial com-
panies can and are responsible to describe their flexibility using the EFDM developed 
in Schott et al. (2019) through its three main categories with any any level of detail they 
chose. These categories are the flexible loads, storages, and dependencies.

The flexible load category is the main flexibility description. It contains several key fig-
ures for the description, provided in Table 1.

Industrial companies might use a wide range of storage systems in their processes, 
such as heat, cold, compressed air, and electrical energy storage (EES). They can describe 
these storages using the storage category within the EFDM, utilizing several key figures, 
as described in Table 2.

Industrial companies can have complex processes. Their industrial processes involve 
machines that depend on one another. To capture industrial processes’ complexity, 
industrial companies can describe these dependencies in the EFDM using the category 

Table 1 Key figures of the EFDM as used by the optimization model

Key Value (type) Description

Validity Integer ≥ 0 The interval where using the flexible load is allowed for flexibility 
purposes

Power states Continuous ≥ 0 The deviation offlexible load from the normal operating point. The 
deviation ispositive in the load increase type,and it is negative in the 
loaddecrease type

Holding duration Integer ≥ 0 The time length that flexible loads operate per usage

Usage numbers Integer ≥ 0 The allowed number of usages in the optimization period

Modulation number Integer ≥ 0 The number of permitted changes in the power state value per usage 
(without counting the power state change related to activation and 
deactivation)

Activation gradient Continuous ≥ 0 The power change rate during the activation

Deactivation gradient Continuous ≥ 0 The power change rate during the deactivation

Regeneration duration Integer ≥ 0 The time limitation to activate a load after deactivation

Costs Continuous ≥ 0 The cost of using flexible load, excluding the electric costs

Table 2 Storage key figures of the EFDM as used by the optimization model

Key Value (type) Description

Maximum capacity Continuous ≥ 0 Maximum capacity of the storage

Initial energy 
content, including 
the timestamp

Continuous ≥ 0 Value of energy content stored at specified timestamp

Target energy 
content, including 
the timestamp

Continuous ≥ 0 Value of energy content that storage should reach at a specified times-
tamp

Energy loss Continuous ≥ 0 Lost energy from storage because of exchange with the environment

Suppliers String Flexible loads that are filling the storage. Suppliers and stored value in the 
storages are linked using conversion efficiency

Drain String Loads that storage must serve in the specified time interval
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dependencies between flexible loads. However, using the EFDM as inputs to describe 
the flexibility restricts the use of a material flow for our model. The EFDM can cover 
a dependency between two flexible loads. Dependencies internally in the EFDM have 
different types. This constitutes the necessity of activation/deactivation of one flexible 
load before/after another. There can be a dependency between the activation/deacti-
vation time of Load1 and Load2, as we depict in Fig.  2 in two examples. On the left, 
Load1 imposes the activation of Load2 after activation of Load1. It additionally provides 
lower and upper dependency boundaries. Using lower and upper boundaries and not 
one specific time for the dependencies can extend the flexibility options and result in 
more chances to capture all possible flexibilities. On the right, the deactivation of Load1 
requires the activation of Load2 after and within the allowed boundaries.

Further input

The third input to our optimization model includes additional information required for 
the optimization. The first additional input required is an optimization period. In addi-
tion to the validity time of the flexible loads passed with the EFDM, the optimization 
model requires an optimization period for which the optimization should perform the 
calculation. The second additional input is a selection of the electricity markets that the 
optimization model should consider. If no further input is selected, the optimization 
model considers all electricity markets for which electricity prices are available in the 
Electricity Market Prices input. The third additional input is the physical limitation of 
the grid connection point. The consideration restricts the power exchange to fulfill this 
grid constraint.

Mathematical model

Objective function

The core of the mathematical model is the objective function, which aims to maximize 
the profit by exploiting the market price differences and marketing industrial flexibility by 
either increasing or decreasing loads (i.e., modifying their power state). Equation (1) pro-
vides the objective function. LNeg , LPos , L, and T are sets for load decrease flexibilities, load 
increase flexibilities, all the loads (union of LNeg and LPos ), and optimization horizon. The 
first term in the objective function (in the left) represents the profit obtained by decreasing 
the flexible loads. The second term (in the middle) represents the influence of increasing 

t

Power

Load1

Load2

Lower dependency boundary

Upper dependency boundary

(a) Dependency type start-start

t

Power

Load1

Load2

Lower dependency boundary

Upper dependency boundary

(b) Dependency type end-start

Fig. 2 Dependencies between different loads
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the flexible loads. The third term (in the right) represents the costs associated with using 
the flexibilities ( acl ). In this objective function, pl,t is the variable expressing the magnitude 
of the power deviation, and yl,t is the binary variable which is equal to 1 in case flexible load 
l is activated at time t and is 0 otherwise. The parameters �t and acl express the electricity 
price at time t and the activation cost of flexible load l for flexibility purposes, respectively. 
Therefore, the objective function is as follows:

