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Introduction
Electrification of the mobility sector is at the top of the decarbonization agenda for many 
countries. Several countries have already taken policy steps to either heavily restrict or 
ban internal combustion vehicles within the next decade (Cellina et  al. 2021). It also 
enables further innovations in the transportation sector, such as one-way electric car 
sharing that further acts in favor of reducing emissions and air pollution (Mounce and 
Nelson 2019). However, the wide-spread adoption of Electric vehicle (EV)s and Autono-
mous Electric vehicle (AEV)s and their simultaneous charging may result in increased 
peak loads, voltage limit violations, sustained under-voltage conditions, and supply 
imbalances (Dubey and Santoso 2015).
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Algorithms such as rule-based approaches (e.g., Rauf and Salam (2018)), heuris-
tics (e.g., Alonso et al. 2014), and central optimization methods (e.g., Richardson et al. 
2011; Sun et  al. 2018) have been tested to achieve the goal of effective EV charging 
management. However, in the presence of high stochasticity and the absence of perfect 
foresightedness, the methods mentioned above cannot converge to the optimal charg-
ing behavior (Abdullah et  al. 2021). As a result, there has been an increasing interest 
towards more flexible data-driven approaches to model and manage the EV charging 
process. Data-driven approaches can be used without assumptions regarding the under-
lying model. They are also capable of representing the inherent stochasticities in the 
environment and consequently suggest probabilistic strategies that perform better than 
deterministic strategies over long time horizons even in adversarial settings (Wang et al. 
2016).

This article presents a method and a case study that demonstrate the application of 
Deep reinforcement learning (DRL) to control the charging power at an AEV charging 
node. We demonstrate the capability of DRL to learn the optimal charging policy in a 
highly stochastic environment with multiple charging objectives. Moreover, we derive 
the state vectors based on the observations that are readily available through standard 
metering infrastructure in a Low-voltage (LV) network and perform online learning via 
policy gradient update. The main contributions of the article are as follows.

•	 We present a DRL solution based on the actor-critic architecture to regulate charg-
ing power at an AEV charging node considering both minimizing charging time and 
voltage limit violations.

•	 The proposed solution makes use of voltage magnitude measurements from standard 
metering infrastructure and learns a stochastic policy that is optimal in the limit as 
time → ∞.

•	 To improve the scalability of the method to much larger use-cases, we impose partial 
observability in the form of a local actor with a global critic.

•	 We present a case study and based on our results, discuss the broader implications of 
AEV charging and the potential for future research work.

State of the art
Application of Reinforcement learning (RL) in the electro-mobility domain has attracted 
a lot of interest recently, leading to several published use-cases such as charging load 
forecasting (e.g., Zhang et  al. 2021; Zhu et  al. 2019), fleet assignment (e.g., Shi et  al. 
2020), charging station recommendation (e.g., Blum et al. 2021), and charging manage-
ment (e.g., Chang et al. 2019; Wan et al. 2019; Ding et al. 2020; Dorokhova et al. 2021).

Table  1 shows the summary of some exemplary studies using RL for AEV charging 
management. We see that the temporal resolution of the previous RL studies related to 
electro-mobility in Table 1 is in the hourly range. Indeed, the choice of temporal resolu-
tion depends mainly on the modeling objective. However, (Bucher et al. 2013) studied 
the effect of temporal-averaging in the context of LV power systems and recommends 
one-minute resolution for studies that make use of steady-state voltages and power 
flows.
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The authors in the past have applied both the value-based [e.g., Q-learning, Deep 
Q-network (DQN), Deep double Q-network (DDQN)] and policy-based [e.g., Deep 
deterministic policy-gradient (DDPG)] RL methods to solve for an optimal charging 
strategy. (Abdullah et al. 2021) presents a review of RL-based charging management 
strategies available in the published literature.

