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of cvi are described and consolidated in commonly used composite indices (e.g.
Davies-Bouldin-Index, silhouette-Index, Dunn-Index). Previous works show the
challenges surrounding these composite indices since they serve a generalized cluster
quality evaluation. However, this does not suit individual clustering goals in many
cases. The presented paper introduces the current state of science, existing cluster
validation indices and proposes a practical method to combine them to an individual
composite index, using Multi Criteria Decision Analysis (mcda). The methodology is
applied on two energy economic use cases for clustering load profiles of bidirectional
electric vehicles and municipalities.
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Introduction

With increasing amounts of data in the energy sector, the relevance of data analysis is
increasing constantly. This is mainly caused by the rising numbers of smart meters and
decentralized energy resources (DER) as well as sensors and actors in infrastructures and
new assets (i.e., through sector coupling). This trend is causing a growing complexity in
handling incoming data, purposefully utilizing it and managing the complexity of the sys-
tem. This paper focuses on the utilization of data with a given goal in mind. In contrast to
exploratory data analysis, the examination of unknown datasets is conducted with certain
pre-conceived presumptions to identify new information, patterns and derive hypotheses
concerning the individual research goals (Martinez et al. 2010; Tukey 1977). Especially
now, in the early stages of the digitization of the energy industry, with newly available data
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and tools, the importance of data analysis must not be overlooked. Unsupervised learning
extends or simplifies this process and therefore gains an increasing practical importance
within the industry. Especially with newly acquired data it bears many advantages such as

e the compression of information (reducing information complexity),

e simplification of complex and high-dimensional data,

® pattern recognition,

e the detection of outliers,

e knowledge expansion and an increased understanding of the data (Tanwar et al.
2015; Brickey et al. 2010).

Yet, while unsupervised learning becoming progressively more convenient with many
available libraries, the process of data analysis with real world data remains a big chal-
lenge. The process of deriving the desired information out of specific datasets is highly
individual and scientifically challenging. The extraction of valid clustering results, serving
specific goals e.g., of a client or for a given real-world task is especially highly indi-
vidual (Hennig 2020). The main research goals of this paper include the review and
development of existing relative and internal cluster validation methodologies to com-
pare different model results. Furthermore, an emphasis is put on the practical application
of the methodology outlined in Hennig (2020) to build a bridge between experts in cer-
tain fields (here: energy economics) with machine-learning and data science experts. The
resulting methodology is applied to energy-economic datasets in two different projects.

Literature review

The goal of this paper is to identify clusters for a given dataset without any prior knowl-
edge about its structure but with certain goals in mind. The fact that countless clustering
algorithms are available and easily accessible raises the challenge of identifying the indi-
vidually best clustering result for a certain task and dataset. According to Rendén et al.
(2011), there are three ways to evaluate the results of unsupervised clustering analysis to

find the “best” clustering:

1  relative validation is used to tune the hyperparameters of an algorithm (i. e.,
number of clusters) to identify the best model. These relative validation methods
may vary according to the machine learning algorithm used. One commonly used
relative validation method is the elbow curve, used in conjunction with k-means
(Syakur et al. 2018).

2 internal validation describes the identified clusters within a dataset by different
algorithms and compares them.

3 external validation compares the clustering results to the ground truth and

describes the error via selected indices.

The goal of this paper is to develop a practical methodology to identify the best clus-
tering result out of a finite number of runs by applying different algorithms and varying
hyperparameters on the same dataset. While options one and two are necessary to deter-
mine the optimal hyperparameters for a chosen algorithm (1) and to determine the “best”
algorithm (2), option three is beyond the scope of this paper due to the lack of a ground
truth. As stated in Hennig (2015); Hennig (2020); Hennig and Liao (2010); Metwalli (2020)
and many more, there is neither a universally optimal clustering method nor a generally
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applicable definition of a cluster. This is supported by the multitude of different algo-
rithms described in literature, each having specific goals, strengths, and weaknesses in
terms of clustering results, scaling and ease of use on different datasets. Selecting the indi-
vidually best suited algorithm and comparing their results hence pose a challenge which
is often overcome in a pragmatic approach, considering the size of the dataset, available
computing power, ease of use of the algorithms or just personal preference. The first step
to a scientifically viable clustering is to find a general or individual definition of a cluster,
which is done in the following by a literature review.

Definition of clustering and clusters

Clustering can be described in a very general sense as a “method of creating groups of
objects, or clusters in such a way that objects in one cluster are very similar and objects
in different clusters are quite distinct” (Gan et al. 2007). More detailed definitions of clus-
tering always use “metrics” to describe their goals, as shown in the definitions in Gan et
al. (2007) by Bock (1989) and Carmichael et al. (1968). The authors describe objects in
a cluster as closely related in terms of their properties with high mutual similarities (=
low distances) and other objects out of the same cluster in close proximity. All clusters in
a dataset should be clearly distinguishable, connected and dense areas in n-dimensional
space and surrounded by areas of low density in n-dimensional space. These definitions
show that, with a greater level of detail, the definitions of clusters vary strongly and might
even be contradicting. It also shows that assumptions about the clusters have to be made
in order to find a clustering result. Lorr (1983) proposed splitting clusters into two groups,
as summarized in Lorr (1983):

e compact clusters have high similarity and can be represented by a single point or a
center.

e '"chained cluster is a set of datapoints in which every member is more like other
members in the cluster than other datapoints not in the cluster” (Gan et al. 2007).

