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because they are usually located near the consumers. In order to provide accurate PV
system models, e.g. for microgrid simulation or hybrid-physical forecast models, it is of
high importance to know the underlying PV system parameters, such as location, panel
orientation and peak power. In most open PV generation databases, these parameters
are missing or are inaccurate.
In this paper, we present a framework based on particle swarm optimisation and the
PVWatts model to estimate PV system parameters using only power feed-in
measurements and satellite-based ERA5 climate reanalysis data. Our sensitivity analysis
points out the most relevant PV system parameters, which are panel and inverter peak
power, panel orientation, system location and a small but not negligible influence of
ambient temperature and albedo. The detailed evaluation on one exemplary PV system
shows an acceptable accuracy in panel azimuth and tilt for the use in microgrid PV
system simulation. The extracted location has less than 25 km of positioning error in the
best case, which is more than satisfying with respect to the underlying data resolution
of the ERA5 dataset. Similar results are observed for 10 systems in Europe and the USA.

Keywords: PV model, Parameter estimation, Particle swarm optimization

Introduction

Due to the transition of the power grid towards clean energy, an increasing penetration
of distributed renewable energy sources, mainly Photovoltaic (PV) systems at rooftops,
have been observed. On the one hand, such a distributed power generation puts addi-
tional pressure on the power grid when it comes to grid management (grid limits, voltage
stability or other ancillary services), but on the other hand, the reduced distance between
power generation and consumption provides huge potential for regional consumption
optimisation.
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The trend of emerging energy communities and microgrids, as well as forming of
virtual power plants for participating in ancillary service markets, such as primary fre-
quency response, requires accurate power generation models for both simulation of
different scenarios and improved forecasting with physical-hybrid models. More particu-
lar, PV generation models typically require essential system parameters, such as the panel
azimuth, panel tilt, installation location, as well as PV cell and inverter electrical behaviour
(e.g., influence of ambient temperature, efficiency and rated power limits).

Some of those PV system parameters are available in power plant databases such as
PVOutput.org or national registration databases. However, the data quality is mixed
because these values are sometimes user generated and thus suffer from incorrect report-
ing. Haghdadi et al. have shown that the panel tilt for 10% out of 5000 samples from
pvoutput.org is missing and demonstrated to be wrong for 32% of the cases (Haghdadi et
al. 2017). In addition, these databases often suffer from inaccurate value resolution (e.g.,
45° interval at panel azimuth by defining only the compass direction) or have been identi-
fied as default values (e.g. 0° or 1° tilt angles) (Killinger et al. 2018). However, the generated
power output of a PV system is usually measured for remuneration purpose using smart
meters or is monitored via values from the inverters. This data could be used to auto-
matically determine or validate given PV system parameters and gain a more accurate
PV model for microgrid simulation or forecasting. Locating energy data might also cause
privacy issues as shown by Chen et al. (2016); Chen and Irwin (2017a).

In order to analyse the feasibility of such an automatic PV system parameter estimation
tool, we consider the following research question: What are the most relevant parameters
of an entire PV system and how accurate can these parameters be estimated by only con-
sidering historical time series feed-in power measurements and globally available satellite
weather data?

In order to answer this question, we contribute with the following points:

e Derforming a variance-based global sensitivity analysis on the National Renewable
Energy Laboratory NREL PVWatts model in order to reduce the search space
dimension and extract the most relevant model parameters, which are: peak power,
panel azimuth and panel tilt, as well as location.

e Describing and implementing a Particle Swarm Optimization (PSO)-based
framework to estimate PV system parameters based on the NREL PVWatts model
(Dobos 2014) and satellite-based ERA5 climate reanalysis data (Hersbach et al. 2020),
which is available for most parts of the globe.

e Evaluating the applicability of the presented approach with a detailed numerical
experiment on one exemplary PV system showing reasonable accuracy in peak
power, location, as well as panel azimuth and tilt. Tests are repeated on 10 systems in
Europe and the USA.

In the following “Related work” section, an overview on related literature about PV
parameter estimation is provided. In the “Methodology” section, an optimisation prob-
lem of finding relevant PV system parameters based on the PV Watts model using ERA5
reanalysis data and different error metrics is defined. In addition, PSO as meta-heuristic
solver is discussed. In “Experiments and discussion” section, the proposed method is
tested on measured data and the accuracy of the estimated parameters is presented.
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Finally, the work is concluded and an outlook to potential future work is provided in the

“Conclusion” section.

Related work

In literature, PV parameter estimation has been performed on cell/panel level and on

system level. A structured summary of related work is listed in Table 1.

On cell level, most authors focus on equivalent electric circuit models such as the Single
Diode Model (SDM) (da Costa et al. 2010; Soon and Low 2012; Ma et al. 2013; Silva et al.

Table 1 Overview on PV parameter estimation in literature

Ref. Model Evaluation Data Estimation Method Fitness metric
da Costaetal. (2010);  SDM, DDM mainly IV curve meta-heuristics like MSE, (normalised)
Soon and Low (2012); measurements under  variants of PSO (Soon ~ RMSE, MPE, MAE,
Ma et al. (2013); Silva STC or varying and Low 2012; Daliet  |IAE
et al. (2016); Kang et conditions; al. 2015; Mughal et al.
al. (2018); Jadli et al. sometimes extracted 2017), GA (Dali et al.
(2018); Dali et al. from data sheets 2015), differential
(2015); Mughal et al. evolution algorithm
(2017); Oliva et al. (da Costa et al. 2010),
(2017); Oliva et al. Cuckoo Search (Ma et
(2017); Chen et al. al. 2013; Kang et al.
(2019) 2018), SCA (Chen et

al. 2019), Artificial Bee

Colonies (Oliva et al.