In a nutshell, in value-based methods, the agent learns an approximate Q-value 
function through continuous interaction with the environment. Often the Q-value 
function is represented as a kernel function or a parameterized function approxima-
tor like a neural network. As such, the learning process converges when we iteratively 
update the parameters to minimize the error between the predicted and target Q-val-
ues. Policy-based methods (synonymously referred to as policy-gradient methods), by 
contrast, directly learn the optimal policy (denoted by π⋆ ). Policy gradient methods 
have shown better convergence properties compared to value-based methods (Sutton 
et al. 1996); they are often capable of handling imperfect state information and able 
to learn stochastic policies (Peters and Bagnell 2016; Sutton et  al. 1996), which are 
more robust than deterministic policies. One key drawback of policy-gradient meth-
ods is their sample complexity (Peters and Bagnell 2016). However, (Wang et al. 2016) 
shows that experience replay, first introduced during the early stages of RL, can sig-
nificantly improve the sample efficiency of policy-gradient problems as well.

Actor-critic is a family of policy-gradient algorithms where two function approx-
imators (the critic and the actor) are used simultaneously to learn the value func-
tion and optimal policy. The actor-network is a parameterized representation of the 
agent’s current policy π . At each iteration, the agent takes an  action based on the 
state of the environment, and its current policy, i.e., at = π(st) . The critic evaluates 
the value of the action at the given state and updates the value function’s parameters 
using a temporal difference update. Finally, the actor updates the policy in the policy-
gradient direction, calculated using the critic’s value estimate.

There are a variety of policy gradient algorithms published in the literature. The 
algorithm used in our case study is called Proximal policy optimization (PPO), which 
was first published in 2017 (Schulman et al. 2017). The main advantages of PPO are 
its simplicity and general applicability. Moreover, PPO is an off-policy learning algo-
rithm and it is sample efficient. The original implementation of the PPO algorithm 
demonstrated superior performance in solving tasks with high-dimensional continu-
ous action spaces such as half-cheetah and running humanoid robot (Schulman et al. 

Table 1  Summary of some exemplary studies using RL for EV charging management

References Temporal 
resolution

Objective Stochastic 
policy

Voltage 
violation

Method

Chang et al. (2019) 30 mins Cost, expected SOC at 
the end

No No Q-learning

Wan et al. (2019) 1 h Cost, incl. battery degrada-
tion

No No DQN

Ding et al. (2020) 1 h DSO profits Yes Yes DDPG

Dorokhova et al. (2021) 1 h PV self consumption No Yes DDQN, DDPG, PDQN
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2017). We provide a brief mathematical introduction of the PPO algorithm for the 
benefit of the reader in the paragraph below.

Proximal policy optimization According to the policy gradient theorem, the gradi-
ent of a stochastic policy objective J with respect to the policy parameter θ is given by 
∇J (θ) = E∇θ log πθ (s | a)Qπ (s | a) (Sutton and Barto 2018). A state-of-the-art way to 
reduce the variance of the policy gradient is to subtract a baseline function that does not 
depend on the action to not introduce bias. A common baseline function is the value func-
tion and then we can rewrite the gradient as ∇J (θ) = E∇θ log πθ (s | a)A(s | a) where 
A(s | a) = Qπ (s | a)− V (s).

The convergence stability of policy gradient algorithms depends on the iterative gradients 
updates on the policy parameters. PPO is a trust-region method that uses a clipped sur-
rogate objective that penalizes excessively large policy parameter updates (Schulman et al. 
2017).

rt(θ) in Eq.  1 is the probability ratio between the new policy and the old policy. The 
clipped surrogate objective (in Equation 2) clips the probability ratio outside the interval 
[1− ǫ, 1+ ǫ] where ǫ is a hyper-parameter (Schulman et al. 2017).