The challenge is either to find out the types of clusters that are present in a given dataset
or find clusters that best match certain criteria (as seen in chapter “Application on energy
economic use cases”). Yet with increasing usability and research in the field of data sci-
ence and clustering algorithms, the number of easy-to-use algorithms is rising steeply.
This is a challenge, as it makes it more difficult to choose the right algorithm, tune hyper-
parameters, and choose the best result. The following chapters outline a methodology to
overcome these challenges and use it with different real-world datasets.

Methodologies to identify the best clustering algorithm

Papers comparing different clustering algorithms (=relative validation) to identify a “best”
solution usually do so to propose and validate new algorithms utilizing known datasets
and a known ground truth (e.g., Hennig (2015); McInnes et al. (2017); Chen (2015); Kuwil
et al. (2019); Das et al. (2008); Cai et al. (2020)) . Only very few of them utilize generalized
metrics to compare the results and are completely unbiased (Hennig 2015). More general
and axiomatic approaches characterizing clustering algorithms can be found in Acker-
man and Ben-David (2009) , responding to Kleinberg (2002). Ackerman and Ben-David
(2009) proposes a methodology to define cluster quality functions, individual goals for
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these functions and then optimize towards it. A comprehensive connection between clus-
tering goals, the structure of the datasets, clustering methods, and validation criteria can
also be found in the works of Hennig et. al. (see Hennig (2020); Hennig (2015); Hennig and
Liao (2010)). Hennig (2015) proposes a methodology to identify the optimal clustering
algorithm for individual datasets. The paper focuses on pre-processing as well as the clus-
tering itself. The choice of representation and measure of dissimilarity advocates for the
attitude that correlating features should also be included in a dataset if they are essential
for clustering and shows different ways to incorporate clustering in non-Euclidean space
with different data types. The authors propose different (and optional) ways to trans-
form features with nonlinear functions to influence the effect of distance measures and
resulting gaps between datapoints within a feature. This helps to avoid unwanted effects
of outliers in the dataset. Hennig (2015) Different methods of standardization, weight-
ing and sphering of variables are further discussed. The authors highlight the impact of
outliers on these methods and the effect of these methods on clustering results due to
a (possibly even wanted) change of feature variance and refer to paper supporting these
claims.

Allin all, literature provides a wide range of internal and relative validation indices, suit-
able for clustering. Yet only a few sources focus on a more axiomatic approach to selecting
the best clustering results purely based on a large range of validation indices. Hennig et
al. 2020 provide a comprising methodology to standardize these indices to compare them
(see chapter “Relative and internal cluster validation indices”). Kou et al. (2014) proposes
a methodology for multiple criteria decision-making to select the best ensemble of val-
idation criteria, interpretability, computation complexity and visualization for a specific
challenge in financial risk analysis. Tomasini et al. (2016) propose a methodology using a
regression model to determine “the most suitable cluster validation internal index.

Relative and internal cluster validation indices

To evaluate and compare different clustering results, a set of validation indices is required
to benchmark the results of different algorithms (relative validation) or varying hyper-
parameters (internal validation). Thus, papers utilizing cluster validation indices (cvi) for
relative or internal validation are introduced in the following. Puzicha et al. (2000) pro-
pose different separability measures based on clustering axioms. Cormos et al. (2020)
focuses on internal validation criteria (sum of square error, scatter criteria, trace crite-
ria, determinant criteria, invariant criteria) for large and semi-structured data as well as
the performance of selected algorithms. Rendén et al. (2011) apply k-means and bisecting
k-means with a variety of internal and external validation indices. All of them are com-
posite indices, combining multiple validation indices into one generalized index. They
include the commonly used Calinski-Harabasz-Index, Davies-Bouldin-Index, silhouette-
Coefficient, Dunn-Index as well as a novel validity index (NIVA) (Rendén et al. 2008). This
is also a common procedure in many energy related works. E.g. Yang et al. (2017) rely on
the use of multiple composite indices (such as Calinski-Harabasz-Index, Davies-Bouldin-
Index, silhouette-Coefficient, Dunn-Index) to detect building energy usage patterns using
k-shape clustering. Proving their results with a known ground truth (external validation).
Zhou et al. (2017) introduce a (fuzzy) cluster based model to identify patterns in monthly
electricity consumption of households. They remark that no single cvi is always the best
or performs best on any given dataset, datatypes or distance-measure. Hence, they apply
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the COS index (composite index), they already used in previous works. It is comprised of
a compactness, separation and overlapping indicator. Gheorghe et al. (2015) create rep-
resentative zones to assess the renewable energy potential in Romania by using k-means.
They validate their results internally with various indices related to the silhouette-index.

Akhanli and Hennig (2020) introduce two new composite indices to describe cluster
homogeneity and cluster separation. Other internal validation indices can be found in
Liu et al. (2010) and Vendramin et al. (2010). Kou et al. (2014) utilizes F-measure, nor-
malized mutual information purity and entropy. Chou et al. (2002) introduce a point
symmetry measure as a cluster validity measure. Wang et al. 2019 create a new composite
index (Peak Weight Index) out of two composite indices (silhouette index and Calinski-
Harabasz index). Many papers with practical relevance, including the field of energy and
energy economics, utilize clustering techniques usually by applying only one clustering
algorithm (e. g. Bittel et al. (2017); Siala and Mahfouz (2019)). If multiple algorithms are
compared, generalized composite indices (e.g., Davies-Bouldin-Index, silhouette-index
etc.) or a selected few indices such as sum of squared errors are used (Toussaint and
Moodley; Schiitz et al. 2018).

This overview shows the lack of scientific discussion of the comparison of different
algorithms, especially in subject-specific scientific papers. Many scientific papers use one
or multiple (composite) cvi, usually not providing much insights in the selection process
or alternatives. A critical review or deeper analysis of the used index/indices is usually
missing. This poses a risk since validating cluster results with different cvi on the same
data set often produces very different results.