2017; Oliva et al. 2017)

or SA (Mughal et al.

2017; Jadlietal. 2018)
(Ruelle et al. 2016) SAPM and SDM  Generation data from  direct search method  normalized MAE

over 40,000 systems
(Haghdadietal. 2017)  NREL PVWatts extracted clear sky least squares method -
data

(Saint-Drenan et al. LUT for power measurements  multiple steps problem specific

2015)

(Williams et al. 2012)

(Mason et al. 2020)

(Meng et al. 2020)

(Chen et al. 2016)

(Chen and Irwin
2017b)

(Chen and Irwin
2017a)

this work

irradiance and
power

astronomical
approach

DNN

normalised
POA irradiance

sun position
algorithm

sun position
algorithm and
weather data at
a specific
location

sun position
algorithm and
weather
signature

NREL PVWatts

of two PV systems

data of 135 PV
systems

evaluated on
simulated data only

simulated data and 13
PV system power
measurements

14 PV systems with
almost optimal
orientation and tilt

100 buildings with net
load measurements

10 solar sites

ERAS weather
data/clear sky
irradiance model,
power generation
time series

calculating longitude
from biased peak
production

DNN

curve fitting on best
clear sky day per
month

binary search using
pre-processed
sunrise/sunset and
daylength

iterative, multi-step
binary search

(1) correlation
clustering to find
rough location, (2)
weighted midpoint
within the cluster

PSO

MAE

RMSE

specific tightest
bound fit

Pearson
Correlation

RMSE, MAE, MAD
and IQR filtered
RMSE and MAE
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2016; Kang et al. 2018; Jadli et al. 2018), Double Diode Model (DDM) (Dali et al. 2015)
or they compare both (Mughal et al. 2017; Oliva et al. 2017; Oliva et al. 2017; Chen et
al. 2019). The SDM and the more complex DDM are used to model the current-voltage
(IV) output characteristic of single PV cells or panels with relation to external influence
of irradiation and temperature. This is achieved by stating an equivalent electric circuit
of the cell with at least a series and a shunt resistance, diode reverse saturation current
and a diode ideality factor (Gray 2011). Reasonable results, based on IV-curves under
Standard Test Condition (STC) extracted from data sheets or measurement series under
varying environment conditions, emphasise the usability of different meta-heuristics to
solve the non-linear optimisation problem for parameter estimation. Most authors use
Root Mean Square Error (RMSE) or Mean Square Error (MSE), as well as, Mean Absolute
Error (MAE) metrics to evaluate the fitness of a sample solution. Equivalent electrical
circuit models are limited to the characteristics of the PV cell or panel and require precise
IV measurements for parameterisation. As, on the one hand, cell IV measurements are
usually not available in smart meter data, and on the other hand modeling the detailed
characteristics of PV cells is only one part of a whole PV system (location, panel tilt and
orientation missing), pure equivalent electrical circuit models are not considered further.

Ruelle et al. (2016) propose to estimate PV system parameters (panel orientation and
peak power) using a direct search method to minimise the normalised MAE between PV
system simulation data and measured data. In order to avoid a local minimum, the ini-
tial estimate is settled to the best variable set out of 100 initial samples. Their simulation
model is based on a SDM as part of the Sandia Array Performance Model (SAPM) (thus
including Plane of Array (POA) irradiance calculations), which is parameterised with
assumed electrical variables. The impact of these variables have not been further anal-
ysed and the location of the system is known. Performance improvements are achieved
by filtering out cloudy days and shaded hours.

Saint-Drenan et al. (2015) developed an algorithm to estimate the panel orientation by
using PV power and meteorological data measurements from a known location. Their
PV model has three variables: panel tilt, azimuth and angular loss coefficient, with which
the effective irradiance is calculated and the simulated power output is fetched from a
Look-up Table (LUT) that takes irradiance and air temperature as inputs. The PV system
variables with the maximum likelihood that simulated power matches measured power
are accepted as best estimation.

Mason et al. (2020) present a Deep Neural Network (DNN) approach, which extracts
PV panel tilt and azimuth from net load metering data. For that, they identified rel-
evant features that have a relation with PV panel tilt and azimuth. Their model is
trained on simulated PV data at one specific location that has been combined with
customer load profiles. Their approach has been evaluated at one known location on
synthetic data.

Meng et al. (2020) propose a data-driven method to parameterize panel azimuth and tilt
based on the normalised shape of one clear sky day per month. The best fitting parameter
sets (lowest RMSE between the POA irradiance and normalised measurements) are over-
lapped in order to infer the final estimate. They validated their method using simulated
and real PV power measurements. Their curve fitting method requires Global Horizontal
Irradiation (GHI) data, which has been taken from ground measurement stations nearby
or satellites with increased estimation error. The method has not been designed to find
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the location of the PV system, but worked comparable well on 15 min, 30 min and 60 min
data resolution.