Power state constraints

The power state constraint forces the optimization to operate under a lower and an upper 
power deviation ( pl,t ) is as follows:

where Il,t is the current status binary variable of the flexible load l. In case the flexible 
load l is active at time t, the binary variable Il,t is 1 and Il,t is 0 otherwise.

Nevertheless, some flexible loads might require to only operate at specific power states. 
In such an event requiring discrete power states, Eqs. (3) and (4) are necessary. The term 
statesl equals the number of permissible power states of load l between pl,min and pl,max . 
Intl,t is the integer variable controlling the power state value in case the power state is dis-
crete, and pl,min and pl,max are minimum and maximum power deviation of flexible load l. 
Figure 3a provides an example of one flexible load l with 5 possible power states. Therefore, 
we have:

(1)max

l ∈ LNeg t ∈ T

pl,t�t

load decrease profit

−

l ∈ LPos t ∈ T

pl,t�t

load increase profit

−

l ∈ L t ∈ T

yl,t acl

load activation cost

.

(2)pl,minIl,t ≤ pl,t ≤ pl,maxIl,t ∀ l ∈ L, t ∈ T

(3)pl,t = pl,minIl,t +
pl,max − pl,min

statesl + 1
Intl,t ∀ l ∈ L, t ∈ T

(4)0 ≤ Intl,t ≤ (statesl + 1) Il,t ∀ l ∈ L, t ∈ T .

Power

Pmin

P1
P2
P3
Pmax

t

(a) Representation of 5 discrete power states
of a flexible load.

Power

Pmin

Pmax

t

(b) Case without discrete power states and re-
striction on modulation number.

Fig. 3 Representation of power states
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Some flexible loads might only be able to operate in one unique power state. For these 
type of flexible loads, we propose two equations as follows:

They impose only one value for the power state during the activation period and model 
loads with 0 modulation numbers—the number of changes of the power state value dur-
ing the holding duration. In this regard, only one increase and one decrease in the power 
are allowed in the flexibility’s start-up and shut-down time, resulting in only one power 
state during the flexibility activation. The binary variable sl,t is equal to 1 if flexible load l 
shuts down at time t, and it will be 0 otherwise.

For those flexibility loads, which can freely operate under any power state, for example, as 
Fig. 3b depicts, only require the constraint given by Eq. (2).

Activation and deactivation constraints

Another set of constraints we subject the optimization function to are the activation and 
deactivation of the flexibilities which additionally cover other aspects. For instance, Eq. 
(7) provides the holding duration constraint for a given load l between the step limits 
ITmin,l to ITmax,l as follows:

Moreover, each flexible load can have a regeneration time ( DTl ) impeding the reactiva-
tion of the flexibility during that time, expressed as the following:

Furthermore, flexibilities might be constrained to a specific time for their activation rep-
resenting its validity for operation as follows:

where the validityl,t is a binary parameter equal to 1 if load l is allowed to be in active 
status and is 0 otherwise. We limit the number of usages a flexible load can have through 
Eq. (10). In it, Usagel,min and Usagel,max control the minimum and maximum number 
of times that flexible load l can be used during the optimization horizon respectively. 
Moreover, we impede the flexible load activation and deactivation at the same time using 
Eq. (11). Thus, these equations are:

(5)pl,t − pl,t−1 ≤ pl,max yl,t ∀ l ∈ L, t ∈ T

(6)pl,t−1 − pl,t ≤ pl,max sl,t ∀ l ∈ L, t ∈ T .

(7)yl,t ≤

ITmax,l∑

h=ITmin,l

sl, t+h ∀ l ∈ L, t ∈ T .

(8)
t+DTl−1
∑

h=t

(1− Il,h) ≥ DTlsl,t ∀ l ∈ L, t ∈ T .