In Hennig (2020), Hennig et al. introduce different cluster validity indices (cvi) including
their mathematical formulation and a suitable normalization. These cvi are normalized
in such a way that 1 represents the best (possible) value and 0 the worst. An overview of
these indices is given in Table 1.

Table 1 List of cluster validation indices used in this work

Name Abbreviation Usage

Average within-cluster dis- lavg_we Measure of similarity of objects/points in a cluster. The higher
tance the index, the smaller the average within-cluster distance.
p-separation-index Ip—sep Measure of separation between clusters. Instead of mini-

mum/maximum distance (prone to outliers) this can be calcu-
lated by the mean of a portion (p) between two clusters. The
higher the index, the better the between-cluster separation.

Representation by lcentroid Measure of how well a cluster is represented by its centroid.
centroids The higher the index, the better the representation.

Representation of dissimi- Ipearson Measure of the dissimilarity structure denoted by the Pearson
larity structure by cluster- correlation between pairwise dissimilarities (e.g., Euclidean dis-
ing tances) and “clustering induced dissimilarity” (matching clus-

ter). For increasing dissimilarity, objects/points should not be
assigned to the same cluster. Hence for higher indices, pairwise
dissimilarity correlates more strongly to clustering dissimilarity.

Within-cluster gaps Iwidestgap Measure of the connectivity of a cluster. The higher the index,
the smaller the within-cluster gaps.

Entropy lentropy Measure for assessing the uniform size of clusters.

Parsimony Iparsimony Measure to express the preference for a lower number of
clusters.

Density modes and valleys ldensdec Measure to quantify the density drop from cluster-mode to the

edges of a cluster and the density-valleys between clusters.

Uniform within-cluster levdens Measure to quantify the within-cluster density levels. For
density higher indices, density is more uniform within the cluster.
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Hennig (2015) shows the inherent clustering characteristics and tendencies of selected
groups of algorithms (partially see chapter 4.3). It further proposes using different vali-
dation indices such as measurements of within-cluster homogeneity, cluster separation,
homogeneity of different clusters, and measurements of fit, e.g., to a centroid. The author
points out the importance of the stability of clustering (i. e. the influence of changes in
the dataset on the clustering results). Generally, two types of indices can be distinguished.
Simple validation indices (in analogy to cryptography one might call them primitive clus-
ter validation indices) as shown above and composite indices. Composite indices (like the
silhouette-coefficient) are not composed of a single cvi but combine multiple of them into
one to create a measure of cluster quality. This measure might not suit every purpose well
and rather aims for a more generalized approach. Hennig (2020) This paper will utilize
the primitive indices over composite indices and create a task-specific composite index
according to the clustering goal.

The literature review shows multiple challenges in the field of clustering. The num-
ber of available and easy-to-implement clustering algorithms increases steadily while
mitigating certain weak points of the existing methods. This increases the difficulty of
choosing the best algorithms for a given task. Evaluation metrics are manifold in differ-
ent papers, a comprehensive overview and normalization to compare them is given in
(Halkidi et al. 2016). The reviewed research also shows that existing composite indices
(i-e., silhouette-Coefficient or Dunn-Index) that are a combination of primitive cvi might
prove to be too generalized and not suitable for every specific task. Therefore, individual
clustering goals and corresponding indices should be developed for every task. Hennig et
al. introduce a methodology to normalize and calibrate cvi (Hennig 2020) and propose
two general-purpose composite indices (Akhanli and Hennig 2020). They remark that,
in particular, the weighting of indices poses a challenge to the creation of task-specific
composite indices. While Hennig et al. lay the (mathematical) foundation to identify an
individual “best” solution, they provide neither a methodology to identify the relevant
indices nor a method for weighting them for a given task. Yet they provide the mathe-
matical foundation to do so. The determination of individual cluster goals according to a
specific task, selecting suitable algorithms, tuning and comparing them in order to select
the “best” clustering results is outlined in the following paper. The focus of it is to include
industry and clustering-specific expertise into the clustering process to create an indi-
vidual composite index to compare clustering results. A methodology and a workflow to
weight identified clustering goals is proposed in chapter “Weighting of clustering goals’,
improving the methodology of Hennig et al. by a multi-criteria decision analysis (mcda)
and hence building the missing bridge from the mathematical foundation to a practical
implementation. The method is applied on two energy-economic use cases in chapter
“Application on energy economic use cases’.

Methodology

The following paper builds on relative and internal cluster validation indices as well as
their weighting and combination into a single composite index. The focus of this paper
is to provide a practical workflow to conduct unsupervised cluster analysis for real-world
tasks and apply it in the energy sector. It extends the methodology in Halkidi et al. (2016)
by including a methodology for weighting the cluster goals using mcda. This requires a
link between the mathematical formulation of cluster goals as provided in Hennig (2020)
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and the practical application according to possible clustering goals. The paper includes

practical guidance as to which algorithms and validation indices to use in order to achieve

an individual clustering goal. The methodology is outlined in Fig. 1, building upon the

proposed validation indices in Hennig et al. (see Halkidi et al. (2016); Hennig (2020)).

The core methodology to identify clusters in an (already) pre-processed dataset builds

on the following steps:

1

Identification of cluster goals: depending on the clustering task individual goals
have to be chosen in order to choose the best result. In this step, goals are
described in purely qualitative terms.