Haghdadi et al. (2017) presented a two-step estimation of location and panel orienta-
tion. First, the longitude, which is stated to be independent from the other variables, is
extracted from the position of the solar noon. A similar approach is also described in
Williams et al. (2012). Second, latitude, panel azimuth and tilt are estimated using least
square method to fit the variables of a simulation model (using NREL PV Watts model) to
the measured power. This has been performed on clear sky days only, which have been
identified by power output fluctuations and by fitting a 3-dimensional surface to the out-
put data. Three extensive case studies provided good results for panel tilt and azimuth
(MAE of 2.75° and 5.85°), however the location mismatch is quite high on latitude (4.08°
~225 km), which might be improved using weather data.

Chen et al. (2016) describe a method to infer latitude and longitude independently. First,
peak power production per day is fitted on an equation of time to compensate the dif-
ference between apparent solar time (actual sun movement) and mean solar time (solar
noon 24hours apart). Longitude is then inferred from the extracted solar noon using
binary search on a non-reversible sunset/sunrise calculation algorithm. Second, latitude
- as function of daylength - is determined by extracting the average daylength within a
year. Their approach requires high-resolution solar power measurement data (smallest
possible area for minute resolution data is 28 km radius) and their prototypical evalua-
tion focuses on almost south facing systems in the Northern Hemisphere. However, the
impact of panel tilt and orientation has been shown as high influence factor for finding
system’s location but has been shifted to future work.

In a further work, Chen et al. 2017b iteratively apply a multi-step binary search in order
to fit panel sizing (first step), orientation (second step) and tilt (third step) of a clear
sky generation model to the daily maximum power generation of pre-processed, hourly
smart meter net load measurements. The starting parameters is set to be the optimal
panel orientation. The focus of that work is on disaggregating net load measurements into
consumption and solar generation at a known location only.

For locating different types of energy data (consumption, wind and solar), Chen et al.
use a weather signature, based on temperature, wind speed and cloud cover from ground
weather stations of different locations (Chen and Irwin 2017a). In order to reduce the
search space, daily correlation for initial filtering (k-means clustering) of the big weather
database is used, before extracting the weighted (correlation) midpoint of locations in the
cluster, based on a hourly analysis. To interpret and compare the weather signature with
the solar generation data, a physical model with roughly estimated parameters using a
combined approach from Chen et al. (2016) and Chen and Irwin (2017b) is used. Unfor-
tunately, the accuracy of the system parameters (panel peak power, tilt and azimuth) have
not been commented and the granularity, as well as the distribution of the underlying
ground weather stations does not get clear. Satellite data might provide a more uniform
coverage despite a potential lower spatial resolution.

Comparing the different approaches in literature, it can be seen that most related work
does not consider PV system location, panel orientation (azimuth and tilt) and PV system
component sizing (panel and inverter peak power) as unknown parameters simultane-
ously (exceptions in Haghdadi et al. (2017); Chen and Irwin (2017a)) and thus are limited
to their specific use case. For search space reduction and avoidance of local optima,
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physically ideal starting parameters (Chen and Irwin 2017b), the best of set of initial sam-
ples (Ruelle et al. 2016) and filtering with lower resolution data (Chen and Irwin 2017a)
has been used. As all parameters effect the power generation collectively, we consider esti-
mating all parameter at once. We thus propose a simulation based PSO that uses ERA5
reanalysis data in order to improve location estimation. The usage of PSO is motivated
further in “Particle swarm optimisation” section.

Methodology

For the proposed PV system parameter estimation framework, first the PV model that
calculates the power output from relevant input variables is detailed. Afterwards, the
objective function using different error metrics for comparison and the solving method is
explained.

PV model
Unlike the equivalent electric circuit models, the PVWatts model directly estimates
the power output of the PV panel. For evaluation, the more commonly available PV
panel peak power can be compared to the estimated parameter from the PVWatts DC
model; Measured IV curves under various environment conditions are not required. The
PV Watts model still encompasses basic physical relation of input and output by relying on
meaningful parameters, whereas other models such as the SAPM are mainly fitted with
empirical measurements (King et al. 2004). We thus consider a PV system model chain
that is mainly based on the PV Watts model and detailed in the following.

The model in this work is limited to the commonly used monofacial PV panels, also PV
panel axis tracker are excluded. The focus is on one-sided PV panel orientation, however,
east-west panel combinations are working as well, as shown later.

Inverter model

The PVWatts model includes multiple sub models. One of these is the inverter model that
integrates the inverter efficiency n by defining the conversion from DC power P, to AC
power P, and limiting to the inverter nominal power rating P,0, as shown in (1).

Py = min(n - Pye, Paco) (1)
—0.0059
p = MM 00162 — —— 4 0.9858) 2)
Nref ¢
P P
where ¢ = 9 and Py timir = Lacd
Pic_limit N Nnom

The constant values in Eq. (2) have been extracted from an analysis of the California
Energy Commission (CEC) inverter performance database and are part of the PVWatts
model. The reference inverter efficiency 7,s from the actual most typical inverter is
0.9637, the default nominal efficiency 9,0 is set to the proposed value of 0.96 (Dobos
2014). These assumptions represent a typical inverter efficiency, however the overall
power output is mainly influenced by panel and inverter power (depending on sizing and
irradiance) and panel orientation as shown in the sensitivity analysis later.

Cell model
The DC power P, of a PV panel is calculated with the PVWatts DC model as shown in
Eq. (3). In this model, the panel efficiency is assumed to decrease at a linear rate with
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increasing temperature. This is governed by the temperature coefficient r, which depends
on the module type.