(9)Il,t ≤ validityl,t∀ l ∈ L, t ∈ T

(10)Usagel,min ≤

∑

t ∈ T

yl,t ≤ Usagel,max∀ l ∈ L

(11)yl,t + sl,t ≤ 1∀ l ∈ L, t ∈ T .
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The last constraint we consider for the activation and deactivation of flexible loads is to 
define the relationship between the binary variables and is as follows:

where yl,t , sl,t , and Il,t are binary variables used for starting time, ending time, and the 
status of the flexible load, respectively.

Storage model

We include storages into the optimization model using the following constraints. The 
first constraint is the energy storage balance given by Eq. (13). In this equation, ST is the 
set of the storages. It considers the stored energy in the storage at a given time t. Notably, 
Ee,t , pe,t,ch , and pe,t,dis are variables for stored energy, charging rate, and discharging rate 
of the storage, respectively. Ee,loss indicates the energy loss due to the energy exchange 
with the environment. Therefore, we have:

Equation (14) represents the storage charging balance. In this equation, pe,t,ch represents 
the storage charging using the flexible loads connected to storage e, demonstrated as 
l ∈ γe . The loads connected to each storage charge them considering the conversion effi-
ciency effl . Therefore, we have:

The third storage related constraint defines the drain times given by Eq. (15). In order 
to model the “drain”, which is described in the EFDM, pe,t,dis should be equal to fixed 
parameter pe,t,drain at certain time slots. Moreover, the storage requires at certain times 
to charge up to the “target energy content” described in the EFDM. To do so, Ee,t (energy 
content) should be equal to predefined values ( Ee,t,target ) at that certain time slots, as Eq. 
(16) collects. In Eqs. (15) and (16) the sets Tdrain,e and Ttarget,e are the two constraints the 
optimization aims to satisfy. The former is the time to drain and the latter is the target 
energy content constraint. Therefore, these equations are:

Dependency

The inclusion of dependencies into the optimization model is not a trivial endeavour. 
Therefore we consider a set of five equations to introduce dependencies into the optimi-
zation model. These five equations (17), (18), (19), (20) (21) consider the effect of activat-
ing or deactivating one flexible load based on another flexible load creating based on the 
possible combinations of how they can interact. The following sets of load dependencies 
used in this model are:

(12)yl,t − sl,t = Il,t − Il,t−1∀ l ∈ L, t ∈ T

(13)Ee,t = Ee,t−1 + pe,t,ch − pe,t,dis − Ee,loss ∀ e ∈ ST , t ∈ T .

(14)pe,t,ch =

∑

l∈γe

effl pl,t∀ e ∈ ST , t ∈ T .

(15)pe,t,dis = pe,t,drain∀ e ∈ ST , t ∈ Tdrain,e

(16)Ee,t = Ee,t,target∀ e ∈ ST , t ∈ Ttarget,e .
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• Dstart−start−after : Activation of one load after activation of another.
• Dstart−start−before : Activation of one load before activation of another.
• Dend−start−after : Activation of one load after deactivation of another.
• Dend−start−before : Activation of one load before deactivating another.
• Dexclusion : Restricts the activation of a load based on the activation of another load.

Pointedly, the first combination is as follows:

 where it considers for the time steps from a to b that the optimization should activate 
the flexible load lj after the activation of li . Differently, the second combination is Eq. 
(18). It is different from the previous equation as lj must be now activated before the 
activation of the load li , formulated as follows:

Another combination is to activate the load (lj) after or before the deactivation of 
another load (li) , represented as follows:

The last combination for a dependency we consider is as follows:

where a flexible load (li) prevents another flexible load’s (lj) activation. Thence, with these 
5 equations creating a set of dependencies between two loads the model can consider 
interdependencies—two or more loads depend on each other and other loads—by creat-
ing a chain of loads which interdepend.

Grid constraint

The last constraint for our model can deal with the physical limitation of the grid con-
nection point from industrial flexibilities. Therefore, we consider the physical grid con-
straint in the model through Eq. (22) to restrict the power exchange with the grid at the 
grid connection point. In the current version of the EFDM (Schott et al. 2019) the grid 
constraint is not included. Nevertheless, we consider this addition meaningful and pro-
pose to consider this adjustment in a future version of the EFDM. Thus, we have:

(17)yli ,t ≤

b∑

h=a

ylj ,t+h ∀ li and lj ∈ Dstart−start−after

(
i �= j

)
, t ∈ T

(18)yli ,t ≤

b∑

h=a

ylj ,t−h ∀ li and lj ∈ Dstart−start−before

(
i �= j

)
, t ∈ T .