Problem formulation
Our objective is to regulate the AEV charging power to minimize the charging time and 
voltage limit violations at the charging node. The power flow equations describe the rela-
tionship between power and voltage in an electrical distribution network. For simplicity, we 
do not consider reactive power control in our use case. However, it is important to note that 
the European LV grid benchmark has R/X ratios of 0.7–11.0 (Ayaz et al. 2018), which are 
relatively high, and at high R/X ratios, active power has the most significant influence on 
voltage (Blažič and Papič 2008).

The mathematical form of the objective function is given by Eq. 3. In Eq. 3, Pmax is the 
maximum charging load (maximum charging power of a charging point times the number 
of charging points at the node), αt = Pt

c/Pmax is the ratio between the charging load at time 
t and Pmax , N  is the set of nodes in the LV grid, Vm is the voltage magnitude at the charging 
node, and Vlb is the statutory voltage limit. Gij and Bij are the real and imaginary parts of 
the bus admittance matrix corresponding to the (i, j)th element. δij is the voltage angle dif-
ference between the ith and jth buses. Pi and Qi are the real and reactive power injections at 
node i.

(1)rt θ =
πθ a | s

πθold a | s

(2)JCLIP(θ) = E

[

min(rt(θ)At
θold

(s, a), clip(rt(θ), 1− ǫ, 1+ ǫ)At
θold

(s, a))

]
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Equation 3 is a concise way to combine both the charging power and voltage objectives. 
The statutory voltage limit is imposed as a soft constraint with a small allowable margin 
of error of ζ . In the case study, we set Vlb and ζ to 0.95 and 0.01 respectively.

To solve the optimization problem with DRL, we need to define the states, actions, and 
reward function of the RL agent. Moreover, we employ the stochastic policy gradient 
approach that enables us to create an RL agent that learns the optimal stochastic policy 
directly from observations.

States We define two state vectors, one for the critic and another for the actor. The 
state vector of the actor is a local subset of the state vector available to the critic, which 
imposes the partial observability condition.

Critic’s state, denoted by Sc , is a discrete-transformed vector of voltage magnitudes (in 
p.u.) at each load and generator-connected bus. Given the number of load-connected 
buses is m, n is the number of generator-connected buses, and l is the number of bins, 
the critic state at time t is a vector of the shape (1,m+ n, l) . We impose partial observ-
ability by limiting the actor’s state to the b nearest load or generator buses from the 
charging node, including the charging node itself. Therefore, the actor state is a vector of 
the shape (1, b, l)1.

Transformation from continuous to a finite discrete domain is a simple but power-
ful state abstraction that reduces the size of the state space, improves convergence, and 
improves generalization properties of the model to unseen data. We recommend (Kirk 
et al. 2021) for more information related to the generalization of DRL models.

Actions The agent’s policy yields an action at each time-step t that regulates the charg-
ing power. Therefore, we define the action of the stochastic charging agent as αt = π(st) . 
Clearly, αt is a real value in the range [0, 1] that can be represented as a random reali-
zation of a beta policy, i.e., αt ∼ Beta(a, b) . In other words, we can write the optimal 
stochastic policy π⋆ = Beta(a⋆, b⋆) where a⋆, b⋆ are the optimal parameter values of the 
beta policy.

Reward function Reward functions require careful engineering. Efficient reward func-
tions help guide the RL agent find the optimal policy by avoiding local optimal and 
improving the convergence speed (Dorokhova et  al. 2021). Our problem has multiple 
objectives that should simultaneously minimize charging time and expected voltage vio-
lations. Therefore, following Eq. 3, we define the reward function as;

(3)

max
αt

E t∈T

(

1
|V t

m−Vlb|≤ζ + 1
V t
m>Vlb+ζ αt

)

s.t. Pt
i =

∣

∣V t
i

∣

∣

∑

j∈N

∣

∣

∣
V t
j

∣

∣

∣

(

Gij cos δ
t
ij + Bij sin δ

t
ij

)

Qt
i =

∣

∣V t
i

∣

∣

∑

j∈N

∣

∣

∣
V t
j

∣

∣

∣

(

Gij sin δ
t
ij − Bij cos δ

t
ij

)