[tr
Py = 2 OPdCO(l + T (Teetr — Tref)) (3)
7

The parameters are defined as following:

e [, represents the effectively transmitted plane of array irradiance on the PV cell in
units of W/m?. The angle of incidence losses need to be applied beforehand (detailed
in “Irradiance” section).

e [, is the reference irradiation, which is 1000 W /m?.

® T,y is the calculated PV cell temperature in °C.

® P, is the nominal DC power of the PV module at reference irradiation I, and cell
reference temperature Tref-

e 7 represents the temperature coefficient in units of 1/°C. This value is typically
between -0.002 and -0.005 per °C.

® Ty is the cell reference temperature, which is defined to be 25°C.

From the DC model parameters, the temperature coefficient v and the nominal DC power
P, remain as variables in the optimization problem. The other parameters are calculated
as defined in the following.

Temperature model

Instead of the temperature model from Fuentes 1987, that has been developed in the
1980s and is used in PV Watts, we calculate the cell temperature with the SAPM (King et
al. 2004). This is because the early model has proven to be unnecessarily complex and thus
is leading to integration issues of new module technologies. In addition, the SAPM uses
less parameters by providing a temperature accuracy of +5°C resulting in an uncertainty
of less than 3% of the power output, according to King et al. (2004).

The cell temperature is calculated in the SAPM by using the ambient dry bulb temper-
ature T, in °C, the plane of array effective irradiance I, in W/m? and the wind speed WS
in m/s at a height of 10 meters, in order to include heating effects from the sun and cool-
ing effects from the wind. The cell temperature is calculated in (4) and the back-surface
module temperature T}, is defined in (5).

I
Toett = Ton + AT (4)
tr0

Ty = Iy - ea+b<WS + Tamp (5)

The ambient temperature T, as well as the wind speed at 10m height are extracted
from the ERA5 reanalysis data in this work and they depend on the PV system loca-
tion. The parameter sets of a (coefficient for module temperature upper limit at low wind
speeds and high solar irradiance), b (coefficient for the rate at which module temperature
drops as wind speed increases) and AT represent the thermodynamics of the panels and
their installation. Some empirically determined examples are shown in Table 2.

Irradiance

The effectively transmitted POA irradiance Iy is a linear combination of the direct POA
irradiance Ipeqm, the sky diffuse irradiance /g5 and the ground reflected irradiance
Lrefiected> defined in (6). The calculation of these parts, Egs. (7) and (10), is based on GHI,
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Table 2 Typical temperature model parameter sets for different panel types and installations (King

et al. 2004)

Module Mounting a b AT
glass/glass open rack -3.47 -0.059%4 3
glass/glass close roof -2.98 -0.0471 1
glass/polymer open rack -3.56 -0.075 3
glass/polymer insulated back -2.81 -0.0455 0

Diffuse Horizontal Irradiation (DHI) and Direct Normal Irradiation (DNI). This weather-
depending irradiance values can be gathered from the ERA5 climate reanalysis data,
which requires location and time as input. Because the ERA5 data only provides GHI
and DHI, the missing DNI can be calculated with Eq. (8). The angle of incidence « for a
given, fixed PV panel with a surface tilt 8, a surface azimuth y is calculated from the solar
azimuth yg,,, and solar zenith 6, angles, as described in Eq. (9).

Ity = Ipeam + Laiffuse + Ireﬂected (6)
Ipean = DNI - cos(a) (7)
GHI — DHI
DNl = ——— (8)
c0s(Osun)
o = Cosil(sm(@sun) - €os(Y — Ysun) - sin(B) + cos(Osun) - cos(B)) )

Panel surface tilt 8 and panel surface azimuth y (the panel orientation) remain as prob-
lem variables, whereas the solar azimuth yg,,, and solar zenith 6,, are calculated from
the position of the sun at a certain time using the NREL Solar Position Algorithm (SPA)
(Reda and Andreas 2004; 2007). The additional parameters of the SPA are location (lati-
tude and longitude), elevation (=altitude; can be derived from latitude and longitude with
an elevation map), as well as the yearly average air temperature (assumed to be 12°C) and
pressure (calculated from altitude) for atmospheric refraction correction.

The angle of incidence correction within PVWatts V5 to adjust the direct beam irradi-
ance in order to account for reflection losses in the glass surface of the PV panel is not
used in this work. This is because the difference in power output for standard glass mod-
ules is negligible according to Dobos (2014). The additional parameters would complicate
the model by providing only minor impact.

For calculating the diffuse irradiance, multiple methods have been proposed. Loutzen-
hiser et al. evaluated seven models with experimental data on vertical building facades
and found out that the Perez (1990) formulation provides the most accurate results for
their building heating energy scenario (Loutzenhiser et al. 2007). For this work, however,
we use the Hay-Davies model (Hay and Davies 1980) due to the following reasons: On the
one hand, the Perez model is more complex and is based on empirically derived coeffi-
cients (Perez et al. 1990). On the other hand, the accuracy of the Hay-Davies model still
has acceptable accuracy in irradiance on vertical plane (1.1% mean error compared to
0.5% mean error of Perez model at peak times (Loutzenhiser et al. 2007)). In addition, the
impact of diffuse irradiance on the overall POA irradiance is even lower in non-vertical
scenarios, such as it is the case with roof-top PV systems, which are usually oriented
towards the sun and thus are dominated by the direct beam irradiation. The Hay-Davies
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model is composed of an isotropic and circumsolar component, and horizon brightening

is neglected.