Weighting of clustering goals: by a multi-criteria decision analysis. The defined
goals can be weighted by a single or by multiple decision makers (e.g., involved
stakeholders)

Derivation of validation indices: the defined cluster goals (qualitative) must be
transformed in mathematical statements utilizing existing validation criteria.
Decision rules for these statements have to be formulated (min, max) and the
validation criteria normalized [0, 1] to become comparable indices.

Preselection of suitable algorithms: by formulating cluster goals, validation indices
and decision rules, some algorithms are no longer an option due to conflicting
characteristics. The size of the dataset and available computing power are also
included.

Model setup, internal validation and hyperparameter tuning: the pre-selected
algorithms are set up and applied on the dataset. By internally validating the results
with the selected cvi, hyperparameters can be tuned in order to iteratively improve
the results.

Calibration of the clustering results: the resulting validation indices might differ in
terms of variance. Hence calibration makes the indices comparable by identifying
the normalization range via calibration algorithms.

Page 7 of 21
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7 Relative evaluation, model and result selection: the calibrated validation indices can
be used to select the overall best model and determine the best clustering result.
The following chapters describe these steps in further detail.

Clustering goals and decision rules
The first logical step to conduct a cluster analysis is to derive task-specific clustering goals.
These goals are individual and differ every time, as shown in chapter “Application on
energy economic use cases” The clustering goals presented in Hennig (2020) are listed and
explained in terms of common clustering goals in the following, whereas the similarity of
two datapoints (in this study) is represented by their Euclidean distance. The lower the
distance, the more similar two datapoints are, which corresponds to the general definition
of clustering in chapter “Definition of clustering and clusters” Considering the nature of
clustering, the clustering goals in Van Mechelen and Hampton (1993) can be split in three
categories. While some goals describe the cluster definition “bottom-up” for the relation
of datapoints and cluster to one other, they do not restrict the clustering result itself.
Others a priori restrict the clustering results by their definition. The third category does
not affect the clustering result directly but the process of clustering itself, by considering
properties of algorithms, such as ease of use. In the following, potential clustering goals
for the first two categories are introduced, explained if necessary, and linked to certain
validation indices in chapter “Relative and internal cluster validation indices’, if possible.
An overview of various clustering goals and corresponding indices described in Hennig
(2020) is given in Table 2. However, an index for the representation of a cluster via a
datapoint of the original dataset instead of an artificial datapoint (e.g., centroid) is missing.
We therefore introduce the following index /¢ as described in Table 3.

Table 2 Description of clustering goals

Goal Index
Within-cluster dissimilarities should be small: this implies that the points within a lavg_we
cluster are all relatively similar to one another.

Between-cluster dissimilarities should be large: clusters are clearly Ip—sep
distinguishable and very different in their characteristics.

Points of a cluster should be well represented by a centroid: a representative of lcentroid
the cluster (that is not an original datapoint) reflects the characteristics of the

datapoints within a cluster in the best possible way.

Members of a cluster should be well represented by a specific datapoint within -

the dataset (=representative): a single point (that is an original datapoint) reflects

the characteristics of the datapoints within a cluster in the best possible way

Clusters should correspond to connected areas in data space with high density: Iidestgap
datapoints within a cluster always have very similar neighbors yet might not be

very similar to every datapoint in the cluster (exception: spherical clusters).

All clusters should have roughly the same size. lentropy
The density of clusters should be roughly the same. levdens
The number of clusters should be low (many indices increase with an increasing Iparsimony
number (Hennig 2015))

The number of clusters should be within a certain range of values. lrargetrange™
It should be possible to characterize the clusters using a small number of Ipps™

variables: this is especially useful if the result is used for complexity reduction i.e.,
to create personas.

“Introduced in “Clustering of municipalities” section



Bogensperger and Fabel Energy Informatics 2021, 4(Suppl 3):18 Page 9 of 21

Table 3 New index for good representation of data points

Goal Index Index Definition

Representation by data points lepacent Measure of how well a cluster is represented by a single point
out of its cluster (i.e, closest point xg, to the centroid of the
cluster ¢; with xp € G). The higher the index, the better the
representation.

This index is viable if the features used for clustering are only a lower-dimensional rep-
resentation of the actual datapoints (e.g., in spatial or time series clustering) and a centroid
cannot be converted back in the original (higher) dimension.

Further, very specific restrictions and limitations as well as their mathematical formu-
lation can be found in Hennig (2020). To perform clustering, the above goals must be
specified according to the clustering task. Examples are shown in chapter “Application on
energy economic use cases”.

Weighting of clustering goals

Clustering is rarely a purpose in its own right. Especially in practical use cases there is
always a specific goal in mind. For example, a customer segmentation analysis or a com-
plexity reduction (see chapter “Application on energy economic use cases”). This paper
focuses on energy economic use cases. Yet the methodology is applicable in any cluster-
ing task. In order to decide on a best solution among multiple algorithms and results and
to simplify and objectify the clustering process, the normalized cvi can be aggregated into
one composite index, as proposed in Hennig (2020). While Hennig et al. give a compre-
hensive methodology to apply validation indices on data and calibrate them, they do not
specify how to find suitable individual weights for a distinct, individual goal. A methodol-
ogy to weight individual clustering goals and therefore the validation indices is proposed
in the following and summarized in Fig. 2:

The methodology consists of the following steps:

1 Identify general cluster goals, often set by the specific task and intended use of the
results and/or the client

2 Decide on absolute goals: if a set threshold (e.g., minimum number of clusters) is
not met, this result is discarded and is not be considered any further.

3 Ifnot already necessary in step 1, find and mathematically formulate validation
indices describing every remaining goal and find an understandable wording for
them (depending on the decision makers). A list can be found in chapter 3.1.