(19)sli ,t ≤

b∑

h=a

ylj ,t+h ∀ li and lj ∈ Dend−start−after

(
i �= j

)
, t ∈ T

(20)sli ,t ≤

b∑

h=a

ylj ,t−h ∀ li and lj ∈ Dend−start−before

(
i �= j

)
, t ∈ T .

(21)
b∑

h=a

ylj ,t+h ≤ (1− yli ,t)(b− a+ 1) ∀ li and lj ∈ Dexclusion

(
i �= j

)
, t ∈ T
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Outputs

The optimization model with its objective function (Eq. 1) and the subjected constraints 
(Eqs. 2–22) calculates the optimal solution and provides two main outputs.

EFDM: flexible load measure

One output of the optimization model is describing a specific flexibility measure. In 
other words, it provides the optimal schedule for an industrial flexibility. A flexibility 
measure describes therefore no longer a flexibility potential. A flexibility measure con-
tains a fixed load deviation (fixed power state for the intervals) with fixed periods (hold-
ing duration, modulation duration, activation/deactivation duration). The EFDM (Schott 
et al. 2019) enables in an standard manner to describe the flexibility measure using the 
so-called “flexible load measure” category, with its defined JSON Schema (van Stiphoudt 
et al. 2021).

Calculated profit

The second output of the optimization model is the maximized profit that industries 
could potentially achieve by marketing their flexibility load measures. For the calcula-
tion, the optimization in Eq. (1) considers the electricity prices passed as time series 
from the wholesale spot market (Day-Ahead, Intraday) or forecasted values in a speci-
fied validity time, Eq. (9), as well as the activation costs ( acl ) of a flexibility load measure. 
The calculated profit is the potential total amount given in Euros achievable by executing 
the calculated flexibility schedule. The optimization model calculates the profit per flex-
ibility schedule.

Use cases and results
To demonstrate the capabilities of the proposed model, we investigate and evaluate the 
model under three different use cases. In the first use case, we evaluate the model using 
four simple, flexible loads in a simple context (i.e., without dependencies and storages). 
In the second use case, we evaluate the model using four flexible loads within an interde-
pendent context (i.e., with dependencies and without storages). In the last use case, the 
complexity rises, and we evaluate the model using eight flexible loads in an interdepend-
ent and connected context, including storages (i.e., with dependencies and storages) to 
assess the full potential of the proposed model. However, our primary inputs, the EFDM 
is not a digital twin of a specific process. Still, we built them upon the learnings from 
several workshops and bilateral discussions with industrial partners from the paper and 
aluminum industry. We discussed several industrial processes they currently have, their 
structural features, the technical parameters, and the values they might include when 
describing their flexibility using the EFDM. However, our model contains synthetic data 
generated when describing the flexible loads since our industrial partners were unwilling 
to reveal actual production data and specific processes for publication.

(22)−Pmax
grid,t ≤

∑

l ∈ LPos

pl,t −
∑

l ∈ LNeg

pl,t ≤ Pmax
grid,t∀ t ∈ T .
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Use case I—simple flexible loads

This first use case explores the capabilities of the optimization model when dealing 
with simple, flexible loads. We consider in this use case four different loads with nei-
ther dependencies among them nor a connection to a storage system. Therefore, the 
optimization model implements:

• Optimization function: given by Eq. (1).
• Main constraints: subject to Eqs. (2)–(12).

We collect in Table 3 an overview of the four flexible loads and their characteristics 
included in their EFDM description. The electricity prices considered, input for the 
optimization (24 h horizon), corresponds to the EPEX Day-ahead auction DE-LU on 
the 08/08/2020 (Bundesnetzagentur 2022).

All considered flexible loads have the same type, ’decrease.’ In other words, the flex-
ibility they offer is to decrease their power consumption. For example, load L1 can 
operate in between two power states ( Pmax and Pmin ). Three out of four loads do not 
face any restrictions concerning their validity (when the optimization cannot activate 
them). However, the optimization model can only activate load L3 between 18:00 and 
24:00. Similarly, almost all loads have no activation costs, except L4, which in this 
case it costs 130 € every time it gets activated. Each load has a different holding dura-
tion. For instance, load L2 can remain activated for a minimum of 1 h and a maximum 
of 2 h. Only L2 needs a period of 3h between activations regarding their regeneration 
time. Finally, the optimization can decide not to activate any of the loads. Contrary, if 
the optimization uses the loads, it is restricted by the usage number. For instance, the 
optimization can use L1 up to three times or L4 one time.