1+ cosp
Idiﬁuse = DHI - (A . Rb —+ (1 —A) . (?))
(10)
DNI
where the anisotropy index A = ——and R, = _cos(a)
Ier c0(Osun)

The radiation on the earth’s atmosphere varies slightly over the year, thus this extrater-
restrial radiation /g7 is calculated with a yearly varying term in order to account for the
eccentricity of the Earth’s orbit around the sun. We use the Spencer model that is defined
through Fourier series (Spencer 1971) with x as the day angle for the earth’s orbit around
the sun in Eq. (11).

Irr = Isc-[1.00011 4 0.034221 - cos(x) + 0.00128 - sin(x)
+0.000719 - cos(2x) + 7.7e — 05 - sin(2x)] (11)
and the solar constant Isc = 1366.1 W//m2

The ground reflected irradiance /efecreq represents the reflected irradiance, which usu-
ally distinguishes between different types of ground by using the albedo factor. Although
the albedo depends on the location and changes with seasonal effects such as snow or rain,
an albedo of 0.25 is assumed in this paper. This value is a compromise of typical reflection
for onshore surfaces (0.1 - 0.4) and the average albedo from Earth (0.34), which roughly
represents the reflection of grass (McEvoy et al. 2012). The effect of different albedo fac-
tors on the total irradiance with an economically optimised PV system in central Europe
(panel tilt of 36°) is less than 2% (excluding snow condition) and can thus be neglected
for the purpose of this work. The reflected irradiance is calculated as defined in Eq. (12)
extracted from Loutzenhiser et al. (2007).

Doflectea = GHI - albedo - (@) (12)
Model parameter discussion
The overall PV system model is derived by combining the individual models defined in
Egs. (1) to (12) and the NREL SPA for calculating the position of the sun (sun azimuth
and sun zenith).

Irradiation (GHI, DHI) is obtained from the ERA5 reanalysis data, which requires the
location of the PV system and the considered time as input. Environment condition, like
the ambient temperature, and wind speed at 10 m height can be extracted from the ERA5
data as well. In order to further reduce the amount of parameters, altitude is calculated
from SRTM 90m Digital Elevation Database v4.1 (Reuter et al. 2007; Jarvis et al. 2008),
which is based on satellite data (by the NASA). Thus, the remaining PV system model
parameters that are considered as decision variables are listed in Table 3.

Sensitivity analysis

In order to reduce the number of model parameters, a variance-based sensitivity analysis
according to Sobol 2001, using the samples improvement by Saltelli (2002); Saltelli et al.
(2010), is performed. Instead of the measured values from the ERA5 data set, GHI and
DHI are calculated using the Ineichen clear sky model and thus depend on the PV system
location. Wind speed (WS) at 10m height and ambient temperature (7,,,,), as well as
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Table 3 List of model parameters

Parameter Description Realistic range

Paco Inverter nominal power >0.0

Pc Cell peak power >0.0

T Cell temperature coefficient -0.002 ..-0.005

B Panel tilt 0° (upright) .. 90° (horizon)

1% Panel azimuth (0° facing north) 0°..360°

lat Latitude of the PV system 90°N ..0..90°S

lon Longitude of the PV system -180° .. +180°

a Coefficient for module temperature upper limit at low wind -3.56..-2.81 (from Table 2)
speed and high solar irradiance

b Coefficient for module temperature drop at increasing wind -0.075 ..-0.0455 (from Table 2)
speed

AT Module temperature difference for coefficient a and b 0..3 (from Table 2)

albedo and inverter efficiency 7,,, are added as parameters in the sensitivity analysis
to measure their influence on the power output. For the model sensitivity analysis only,
the time has been fixed to the 21th June, 12:00 UTC (day with most hours of daylight
in Northern Hemisphere) in the year 2020 (relevant for the extraterrestrial radiation).
Changing the date or time (excluding night times) does not change the sensitivity of the
considered parameters significantly. The bounds of the considered parameters are listed
in Table 4 (latitude and longitude roughly covering Europe) and a sample size of 10000 is
used.

From the analysis of the first-order and total-order indices (compare Fig. 1), it can be
concluded that the main parameters with the highest influence on the output power are,
as expected, the inverter and panel peak power, the panel orientation (8 and y) as well as
the location of the PV system. Ambient air temperature (7,,;) and the albedo factor still
have a small but measurable impact on the output power.

The temperature coefficient 7, as well as the parameters for the PV module heating
model 4, b and AT and inverter efficiency eta;,,, have negligible impact. These findings
are inline with Hansen et al. 2013, who performed a detailed sensitivity analysis on the
individual models. They observed a dominating contribution to the uncertainty in daily
energy by the POA irradiance and the effective irradiance models, which depend on loca-
tion, and panel orientation. Thus, we use the glass/glass close roof configuration from
Table 2 and 7 = —0.003 in order to reduce the number of dimensions in the search space.