4 Select and apply an mcda method to these remaining goals to weight them. The
selection of the best mcda method depends on the setting and the involvement,
knowledge and preference of the involved stakeholders.

5  Calculate the resulting weights of the applied mcda method(s)

6 Calculate an individual composite index by applying the weights to the underlying
validation indices on which the understandable formulations are based.

With the second step being a “yes-or-no” decision or strict requirements, the fourth
one represents a challenge, as stated in Hennig (2015). To rank certain interpretable goals
(linked to mathematically formulated validation indices), we propose the application of
“Multi-Attribute Decision Making Methods” (Xu 2015). The goal of these methods is to
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Fig. 2 Practical workflow for weighting of cluster results

identify individual weighting factors for previously defined selection criteria (here: clus-
tering goals). Weighting methods can be split in subjective methods (weights are based
on the decision maker’s judgment and require knowledge and experience in the field)
and objective methods. These determine weights by mathematical algorithms or models
(Zardari et al. 2015). In order to find a clustering result best suited to individual tasks or
goals, subjective methods can be applied. Zardari et al. (2015) suggests among others the
methods described in Table 4 to conduct a mcda.

In general, every method has its advantages and disadvantages (as summarized in
Zardari et al. (2015)) and can be applied to quantify individual weights. Due to its prop-
erties enabling its use for silent negotiation, its easy application in a team, and its focus
on unique collective results, we decided on the revised SIMOS method. This method has
already been applied in the past in many practical and theoretical energy related projects
(e.g. Samweber et al. (2017); Wang et al. (2009); Samweber (2017); Schmuck (2012)). This
method builds on the collective and realm-specific knowledge of a team to identify a cer-
tain ranking among a set of decision variables (here: clustering goals) (Oberschmidt 2010).
There are several variations and iterations of the methodology. The original procedure
was introduced by Jean Simos in Simos (1990). It was revised in Figueira and Roy (2002);
Pictet and Bollinger (2005) with the latter focusing on practical efficiency and the appli-
cation with a single or multiple decision makers. Many stakeholders might be involved
(e.g., multiple representatives of a client or members of a team) in real-world cluster-
ing tasks (as in chapter “Application on energy economic use cases”). The method thus
aims at a collective elicitation of weights and thus a consensus among the participants.
To apply the SIMOS method, the clustering goals must be understandable to all decision
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Table 4 Restrictions and limitations for clusterings

Name Explanation

Direct Rating Every decision variable is assigned with an importance independent of
the others (as in Likert scale questionnaires).

Ranking Method Decision variables are ranked relative to one other. These ranks can be
used to calculate weights using rank sum, rank reciprocal or rank
exponent method.

Point Allocation Decision makers allocate weights directly to decision variables. The
result is normalized.

Pairwise Comparison Method Decision variables are compared pairwise and the resulting pairwise
weights are documented in a matrix. The resulting matrix is used to
calculate the overall weights and a consistency ratio.

Swing Weighting Method All decision variables are set to the worst score. Decision makers can
change the score of individual variables by moving them to the best
score. The rank of doing so determines the importance (Leijten et al.

2017).

Graphical Weighting Method This graphical method utilizes a horizontal line to place decision
variables relative to one other. Their distance determines their assigned
weights.

(Revised) SIMOS Weighting Method Decision variables are ranked relative to one other. Variables may share

the same rank. The relative ranks can be increased by inserting empty
ranks in between. In the last step, decision makers need to decide how
many times more important the first variable is compared to the last.
This rank is used to assign weights.

Fixed Point Scoring Decision makers need to distribute a finite number of points to weigh
decision variables.

makers. Therefore, instead of a mathematical formulation, the impact of a certain deci-
sion variable must be formulated in a clear (target group-specific) and interpretable way.
Some suggestions can be found in chapter “Application on energy eco- nomic use cases”.
The SIMOS method then provides the necessary set of rules to rank these goals relative
to one another. Based on the rank of the goals r and a selected weighting factor f, the
exact weighting can finally be calculated by linear interpolation for any goal ¢; using the
following formula from Wilkens (2012):

$i = Fonin + (f — 1)L
Ymax — Vmin
This methodology makes it possible to find relatively unbiased weightings ¢; (with
> ;¢ = 1) for all defined goals. It also focuses purely on the task and is completely unbi-
ased if applied prior to the clustering process. The generated ranking is applied to the
underlying indices /; to create a single composite index I,z for a specific task according

to Akhanli and Hennig (2020):

S
Lagg =) _ $1;(C)
j=1
It must be stated that some evaluation criteria may correlate heavily. The inclusion of
highly correlated evaluation criteria might by itself increase their weight (Akhanli and
Hennig 2020). The set of decision rules generated in this way can be used to pre-select

algorithms, optimize their respective hyperparameters and compare the results.

Algorithm pre-selection
In the first step after the determination of the clustering goals and decision rules, suit-
able algorithms have to be pre-selected. This step depends highly on many individual

parameters:
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length and feature space of the dataset

n-dimensional structure of the existing clusters in a dataset
characteristics of the algorithms

available computational power and time

ease of use

AN U W N

requirements for the clustering process (see chapter “Clustering goals and decision
rules”)

For reasons of scope, this topic will not be discussed further. Yet, some clustering algo-
rithms are favored towards certain indices. After weighting them, the suitable algorithms
should be selected. For example, k-means optimizes towards the best representation by
a centroid (Izensroig) by minimizing the within-cluster sum of squares. Further, “axioms
and theoretical characteristics of clustering methods” can be found in Hennig (2015)
chapter 4.3.