Pt
c = αtPmax

1  In our case study, the bins are equally spaced in the interval [0.9, 1.1). An additional bin accounts for any voltage mag-
nitude less than 0.9, i.e., l = 42. Moreover, we set b = 3, ensuring observations from both an upstream and a down-
stream node, whenever possible. Values of m and n are introduced with the case study.
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Model architecture The policy network parameterizes the stochastic charging policy 
πθ that returns policy parameters a and b of a beta distribution. Beta distribution is a 
bounded distribution between 0 and 1; therefore, it is well-suited for representing the 
stochastic charging action αt = πθ(s

t) of the agent. We encourage the reader to refer to 
the motivating examples (Chou et al. 2017; Petrazzini and Antonelo 2022) that describe 
the use of beta policy for solving policy gradient problems with bounded action spaces.

Value-network (the critic) is updated based on the mean-squared error (MSE) of 
the critic prediction and the immediate true reward. In other words, the agent’s inter-
actions with the environment at each time-step is an episode consisting of only one 
step. Moreover, we implement a replay-buffer to improve the sample efficiency of the 
training process.

The architectures of the deep neural network that implement the actors and the 
centralized critic are depicted in Figure  1. The actor-network has two heads corre-
sponding to the two parameters of the beta distribution of the stochastic policy that 
we need to estimate. The number of layers, layer dimensions, and layer activation 
functions are design choices based on hyper-parameter tuning.

(4)R(st , at) = 1
|Vm−Vlb|≤ζ + αt

(

1
Vm>Vlb+ζ

)

Discretized state

Linear(1024)

Leaky ReLU

Discretized state

Leaky ReLU

Leaky ReLU

Linear(512)Linear(512)

Param 'a' head Param 'b' head

Leaky ReLULeaky ReLU

Linear(64)

Linear(512)

Linear(64)

Linear(1) Linear(1)

SoftPlus SoftPlus

Linear(1024)

Linear(128)

Leaky ReLU

Linear(1)

ReLU

Fig. 1  The deep neural network architecture of the actor (left) and critic (right). Parameter heads a and b 
refers to the two branches of the actor network that returns the beta policy parameters a and b 
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Charging power assignment So far, we have designed a mathematical formulation that 
enables us to optimally control the total charging power at a node minimizing expected 
voltage violations and charging time. The assignment problem that we discuss now 
answers the question of the equitable allocation of the total charging power between the 
multiple vehicles that require charging simultaneously. We define equity as minimiz-
ing the sum of instantaneously evaluated charging times for all vehicles. This definition 
allows us to prioritize more depleted AEVs and charge them faster. Consequently, we 
expect more AEVs to be available for users, leading to better mobility services. The non-
linear optimal power assignment problem can be written as in Eq. 5, where K ′ is the set 
of active charging points. Furthermore, αk ′,t is the charge rate of the charging point k ′ 
at time t, and it is a real value in the range [ ǫ , 1]. The lower-bound ǫ is a very small real 
value introduced for numerical stability.

Figure 2 shows the combined optimization problem that we solve in iteration for each 
time step of the simulation.

Case study
To demonstrate the concept and methodology described earlier in the context of a 
shared taxi fleet, we set up a synthetic example using both real and synthetic data.

The case study consists of 216 trips within the Swiss municipality Lugano within a day. 
The travel data is synthetically generated using MATsim (http://​www.​matsim.​org), an 
agent-based micro-simulation framework for mobility systems simulations (Horni et al. 
2016). The road network extracted from OpenStreetMaps as a graph contains all roads 
and links in Lugano with the importance level either residential or higher. The metadata 
includes distance and maximum travel speed for each edge of the graph. The resulting 
network has 1122 nodes and 3602 edges.