We collect the optimization results in Fig. 4. In it, the flexible load L1 is a ’decrease’ 
type; it should decrease its power consumption when the prices are high. Indeed, 
Fig.  4 corroborates this operation as L1 decreases its power between 01:00–04:00, 
17:00–20:00, and 21:00–24:00, also within the limits of the validity time and the usage 
number to achieve a higher profit (reduction of power when the electricity price is 
high).

Similarly, the optimization activates flexible load L2 twice, in the beginning, 
between 01:00 and 03:00, and almost at the end, between 19:00 and 21:00. Although 
the activation between hours 18 and 24 could result in a higher profit (price is higher 
than hours 1–3), the 3-h regeneration time prevents it.

Table 3 Load’s characteristics considered in use case I

key figure Units L1 L2 L3 L4

Load deviation type – Decrease Decrease Decrease Decrease

Power state MW [0, 1] [2, 2] [3, 4] [0.5,1.5]

Validity restriction Time None None 18–24 None

Activation cost € 0 0 0 130

Holding duration h [1, 3] [1, 2] [1, 1] [2, 2]

Regeneration time h 0 3 0 0

Usage Number – [0, 3] [0, 2] [0, 1] [0, 1]
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The optimization reduces the power of flexible load L3 by 4  MW only once during the 
entire optimization horizon. It makes the maximum profit based on the electricity mar-
ket prices and the validity of this load, restricting its usage between 18:00 and 24:00. This 
restriction prevents the optimization from decreasing the power consumption when the 
electricity prices are the highest (19:00–23:00).

Concerning the last flexible load, the optimization does not activate (reduce the power 
of ) L4 since it has an activation cost, and it will decrease the total profit.

Finally, the model needed 0.180 s to converge in this use case to optimize these four 
flexible loads.

Use case II—flexible loads with dependencies

This second use case explores the capabilities of the optimization model when dealing 
more complex definition of flexible loads, as we consider dependencies between loads. 
In this use case, we consider a new four different loads without including a connection 
into a storage system. For this use case, the optimization model considers and imple-
ments the following:

• Optimization function: given by Eq. (1).
• Main constraints: subject to Eqs. (2)–(12).
• Dependencies constraints : subject to Eq.  (17) for the Dstart−start−after dependency 

and Eq. (19) for the Dend−start−after dependency.

Similar to the previous use case, we offer in Table 4 an overview of the four flexible loads 
and their characteristics included in their EFDM description. Additionally, we describe 
the dependency between loads in Table 5. As in the previous use case, we consider the 
same date, simulation horizon (24 h), and source for the electricity prices, the EPEX 
Day-ahead auction in the area of DE-LU on the 08/08/2020 (Bundesnetzagentur 2022).

In this second use case, there is a mix of load types. Three loads (L2, L3, L4) are 
decrease type, while L1 is increase type. In other words, the flexible load L1 can increase 

Fig. 4 Optimal scheduling for flexible loads in case I
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its power consumption contrary to the other loads. All loads in this use case have con-
tinuous power states, meaning they can only decrease or increase their power consump-
tion by the values collected in Table 4. None of the loads have any activation costs or 
regeneration time. However, all loads face limitations imposed by the holding duration 
and the usage number. The former requires L1 to remain a minimum of one and a maxi-
mum of 3 h in each activation period. The latter limits the optimization to use a maxi-
mum of three times L1.

We collect the results of the optimization in Fig. 5.
The results provided by the optimization follow the imposed restrictions. On the one 

hand, the first dependency ( Dstart−start−after ) in Table 5 forces L1 activation between 1 
and 3 h after the activation of L2. In other case the optimization activates L2 between 
01:00 and 03:00 while L1 between 05:00 and 06:00. However, the L1 and L2 dependency 
prevents L1 from increasing its power consumption during the lowest electricity price 

Table 4 Load’s characteristics considered in use case II

key figure Units L1 L2 L3 L4

Load deviation type – Increase Decrease Decrease Decrease

Power state MW [0.5, 1] [2, 2] [3, 4] [0.5, 1.5]