Table 4 Parameter bounds for sensitivity analysis

Parameter Range Parameter Range

Paco 0..20000 W lat 35°N..60°N

Pdc 0..20000 W lon -10°.. +30°

T -0.002 ..-0.005 B 0°..90°
-3.56..-2.81 y 0°..360°

b -0.075 ..-0.0455 Tamb -20°..50°C

AT 0.3 ws 0.30%

Nnom 0.92.099 albedo 0.04 (asphalt) .. 0.8 (snow)
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0.5 B first-order indices
[ total-order indices
0.4
9
c 0.3
©
20.2-
0.11 ﬂ
0.0 — =

PooPyc T B Y latlon a b AT NnonTamsWS Albedo

Fig. 1 First-order and total-order indices

Problem formulation

The discussed model parameters are subject to an optimisation problem to minimise the
error between the calculated wa, according to the equations defined above, and the mea-
sured AC power an casureq At €ach timestamp £. The error metric thus defines the objective
function (sometimes called fitness function in the context of PSO).

We consider commonly used RMSE in Eq. (13), which tends to emphasise the effect of
outliers, and MAE in Eq. (14), which is more robust to outliers and thus better represents
the average characteristics of a potential solution. In addition, these metrics are compared
to MAD in Eq. (15) and IQR filtered RMSE and MAE metrics. The latter three completely
avoid the effect of outliers as only the better half of the error series is considered. Accord-
ing to Stein et al. 2010, satellite irradiance data provide a similar accuracy compared to
ground measurements considering the mean error. However, the standard deviation is
larger and thus filtering out outliers in these metrics seems to be a suitable option.

N
1
RMSE = N Z(szc - aneasured)2 (13)
t=1
1 N
t t
MAE = N Z |Pac - Pmeasured| (14)
t=1
MAD = median(|P,, — P, .. (15)

Particle swarm optimisation
The Particle Swarm Optimization (PSO) is an optimisation technique that emulates the
social behaviour of biological organisms, such as bird or fish swarms. First, a set of parti-
cles, referred to as the swarm, is randomly initialised in the n-dimensional search-space
(evenly distributed). Each particle represents one candidate solution. In order to find the
optima, the particles then move around the search-space using historical position and
velocity of themselves and their neighbours.

The original PSO algorithm is attributed to Kennedy and Eberhart (1995); Shi and
Eberhart (1998) and has been developed to solve non-linear equations. Over time, many

variations (e.g., different topology, search-space characteristics or constraints) have been
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used in research in order to solve a variety of problems. For this work, we use the classi-
cal star-topology, in which each particle is attracted by the best performing particle of the
whole swarm, which is assumed to be near the global optimum.

The position of the particle x; at the current step s is updated with the computed velocity
vi at s + 1, as in Eq. (16). The velocity of a particle is calculated as a linear combination
of: (1) its own damped previous velocity (parameter w for inertia), (2) its deviation to its
pi neighbourhood (parameter c; for cognitive behaviour), and (3) its deviation to the best
particle of the swarm p, (parameter c; for social behaviour), as defined in Eq. (17). The
two parameters ¢; and ¢; define if the swarm is more explorative (following personal best)
or exploitative (following swarm’s global best). The independent random numbers r; and
ro in the range of [0, 1] introduce a certain randomness into the velocity (next iteration),
more details can be found in Shi and Eberhart (1998).

xi(s+1) = xi(s) +vi(s + 1) (16)
vi(s + 1) = w-vi(s) + crr1[ pi — xi(s)] +cara[ pg — xi(s)] (17)

One of the main advantages of the PSO algorithm is that it does not use the gradient
of the function. Thus, it is not required to have an objective function that is differen-
tiable. As we obtain irradiance from the ERA5 dataset based on the location parameters,
our problem cannot be differentiated. In more general, PSO can be classified as meta-
heuristic as it makes few (in our case decision variable boundaries) or no assumptions
about the underlying problem to be optimised. Compared to variants of the population
based Genetic Algorithm, PSO provides the same quality of solution while reducing the
computational effort (Hassan et al. 2005). As panel tilt 8, cell peak power P, and effi-
ciency parameters (roughly scaling the output power) have similar effects on the overall
generation (Chen and Irwin 2017b), it appears that searching the entire parameter search
space is required in order to avoid local optima. In addition, similar weather conditions in
different areas of the ERA5 dataset could lead to local optima of the parameter set. PSO is
a suitable method to avoid local optima, as lots of sample solutions, spread in the search
space, are compared at each step and the overall solution is steadily directed towards the

best known optima.

Experiments and discussion

In the following, the proposed method is evaluated with an exemplary PV system, for
which all relevant parameters are known. First, the used data is described and second the
results are presented and discussed.

PV system data and pre-processing

The exemplary PV system DC peak power is rated with 11.55 kW and the panels are
connected to two inverters with each 4.6 kW nominal AC output (5.06 kW maximum).
The inverter efficiency (9,om = 95.9% extracted from the curve in the datasheet according
to weighted CEC definition) roughly matches the typical values extracted from the CEC
inverter database (1,0, = 96%) quite well. The PV system is installed on a roof top with
a roof pitch (panel tilt) of 23°; Panel azimuth is 195.45° (slight south west direction). The
PV system is 13 years old, thus a degraded panel peak power is expected. There is a minor
shadow effect in the morning, which makes the PV system a good candidate for a detailed
analysis as perfect systems are rare.
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Fig. 2 Normalised power generation in 15 min (white represents missing data)

The power output of the tested PV system has been collected at the digital, calibrated
energy meter and is averaged to 1 hour mean values for the year 2020 to match the tem-
poral resolution of the ERA5 reanalysis data. Due to some measurement issues, 374 hours
are missing and have been excluded from the optimisation. The measured power output
and data gaps are visualised with a quarter hourly resolution in Fig. 2.