Clustering
After the dataset has been prepared, the goals for the clustering have been set, and a range
of suitable algorithms has been selected, clustering can be carried out.

Model setup, internal validation & hyperparameter -tuning

The models need to be setup and run to carry out clustering. The results must be evalu-
ated with the selected indices in chapter “Weighting of clustering goals” and normalized
(see Hennig (2020)) and the hyperparameters tuned in order to improve the models’
results according to the defined goals.

Calibration

The different validation indices may have very small variance and are therefore sometimes
hard to compare to those with high variance. Hennig introduces a calibration technique
utilizing naive, random clusterings and therefore a mean/standard deviation-based stan-
dardization (Hennig 2020). This is achieved by a “stupid k-centroids” and “stupid nearest
neighbors” approach. Both have different assumptions about their results and thus help
to increase the range of values of an index.

Scaling

In order to further simplify the decision process by calibrating the results, we further
propose a simple scaling process. For any cvi, we set the best value to 1 and the worst
value to 0. Since the value range of calibrated indices as proposed in Hennig (2020) is not
limited between 0 and 1, a composite index based on weighted aggregation of selected
indices could be dominated by single indices which would distort the original weighting.
Hence, to compare selected clusterings, we scale their corresponding calibrated indices
between 0 and 1. Assuming (for a specific index) that the mean of the “stupid” clusterings
is always lowest, we scale the interval from 0 to the highest index to [0, 1]. Otherwise,
the worst index of the selected clusterings is set as the lower limit. However, we do not
scale Iparsimonys OF Iargetrange Since they only depend on the number of clusters and are not
calibrated, thus they are between 0 and 1 by definition.
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Relative validation, model and result selection

After an individual, task-specific composite index (I,g,) is created and the clustering is
carried out with different algorithms, the results are compared by utilizing the individual
indices. The clustering result with the highest value is selected as the best overall result.

Application on energy economic use cases

In the following chapter, the introduced methodology will be applied to two use cases in
the field of the energy economics from different research projects with varying goals. The
datasets and tasks include the unsupervised clustering of municipalities and driving &
load profiles of electric vehicles. The following chapters will give a brief overview of the
tasks, data and results. The focus will be put on the methodology introduced in chapter
“Methodology” Neither the dataset nor the performed pre-processing will be discussed
in detail and will be found in their detailed respective publications.

Clustering of municipalities

Within the InDEED research project (03E16026A) an optimization and simulation frame-
work for blockchain use cases within the field of labeling of renewable energies, p2p-
trading and energy communities will be built. Due to computational limitations and the
complexity of the optimization and simulation, the municipal level is to be considered.
The goal of the clustering is to identify representative German municipalities that do exist
and represent the other municipalities of the same cluster in the best way. In a later step
the simulated economical potential of the use cases in representative municipalities will
be used to calculate the potential in those municipalities that could not be simulated. In
order to do so, a regression model will be applied to inter- and extrapolate the simulated
potentials to non-simulated municipalities. The dataset consists of 11.994 municipalities,
described with 27 selected features ranging from number of inhabitants and installed
renewable capacities to peak load and geographical size.

Application of the method

The application of the SIMOS method worked smoothly with seven members of the
project-team InDEED. The participants included experts with technical and economics
background in energy economics, new business models and digitization, who functioned
as product owners and were responsible for the evaluation of the simulation result.
Additionally, one participant was responsible for the development of the simulation
framework utilized on the clustering data. As described in chapter “Clustering goals and
decision rules’, clustering goals and decision rules were brainstormed in the team as
qualified statements. During the brainstorming, the focus was set on understanding the
statements and possible implications. The results were weighted according to chapter
“Weighting of clustering goals” Qualified statements were then described mathematically
building on chapter “Relative and internal cluster validation indices” The results can be

seen in Table 5.

Clustering goals and decision rules

In addition to the ranks, the weighting factor f was determined as 13.2 resulting
in the presented weights. Some requirements formulated by the participants, are not
yet defined in “Relative and internal cluster validation indices” section. Hence, two
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Table 5 Clustering goals and decision rules for municipalities

Goal Explanation Mathematical formulation Simos Rank Weight in %
Members of a cluster  This is necessary in order max(lepacent) 13 13.20
should be well to a) simulate a real
represented by a municipality and b) let it
specific datapoint be as similar to other
within the dataset. points in the cluster as

possible. Input features

are a lower dimensional

representation of

municipalities.
The number of Since the resulting clusters  max(parsimony) 9 9.13
clusters should be as  are the basis for a
low as possible. subsequent optimization

with high computation

time, a lower number is

favored.
Clusters should be Since one goal is to create  max(lp—sep) 9 9.13
clearly “personas” with the
distinguishable. clusters in order to

improve explainability,

clusters should be

distinguishable.
Communities withina  As similarity is defined by~ max(/pearson) 9 9.13
cluster should be Euclidean distance,
structurally similar. pairwise distances should

correlate with cluster

affiliation.
The number of The experts in the max(largetrange) 7 7.10
clusters should be simulation software
between 5 and 30. estimate an upper limit of

30 possible simulations. In

order to make the

clustering viable, a

minimum of 5 clusters

was determined by the

participants.
Within-cluster This makes sure that not max(lavg_we) 7 7.10
dissimilarities should  only the representative
be small. but also all datapoints in a

cluster are comparable.
Clusters should be Next to having unique max(lpps) 5 5.07
describable by alow  and distinguishable
number of features. characteristics, in order to

create understandable

“personas”, the number of

characterizing features

should be as low as

possible.
Clusters should be A clustering with 90% of max(lentropy) 1 1.00

relatively even in size.

the datapoints in one
cluster is not desirable.
Hence the participants
agreed on this parameter.

qualitative statements with missing indices had to be formulated, see Table 6. This shows

that an algorithmic or mathematical definition of new cvi is not only necessary, but a

potential issue. Not any qualitative statements might be formulated as such.