Validity restrictions Time None None None None

Activation costs € 0 0 0 0

Holding duration h [1, 3] [1, 2] [1, 1] [2, 2]

Regeneration time h 0 0 0 0

Usage Number – [0, 3] [0, 2] [0, 1] [0, 2]

Table 5 Characteristics of dependencies in use case II

Trigger load Dependent load Dependency type

L2 L1 L1 must start 1–3 h after the activation of L2

L3 L4 L4 must start 2 h after deactivation of L3

Fig. 5 Optimal scheduling for flexible loads in use case II
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period (13:00–15:00). The optimization considers the same logic for the second activa-
tion of L2 at 20:00 given the constraint of L2; the optimization can only activate it twice. 
On the other hand, the second dependency forces the optimization to use L4 after 2 h 
of deactivating L3. The optimization activates L3 by decreasing 4 MW the power and 
decreasing, 2 h later, by 1.5 MW the power consumption of L3. However, since L4 can 
have two activations, the optimization between 19:00 and 21:00 decreases by 1.5 MW 
the power of L4. For this use case, the optimization model needed 0.112 s.

Use case III—flexible loads with dependencies and storages

This last use case explores an even more complex case than the previous ones. In this 
use case, the optimization faces eight flexible loads with several dependencies. Addition-
ally, this use case includes two storages systems. We depict this complex relationship in 
Fig. 6.

For this complex use case, the optimization implements:

• Optimization function: given by Eq. (1).
• Main constraints: subject to Eqs. (2)–(12).
• Dependencies constraints: subject to Eq.  (17) for the Dstart−start−after dependency 

and Eq. (19) for the Dend−start−after dependency.
• Storage constraints: subject to Eqs. (13)–(16).

As previous use cases, we collect in Table 6 all flexible loads’ characteristics contained in 
the EFDM description. Additionally, we collect in Table 7 the description of the depend-
encies constraints the loads have, whereas in Table 8 we collect the description of the 
two storages present in the use case. Both storages have 10 MWh capacity, modeled with 
0 energy loss and specified drain time and quantity. Storage 1 should be drained between 

L1

Storage 1

L2

Storage 2

L7L3 L4 L5 L6 L8

Flexible load of type load increase / decrease Storages/
Fig. 6 Relationship between flexible loads and storages in use case III

Table 6 Characteristics of the loads’ key figures of use case III based on the description of the EFDM

key figure Units L1 L2 L3 L4 L5 L6 L7 L8

Load deviation 
type

– Increase Increase Decrease Decrease Decrease Decrease Increase Decrease

Power state MW [1,2] [2,2] [1,2] [0.5,1.5] [2.2,2.7] [1.8,3.2] [1.2,2.2] [1.3,1.7]

Validity restrictions Time None None None None None None None None

Activation costs € 0 0 0 0 0 0 0 0

Holding duration h [1,3] [1,2] [1,3] [2,3] [1,2] [1,1] [1,1] [1,2]

Regeneration time h 0 0 0 0 0 0 0 0

Usage Number – [0,5] [0,4] [0,2] [0,3] [0,1] [0,2] [0,2] [0,3]



Page 17 of 21Bahmani et al. Energy Informatics  2022, 5(Suppl 1):26 

hours 19–21 and 36–38 with the power equal to 1 and 1.2 MW, respectively. Likewise, 
Storage 2 should be drained between hours 15 and 17 with 1.5 MW and during hours 
43–45 with the amount of 1.1 MW. Both flexible loads, L1 and L2 connect to each stor-
age system and have conversion efficiency ( effl ) equal to 1. Following the previous two 
use cases, the electricity prices input for the optimization considered corresponding to 
the EPEX Day-ahead auction DE-LU. In this case, the simulation horizon considers 48 h, 
therefore, the prices are for 08/08/2020, and 09/08/2020 (Bundesnetzagentur 2022).