In order to focus the error metric on productive time and improve calculation perfor-
mance, night conditions (measured power smaller than 100 W) have been filtered out.
This is especially important for the metrics that focus on the better half of the error series
(MAD, IQR filtered RMSE and MAE), which is the case at night condition when the error
is almost to zero.

The considered period has been limited from beginning of April until end of October
in order to avoid the influence of snow and tree shadows (due to low sun zenith) as good
as possible. This assumption is backed by observations but can also be observed from
the monthly Pearson correlation between GHI (from ERA5 weather data at the location
of the system) and the power measurements (see Fig. 3). Winter and late autumn season
seem to have a higher mismatch induced by snow covered PV panels and higher impact
of shadows due to lower sun zenith.

Solar irradiance, wind speed and ambient temperature are extracted from the ERA5
reanalysis data based on the considered location. ERA5 data (reanalysis-era5-single-
levels) has been prepared with a resolution of 0.25° for both latitude and longitude, which
isaround 16 - 20 km on latitude and 28 km on longitude in the tested part of Europe (same
area as in the sensitivity analysis, Table 4). For a more precise calculation, the ERA5 data
is linearly interpolated with the given location at each step.

When running the simulation model with ERA5 data using the actual system param-
eters for the whole year, a MAE of 567.42 W can be found. The deviation between
the measured and simulated PV system can be explained with observed minor shadow
effect in the morning, degraded panel peak power, model inaccuracy and mainly by the
inaccuracy of the satellite weather data (compare sample period in Fig. 4).

Time series data (measured power and ERA5 data) is shifted by 30 minutes in order to
calculate the sun position at the halftime of the corresponding mean period.
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Fig. 3 Monthly Pearson correlation between ERA5 GHI at the system's location and measured power

Results

For the experiment a swarm size of 200 with 400 iterations and ¢; = 0.7, c; = 0.3 and
w = 0.9 results in a stable solution. The swarm acts more explorative than exploitative
and thus finds the global optimum in most of the times. After around 150-200 iterations,
the particle velocity of all six parameters converges. This is visualised as velocity history
graph, normalised to the parameter’s search range, for MAE in Fig. 5. The velocity of the
inverter nominal power P, increases after a while and stabilises again at the boundary
of the search space. Similar convergence behaviour is observed for all tested metrics. The
calculations have been repeated 15 times in order to measure the impact of the random
swarm initialisation.

For the exemplary system, RMSE and MAE find similar optimum parameter sets in all
15 repetitions as visualised in Fig. 6, whereas MAD and IQR filtered RMSE and MAE
metrics converge in slightly different solutions. This is caused by only considering the
better half of the error series, which changes in each iteration.

The inverter power P, is overestimated independently of the used metric (mostly at
upper search space boundary at 20 kW). This is due to minor impact of higher inverter

10.0
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z ghi (right) =
£ 6.0 750
g 3
3 4.0 1500 &£
- 5
>
& 201 250 £
0.0 1 -0
Qo>
e
Fig. 4 Model accuracy in a sample period
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Fig. 5 Mean and standard deviation of velocity history sample run, normalised to the parameter’s search
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power compared to PV panel power (only efficiency). The initial under-sizing of the
inverter (10.12 kW maximum inverter power versus 11.55 kW panel peak) has not been
detected. This might stem from panel degradation and soiling, which reduced the panel
peak power below the maximum inverter power.

The nominal peak power of the panels is underestimated in average between 0.8 and
1.55 kW with different metrics. This can be explained with the initial under-sizing of
the inverter (1.43 kW), in addition to panel degradation and soiling effects. Nevertheless,
these fitted parameters might better represent the current state of the system compared
to the rated power at installation time.
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Fig. 6 Mismatch between the estimated and actual parameters (15 repetitions). Parameters search space
according to Table 3. Inverter peak power Py is mostly optimised to the search space boundary, the
remaining parameters are within the search space
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Regarding the location parameters latitude and longitude, RMSE and MAE provide a
stable solution with a distance of 30 km from the actual location (mainly west, slightly
south direction). This deviation could be explained with a regular minor shadow in the
morning that shifted the longitude in general to the west (ignoring different weather).
MAD and especially IQR filtered metrics halve longitude error, but double the latitude
error, resulting in around 25 km distance error (southeast). Using these metrics, the
impact of the minor shadow effect in the morning is reduced while the results are not
stable in each run.

Panel azimuth y estimation is comparable with all metrics except RMSE and ranges
between +1.68° to - 0.59°. The over-estimation with RMSE (+8.8° error) is assumed to
origin in the observed minor shading in the morning and the fact that the RMSE metric
emphasise the impact of outliers. Panel tilt 8 error is quite high in all metrics, which might
stem from its smaller influence on the system, as shown in the sensitivity analysis.

Discussion

The estimated PV system parameters should be considered as the best fitting parameters
for the simulation model. The ERA5 data is useful for locating the system by incorpo-
rating a broad variety of weather situations, however it does not provide an accurate
representation of the local situation due to its low spatial resolution.

Regarding the isolated impact of panel tilt and azimuth error in more detail, the cal-
culated annual energy generation differs by in average of 0.35% per degree tilt and 0.08%
per degree azimuth in the range of £15° around the actual orientation (compare Fig. 7).
The absolute estimation error in azimuth is 1.68° for MAE metric and thus approximately
0.13% error in annual energy generation, which could be considered as negligible. How-
ever, the estimation error in tilt (6.24° for the MAE metric) results in a annual energy
generation error of 2.184%. Comparing this error with the isolated annual energy genera-
tion error for location mismatch, which accounts for around 0.2% error of annual energy,
it becomes clear that a better tilt estimation is required.