To simulate the power system impacts, we use a modified CIGRE LV benchmark 
grid (Fig.  3) with representative residential load profiles. The environment consists of 

(5)

min
αk

′ ,t

1− SOCk ′,t

αk ′,t + ǫ

s.t. 0 ≤ αtPmax −
∑

k ′∈K′

αk ′,tPk ′

max

αk ′,t ≤ ǫ if SOCk ′,t = 1

ǫ ≤ αk ′,t ≤ 1

Local
observation

Upper bound on max.
charging power

Charging power
assignment

.

.

.

p2

p1

pk

Stochastic
charging agent

Fig. 2  Flow diagram that shows the interconnection of outer and inner optimization problems at a given 
time step. We run this process in iteration for each time step of the simulation. p1... pk in the figure are the 
charging power at each charging point for a given time step, which can be also written as pk = αk,t=ts Pkmax

http://www.matsim.org
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one charging station with 11 charging points connected to the charging node (L19 in 
the CIGRE benchmark grid). Each charging point has a maximum charging power of 
11 kW. The aggregate residential load profiles are obtained by simulating typical house-
hold appliances and devices (heat pumps and boilers, rooftop Photovoltaic (PV) gen-
eration, and non-dispatchable demand). The medium-voltage side of the transformer is 
connected to a constant slack bus. Given that we want to observe the effect of the charg-
ing controller in isolation, we deactivate the transformer tap changer in our simulations.

The simulated appliances and the corresponding modeling methods are as follows:

•	 Heat-pump and boilers: To obtain a representative dataset for Switzerland, we used 
the STASCH6 standard (Afjei et al. 2002) and its variants as a reference for the heat-
ing system and the control logic. The STASCH6 standard comprehends three main 
components: a heat-pump, a water tank used as an energy buffer, and a heating ele-
ment delivering heat to the building. The heat-pump control logic is based on two 
temperature sensors placed at different heights of the water tank, while the circula-
tion pump connecting the tank with the building’s heating element is controlled by 
an hysteresis on the temperature measure by a sensor placed inside the house. More 
details on the hydronic system modeling can be fund in (Nespoli 2019). The mod-
els’ parameters, as households equivalent thermal resistance and capacitance, were 
tuned using data from a local pilot project, the Lugaggia Innovation Community 
(LIC)2.

•	 Rooftop-mounted PV power plants: These were modeled using the Sandia National 
Laboratories’ PV Collaborative Toolbox (Stein 2012), using typical inverter data. 
Data for the type of panels, inclinations and nominal power were taken from LIC.

•	 Non-dispatchable demand: Non-dispatchable demand was modeled using the Load 
Profile Generator tool3, which uses a full behavioural modeling approach to generate 
residential load profiles. As an input of the tool we have used the same typical mete-
orological year used to generate the PV power plant profiles and as an input to the 
households’ thermal models.

Note that the input to the simulation model are  aggregate profiles. Consequently, 
the power flow model of the LV grid consists of only load (PQ) buses and we set the 

Fig. 3  Modified CIGRE LV grid used in the case study. The charging stations are connected at the bus R19. 
Figure adapted from (CIGRE’ Task Force C6.04.02)

2  https://​lic.​energy/
3  https://​loadp​rofil​egene​rator.​de/

https://lic.energy/
https://loadprofilegenerator.de/
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parameters m and n introduced in section Problem formulation to seven and zero, 
respectively.

A discrete-time simulation environment with one minute time resolution based on 
SimPy (Matloff 2008) is developed to simulate the fleet of shared AEV servicing the 
travel requests. The fleet consists of 11 AEVs, and they are randomly located at the 
start of the simulation. A python generator pops a travel request when the environ-
ment time reaches the start time of a trip. A free AEV can accept that request and 
initiate a series of processes to service the request by (1) routing to the pickup loca-
tion, (2) picking up the customer, and (3) routing to the destination. En route, an AEV 
can decide to charge the batteries if it senses a chance of battery depletion. Similarly, 
an AEV can leave the charging station during the charging process when it senses suf-
ficient State of charge (SOC) to serve an incoming travel request. The routing is based 
on the shortest path algorithm, weighted by the travel time. “Go to charge” is a bino-
mial decision based on the current SOC.