We depict the optimization results in Figs. 7 and 8. The former presents the optimal 
load schedule for all loads. The latter presents the scheduling for the storage systems. 
The loads L1 and L2 must charge the storage systems to provide the energy demand 
required by the industrial process during the drain times. Therefore, it uses L1 and L2 

Table 7 Characteristics of dependencies in use case III

Trigger load Dependent load Dependency type

L1 L3 L3 must start 2 h after the activation of L1

L3 L4 L4 must start 3 h after the deactivation of L3

L5 L6 L6 must start 3 h after the activation of L5

L6 L7 L7 must start 3 h after the activation of L6

L8 L6 L6 must start 3 h after the deactivation of L8

Table 8 Characteristics of storages in use case III

Storage Max capacity 
[MWh]

Energy loss 
[MW/h] Ee,loss

Drain time 
[hour] Tdrain,e

Drain quantity 
[MW] pe,t ,drain

Connected to

Storage 1 10 0 [19,21] 1 L1, L2

[36,38] 1.2

Storage 2 10 0 [15,17] 1.5 L1, L2

[43,45] 1.1

Fig. 7 Optimal scheduling for flexible loads in use case III
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several times during the optimization horizon (48 h) in the low-price hours accordingly 
between hours 12:00–26:00 and 32:00–40:00 (see Fig. 8). From our results (see Fig. 7), 
we can observe that optimization can deal with difficult constraints. For instance, L1, 
L2, and L7 increase their power consumption when prices are low without exciding the 
number of times the optimization can activate them. Nevertheless, these complex con-
straints provoke the activation of some flexible loads when the electricity price is not 
at its highest. For instance, the optimization activates L6 at hour 06:00, not the highest 
price hour, because it depends on L8.

Overall, all these complexities impact the optimization model, which requires a total 
of 3.3 s to converge.

Discussion
We tested the model in three synthetic use cases developed from discussions with alu-
minum and paper industries, where we exposed the optimization model against an 
increasing complexity in the industrial process description. We acknowledge the limita-
tions of our evaluation, especially by not considering an existing industrial process due 
to the unavailability of data and not comparing our results to the benchmark of an exact 
process modeling.

Nevertheless, the model we propose performs as intended. We demonstrate the mod-
el’s capability to offer a solution when facing complex EFDM descriptions. Examples of 
complex EFDM description are continuous power states, regeneration time, energy and 
material storage modeling, activation/deactivation ramping, different modulation num-
bers, holding durations, dependencies between flexible loads, and even connections to 
storage systems. The model’s ability to handle EFDM descriptions has implications.

First, the optimization model does not require information on material flow nor infor-
mation about the baseline power consumption of the industry, which industrial compa-
nies are not usually willing to share due to competitiveness. Thus, industrial companies 
can describe their processes without disclosing sensitive data and minimizing the neces-
sary information. However, certain information still is required for the description using 
the EFDM, but not intrusive. On the one hand, the optimization using the EFDM might 

Fig. 8 Optimal scheduling for storages in use case III
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yield a worse result than the exact modeling of a specific industrial process. However, 
it might depend on the level of detail expressed in the flexibility description using the 
EFDM. On the other hand, the model is generic and serves its purpose for any indus-
trial process described using the EFDM. Consequently, the model is replicable. In other 
words, different companies can use the model for their industrial processes and would 
require only one model instead of many multiple specific models for each industrial 
process.

Second, the optimization model can handle different time steps (e.g., 1 h and 15 min) 
and horizons such as day-ahead and intraday markets, opening a potential marketing 
opportunity for industrial companies. However, the model might face constraints (i.e., 
computation time and resources needed) when calculating the optimal solution with 
many loads, dependencies, and storage systems.

Third, even though this paper concentrated on testing the model for industrial flex-
ibility, the applications of the proposed optimization model can go beyond the indus-
trial sector. For instance, if electric vehicles and residential buildings use the EFDM to 
describe their flexibility, they could use the model.

Conclusions
We presented an optimization model to generate an optimal load schedule based on 
electricity prices and a generic data model for flexibility description, the EFDM. The 
model provides the schedule also using the EFDM description, simplifying the commu-
nication, technical, and economic issues specific use-case-oriented optimization mod-
els face. We evaluated the model under several use cases to demonstrate its capabilities 
when facing simple or complex industrial flexibility descriptions considering electricity 
prices from a day-ahead market. The model handled all the complexities, although the 
computation time and complexity grow as the optimization needs to consider more flex-
ible loads and dependencies between loads and storage systems. Therefore, the model 
might face some limitations against a significant number of variables or when misused 
(i.e., used for whole industrial process scheduling). Future research could tackle some 
inefficiencies (computation time) and other limitations we acknowledge (comparison 
of the results with an exact optimization model). Nevertheless, the proposed optimiza-
tion model could help industries market their flexibility. The model could enable any 
demand-user, such as residential or electric vehicle charging management operators, to 
use the generic optimization model if they describe their flexibility using the EFDM.
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