Figure 3 shows the comparison of five clusterings with different algorithms and hyper-

parameters (in A & B). With the chosen and weighted indices, the two clusterings with

k-means best suit the needs of the use case. While both results (A & B) have high values

in terms of Ipocens, the other algorithms perform relatively poorly in comparison. This

Page 14 of 21
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Table 6 New indices for municipality clustering

Name Abbreviation Usage

The number of clusters max(targetrange) Similarly to parsimony, the target range index
should be between 5 and assesses the number of resulting clusters k. If k is
30. within this target range, the index is 1, if it is lower

than the lower limit kpp, it increases linearly from 0 at
k = 0to 1 at kmin. For values larger than the upper
limit kmayx, the value decreases analogously, reaching
zero at k = Kmin + Kmax-

Clusters should be max(lpps) This parameter builds on the predictive power score
describable by a low (PPS) (Sharma 2020). The PPS uses machine learning
number of features. to find (pairwise) linear and non-linear relations

between two feature vectors. The proposed index
calculates the PPS between every feature vector and
the clustering results. A threshold to imply a “good”
correlation between features and results is set. The
mean number of features describing the resulting
cluster result well is used to derive a cvi according to
the Parsimony (IP) with Kpgx as the dimensionality of
the features.

is to be expected because the k-means optimize towards a minimum distance of cluster
points to their respective cluster centroid. If the centroid has a neighboring point of the
same cluster very close by, the results of I;yacens are hence almost identical to Iyroig. The
highly ranked I, s, performs the best in clustering A & B and very poorly in E. Iparsimonys
a measure to express the preference for a lower number of clusters, is rather low overall
due to the numbers of clusters ranging from 13 to 19. The newly introduced I,,s performs
well in E, yet is still high in A & B. I4ygetrange is 1 for all clusterings since only results within
that range were used for the comparison. Due to these clustering results, A is determined
as the best overall result (out of the compared clusterings) for the needs of the project
team with an Iz, (weighted average) of 0.514. This shows that not all clustering goals are
met perfectly. Hence, further clusterings will be conducted in the future, to improve the
results towards I, = 1. A specific publication introducing and validating the results is
currently in progress.

|_avg_cp2cent

1.04

: 0.84
061
I_avg_gd. |_sep ) | .
o
L ]
-
=

I_agg
I_avg_cp2cent
I_pps

—— K-means (A)
K-means (B)

K-Medoids (C) I_sep
—— GMM (D) I_parsimony
— Spectral (E) 0.2 |_target_range

= |_entropy
= |_avg_wc
I_pearson

i garsimony

0.0
|_target_range A B Cc D E

Fig. 3 Cluster validation indices for municipalities
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Clustering of driving & load profiles of electric vehicles

The BDL project focuses on the development of and research on bidirectional electric
vehicles. One goal is to conduct a systemic evaluation of the impact of bidirectional elec-
tric vehicles in Germany. The optimization framework for this task is specified in Boing
et al. (2018). In order to reduce complexity, the given driving & load profiles should be
clustered in about 20-25 clusters. A preliminary analysis by the project team shows an
anticipated optimum of model runtime and variance of load profiles in this range (i.e., the
measured runtime of the model decreases by factor 3.2 if 25 instead of 1.000 load profiles
are used). The dataset contains 9.997 load profiles represented in 337 features.

Application of the method

The method was applied by a team including six experts, four from the BDL project
(01MV18004F) and two external clustering experts. The procedure was equivalent to
chapter “Clustering of municipalities” The results can be seen in Table 7.

Clustering goals and decision rules

In addition to the ranks, the weighting factor f was determined as 5.25 resulting in
the presented weights. The goal of this clustering was relatively comparable to chapter
“Clustering of municipalities” With a different simulation framework in a far more

Table 7 Clustering goals and decision rules for driving & load profiles of electric vehicles

Mathematical Simos Rank

formulation

Goal Explanation Weight in %

The number of clusters
should be as low as
possible.

Since the resulting clusters
are the basis for a
subsequent optimization
with high computation
time, a lower number is
favored.

max(lparsimony) 6 330

Clusters should be
relatively even in size.

The resulting
representative driving &
load profiles will be
distributed according to
their cluster size. If single
clusters are
overrepresented due to
their size, the same driving
& load profiles will be used
and hence the desired
variance will be low.

max(lentropy) 6 33.0

Members of a cluster
should be well

This is necessary in order
to a) simulate driving &

max(lepacent) 5 27.7

represented by a specific
datapoint within the
dataset.

Clusters should be
describable by a low
number of features.

load profiles and b) have it
be as similar to other
points in the cluster as
possible. Input features
are a lower dimensional
representation of driving &
load profiles.

Next to having unique
and distinguishable
characteristics, in order to
create understandable
“personas’, the number of
characterizing features
should be as low as
possible.

max(Ipps)

6.3
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Fig. 4 Cluster validation indices for bidirectional load profiles of electric vehicles

developed stage, the experts had very different goals, resulting in more clearly defined
requirements.

The results as depicted in Fig. 4 show a big difference in terms of their cluster
goals. While A and B show good results with I;y5cens (for an explanation, see chapter
“Clustering of municipalities”) and Ips, their Ieusropy is relatively low compared to C. C has
the overall lowest 1,5 (0). A high I4rsimony could not be reached in any of the clusterings,
as it decreases with a higher number of clusters. All in all, this shows a tradeoff for all
cluster results and the importance of the weighting process. For this use case, the k-means
clustering A with 21 cluster reaches the highest /4, of 0.81. Again, further clusterings will
be carried out in order to improve the results.