The training dataset consists of 20 days of residential load profiles covering all four 
seasons of the year. We add a small Gaussian noise to each residential load profile 
during model training to assist the stochastic charging agent to learn from similar 
but not identical observations at each iteration. The customer travel demand profile is 
identical in each day. The validation dataset consists of 10 days of residential load pro-
files (without added Gaussian noise) and the customer demand profile identical to the 
one in the training data. The model training is performed in batches of 64 randomly 
sampled observations from the replay buffer.

The Table 2 describes the set of hyper-parameters used in the PPO model.

Results
In this section, we present the results of the simulations we carried out and com-
pare the performance of the stochastic RL charge controller with a simple benchmark 
controller. The benchmark controller is one that regulates charging power based on a 
droop strategy given by the function below. ζ is set to 0.01 in our case study.

Table 2  Hyper-parameters of the PPO model

Hyper-parameter Value

Layers and layer dims. Figure 1

Activation functions Figure 1

Learning rate Actor: 1× 10−6

Critic: 1× 10−5

Loss function Actor: Eq. 2

Critic: MSE

Optimizer Adam

ǫ 0.2

Batch size 64

Soft update rate 0.001
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After running the training loop over 15 epochs, we observe a relatively smooth conver-
gence of the stochastic charging agent as shown in Fig. 4. The variance bounds indicate 
variability of the expected reward that is high at the start of the training and then stabi-
lizes at roughly 0.1 after 15 epochs. Note that we stopped agent training after 15 epochs, 
although even longer training time could have resulted in tighter variance bounds.

The stochastic charging agent predicts a charging power upper bound with a mean of 
approximately 68% of the maximum charging power of the station (Fig. 5a).

The peak shaving effect takes place only at specific times of the day when the charg-
ing power demand exceeds the upper bound forecast of the stochastic charging agent, 
as shown in Fig. 6a. We also observe, in comparison to the benchmark strategy, that 
the stochastic charging agent enforces higher charging rates when possible (Fig. 5b). 
The voltage impact of peak-shaving is depicted in Fig. 6b. Over the 10-day validation 
period, the stochastic control strategy results in 17 instances of voltage dead-band 
violations (0.1% of the total observed time steps), whereas the benchmark strategy 

αt =

{ Vm−Vlb−ζ
Vmax−Vlb−ζ

Vlb − ζ ≤ Vm

0.5 otherwise

Fig. 4  Performance of the contextual stochastic charging agent in terms of the expected reward function. 
The variance bounds are set at ±σ distance from the mean reward

Fig. 5  a The distribution of the stochastic charging agent’s predictions over the validation period, b The 
charging power upper-bound forecasted by the stochastic agent for one validation day
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results in zero violations. However, the proposed strategy provides a 7.4% extra charg-
ing rate during the same period, on average. Furthermore, between the peak charging 
times (time steps 400–1000 of each day), the proposed strategy provides an additional 
39.07% average charging rate compared to the benchmark strategy.

Figure 7a is a graphical depiction of how the SOC, charging rates, and αt are related 
to each other. Firstly, we observe that the charging rates increase when the SOC are 
lower, which is the expected behavior of the inner optimization. However, the sen-
sitivity of this relationship is governed by αt . If the constraint is strict (low αt ), the 
charging rate becomes more sensitive to the changes in SOC. Conversely, if the charg-
ing power constraint is lenient, the sensitivity of the charging rate to SOC gets lower.