The method using MAE has also been tested on a east-west sided PV installation. Its
location is estimated with a similar accuracy (23.79 km distance error) compared to the
single-sided system in the same area. As the weather signature in that region mainly
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Fig. 7 Impact of azimuth and tilt error on yearly energy generation compared to actual orientation
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influences the location estimation of the system, it was even possible to identify a two-
sided setup. The angles of the panels (azimuth error of up to 22°) and their peak power
(deviation of around 25%), however, are not very accurate.

In addition, we tested 5 PV system installations in California/USA for which the given
ZIP code covers the smallest area, which are mainly located in cities. It was possible
to allocate the hourly resolution time series of the year 2016 with an error of between
35.74 km and 62.4 km to the centre point of the ZIP code area using the MAE metric. The
panel angles are not very accurate, which can be accounted to the shading from nearby
buildings in the urban area. This can also be observed when comparing the GHI of clear
sky days at the estimated location with the power measurements, where the power is
heavily reduced in the morning and in the evening. The tilt angle for one system with
flat panels (0° tilt), however, could be identified reliably. Location estimation on 5 further
PV system at different locations in Bavaria/Germany is working with a mixed accuracy
ranging from 17-90 km. Panel orientation is not documented for these five systems.

When comparing the parameter estimation accuracy with related work - even when
using the exact same dataset is not possible - Saint-Drenan et al. 2015 performed better
on panel azimuth and tilt error (less than 2° in optimal cases) using satellite irradiance and
temperature values. No accuracy on their location estimation was given. The data-driven
approach by Meng et al. (2020) achieved an MAE in azimuth 4.5° and tilt 4.3°. When
applying our approach with known location using RMSE metric, a tilt error of 0.55° and
azimuth error of 7.22° is achieved. The azimuth error is supposed to originate from the
minor morning shading of the observed PV system.

Williams et al. 2012 state a longitudinal error of less than 50 miles (around 80 km) using
their astronomical approach and one month of data. The panel orientation deviation is
found to be £7°. Haghdadi et al. 2017 achieved a mean absolute deviation of 0.2° lon-
gitude, 4.08° latitude, 2.75° panel tilt and 5.85° azimuth working with clear sky data and
a temporal resolution of 5 minutes. Our PSO approach with IQR filtered error metrics
outperforms the location estimation (less than 0.3° for both longitude and latitude) using
hourly temporal resolution (1.4° longitude MAE for hourly resolution have been achieved
in Haghdadi et al. (2017)). Even the other tested 5 PV systems have been located better
than 1° for both longitude and latitude. However, our approach lacks accuracy in panel
orientation.

Chen et al. 2017a achieved a better accuracy in allocating their PV systems, however,
the granularity, as well as distribution of the underlying ground weather stations does
not get clear. Satellite data, as used in this work, provide a uniform coverage making our
approach more generic and applicable equally almost all over the globe.

Conclusion

For advanced modeling of PV power generation in microgrid simulation scenarios or for
improved forecasting with physical-hybrid models, the PV system parameters, such as
location, orientation and nominal power are required but not available in all cases.

This paper presents a framework to estimate the most relevant PV system parame-
ters by using power measurements and ERA5 reanalysis weather data in combination
with a PVWatts based PV simulation model. The relevant parameters, more specifically
longitude, latitude, panel tilt and azimuth, as well as inverter/panel peak power, have
been identified with a global sensitivity analysis on the simulation model. As most of the
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parameters show a dependency on each other, all parameters are optimised at once. This
is achieved by minimising the error between the measured and the simulated power out-
put time series using PSO and different error metrics. We compared commonly used
MAE and RMSE with median error and IQR filtered metrics, which only consider the
lower half of absolute errors and thus ignore outliers. The latter perform slightly better
for location estimation but lack accuracy in panel tilt.

We demonstrated with one exemplary PV system and measurements over one year
that the location can be estimated with an error of less than 25 km using hourly mea-
surement resolution. This estimation error roughly matches the spatial resolution of the
underlying ERA5 data. Regarding the panel orientation, azimuth estimation is acceptable
while the tilt angle, which also has a lower sensitivity, remains a point for improve-
ment. The panel peak power is in the expected range of panel degradation of the
analysed system. Similar observation can be found with the 10 PV system in Europe and
the USA.

In contrast to related work, we can also apply our approach to dual-sided PV instal-
lation. As result, it is possible to distinguish between single and dual-sided systems;
however, the panel orientation mismatch is higher than on single-sided systems only. The
location accuracy is comparable to singled-sided systems.

The presented framework is limited, on the one hand, by accurate weather data (tempo-
ral and spatial) and, on the other hand, by an accurate PV model. Localisation using ERA5
weather data has been demonstrated to work quite well with regard to the available reso-
lution of 0.25° on latitude and longitude. However, the panel orientation extraction might
be improved by removing the uncertainty of irradiance, e.g., by more focusing on clear
sky days. In addition, shadow and snow detection could be integrated to avoid or cor-
rect the measurements of shaded periods. The parameter estimation might be improved
by finding the best trade-off between filtering inaccurate data (e.g., panel shading) and a
suitable metric that devalues outliers, both without losing the general correlation to the
ERAS5 data for location estimation.
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