Discussion

The proposed methodology is aimed at improving individual clustering results. Building
on the previous works about cvi of Hennig et al. 2020, it adds a practical workflow as
well as an mcda methodology to decide on individual weights and suggests new indices.
This helps professionals in the field of data science and experts from different areas to
identify the individually “best” clustering goals and benchmark different algorithms. The
examples in chapter “Application on energy economic use cases” show promising results
in the field of energy economics. The chosen cvi as well as their weights and resulting
I, differ, even though the overall goal is relatively similar. This supports the need for the
introduced methodology. However, the two examples also show that the set goals by the
project teams could not be fully met by the clusterings. Even though, this method helps
identifying the individually "best" result, it does not optimize towards it. The flaws of the
methodology are outlined in the following:

e Result generation: the methodology is capable of comparing different clustering
results with a single, individual composite index (I,4,). Generating the results still is
challenging task and is of exploratory nature.

e Scalability: every exploratory approach comes with scaling issues. The bigger the
dataset compared to the available computational power, the longer it takes to
conduct the clustering itself and the calculation of the validation indices.

e Optimization towards indices: with defined indices, it should be possible to
mathematically optimize towards a real “best” result. In the cases presented, the
clustering was conducted manually. This process should be addressed in future works.
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¢ Bias towards higher numbers of clusters: many indices improve with an increasing
number of clusters. While the tendency of a clustering towards a lower number of
clusters is expressed via the parameter “parsimony”, it might still be weighted low or
excluded by certain users.

e Correlation of indices: the resulting indices might correlate and hence be
overrepresented even after the weighting. This should be addressed in future works.

e Missing indices: the two example showed that some indices had to be defined
(epacents Lppss Itargetrange) after the mcda method. Depending on the complexity of the
missing indices, their mathematical formulation might be time consuming and prone
to error if defined incorrectly.

e Further validation: the methodology was conducted with two energy economic
examples in different project teams. This showed that the application of mcda
methods is possible and helps in tailoring an individual composite index. It also shows
that comparing results can be simplified with an individual composite index I,g. To
prove the viability of the resulting composite indices, extended research in different
fields of application has to be conducted. Further cases (e.g., deriving personas for
marketing of utilities) will be applied in the future to show the universal usability.
Further clusterings in the presented cases will be executed to improve the results.

e Detailed result analysis: due to scope and length restrictions, a detailed introduction,
visualization and validation of the clustering results could not be provided in this
paper. This will be addressed in further publications.

Summary and outlook

With ongoing digitization in many sectors, the importance of practical data-analysis,
exploration and -usage is increasing significantly. A part of this process is the clustering
of data for different practical reasons. These include the reduction and simplification of
information complexity, pattern recognition, knowledge expansion, an increased under-
standing of the data or the detection of outliers. A growing field of use is the energy
system analysis in order to reduce input complexity (see examples in chapters “Cluster-
ing of municipalities” and “Clustering of driving & load profiles of electric vehicles”).
The literature review shows a wide variety of available clustering algorithms. However, it
was also possible to identify a gap in their neutral comparison tailored to the individual
requirements of practitioners. Most realm-specific papers provide little to no explanation
on their cvi choice or choice in clustering algorithm(s). Existing literature presents gen-
eralized composite indices or a relatively mathematical formulation of individual cvi in
the works of Hennig et al. 2020. While the former are relatively generalized and might
not suit individual needs, the latter proposes a viable methodology but lacks a “bridge” to
practical application. This paper focused on summarizing the necessary theoretical back-
ground as well as the status quo of the scientific discussion. A methodology was developed
and proposed to help practitioners tailor an individual composite index to find the best
clustering results according to their individual goals from a set of clustering results.
This proposes an alternative to better define and achieve individual cluster objectives
than with (often) randomly selected composite indices, as done in many cluster-related
scientific studies. It creates a practical workflow for energy related projects, adds a mcda
method to weight indices and adds further cvi to the method introduced by Hennig
(2020). Two examples with different energy economical goals show that the method works
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with practitioners. The practical application in mcda workshops showed that there were
cvi missing. In this case, these indices need to be defined and mathematically formu-
lated. The already existing composite indices, introduced in chapter “Literature review”,
may contain useful individual cvi, once decomposed into their components. I ycen: Was
introduced in this paper due to practical needs and its viability shown in cases with
high distances between centroids and datapoints from the original dataset. However, this
also shows that the indices can correlate, which in turn can mean overrepresentation in
individual composite index. I,,s was introduced in order to evaluate whether results are
describable by a low number of features using non-linear-correlations (Sharma 2020).
ITtargetrange Was introduced to prefer not only lower number of clusters (as in Iyarsimony)
but numbers of clusters within a defined target range. The methodology proved viable
to compare different clusterings of multiple algorithms towards individual goals. If the
clustering goals can be reached with the provided datasets and specified I,4, can not be
ensured with the methodology. Whether an optimization towards g is possible, should
be part of further research. The clusterings introduced in chapter “Application on energy
economic use cases” will be used in further research and the respective papers concern-
ing the results will be published. Further clusterings will be conducted to improve the
results. Its application in other projects with different clients will prove its practicality in
the future. All in all, the methodology can be helpful for data scientists and engineers to
help find an optimal clustering result with clients or tasks with respective experts in this
field with low or no prior knowledge on clustering.
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