The charging trajectories (profiles) describe the change of SOC of a vehicle over 
time (Fig.  7b). Due to the negative dependency of the charging rates on SOC, the 
charging profiles of the AEVs are, by default, non-linear. Charging trajectories can 
progress linearly only when the total charging power requirement is less than the con-
straint set by the stochastic charging agent and as the SOC increases towards 100%, 
the charging rate slows down. The non-linearity of the charging profiles exacerbates 
when the charging power constraint is more stringent, for example, between time 
steps 400–600. Figures 6a, 7b jointly enable us to visualize that when charging power 
demand is higher, there is more non-linearity in charging trajectories.

Fig. 6  a The peak shaving effect of the stochastic charging agent, b The voltage magnitudes at the charging 
node with and without charging control over the 10 day validation period, sorted in the ascending order

Fig. 7  a Relationship between the SOC and charging rates, b Charging trajectories of the EVs. Observe that 
there is a reduction of the charging rate as the SOC of the vehicle increases, particularly when the charging 
demand is high (e.g., between time steps 400 and 600)
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As a result, as the SOC of a vehicle increases beyond a certain threshold, it may 
become unproductive for an AEV to remain connected to the charging point, given the 
diminishing charging rates. As a result, this behavior provides an additional degree of 
freedom for intelligent decision-making and optimization. For example, we can argue 
that in a sharing economy, it is much better to have two vehicles at 70% SOC levels than 
to have one vehicle fully charged and the other one at, say, 40%. The additional degree 
of freedom encourages faster turnover of vehicles and can improve the use of limited 
charging resources. While we do not address this question in the current article, we 
would like to present it to the research community as a promising area to investigate.

Conclusion
This article presents a policy gradient RL based strategy to solve the optimal electric-
vehicle charging problem considering both charging rates and voltage violations. We 
formulate the problem as an optimization problem with two levels. To solve the outer-
level optimization problem, we train a stochastic agent using PPO. The inner-level is a 
non-linear optimization problem, subject to the boundary condition evaluated by the 
PPO agent. The case study presented in the article serves as a proof of concept for the 
applicability of stochastic RL controllers for AEV charging management in a smart-grid.

Comparison against the benchmark controller with a droop strategy illustrates that 
both control schemes can shave the peak demand and manage statutory voltage limit 
violations. In addition, the stochastic RL controller also optimizes the charging rate, 
reducing the total charging time. However, we observe some instances (0.1% of the 
entire time duration) when the statutory voltage limit gets violated under the stochastic 
RL control scheme. This observation highlights the critical detail that due to the proba-
bilistic nature of decision making, there is a non-zero chance for a stochastic RL agent to 
make a decision that leads to an undesirable state. Since our case study is not safety-crit-
ical, we can allow a small number of instances when the voltage constraint is violated. 
But, it is an essential consideration for integrating stochastic RL controllers in weaker 
grids, which require further investigation.

There is a multitude of open research avenues extending from our work. One apparent 
future step is to investigate the impacts of stochastic charging control under different 
circumstances, such as fast charging and more complex grid topologies. Moreover, esti-
mating the benefits to the upstream network, especially under different formulations of 
the control objective, is also a promising avenue for future research. Such problems are 
challenging for the learning process of the PPO agent, which may call for better feature 
extraction and state-space representations.

From an algorithmic and architectural viewpoint, understanding the benefits and 
drawbacks of different RL model architectures in high-resolution and partially observ-
able environments has many practical advantages. Most current work focuses on predic-
tion problems at low temporal resolutions. However, applying RL for real-time control 
problems in the smart-grid domain requires robust models that handle highly stochastic 
time series data.

Optimal control of AEV charging has broader consequences. If appropriately 
designed optimal charge controllers can be used to improve energy security, quality of 
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mobility services, economic efficiency, and social equity, as pointed out in the case study. 
However, as of now, the energy, social, and economic nexus of AEV management and 
control is a largely untouched topic.

We believe that such research directions have tremendous value because while the 
smart-grid future is at our doorstep, we often need to build solutions with technical, 
economic, and social relevance based on partial data.
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