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Abstract

Battery electric modeling is a central aspect to improve the battery development
process as well as to monitor battery system behavior. Besides conventional physical
models, machine learning methods show great potential to learn this task using in-
vehicle data. However, the performance of data-driven approaches differs significantly
depending on their application and utilized data set. Hence, a comparison among
these methods is required beforehand to select the optimal candidate for a given task.
In this work, we address this problem and evaluate the strengths and weaknesses of a
wide range of possible machine learning approaches for battery electric modeling. In a
comprehensive study, various conventional regression methods and neural networks
are analyzed. Each method is trained and optimized based on a large and qualitative
data set of automotive driving profiles. In order to account for the influence of
time-dependent battery processes, both low pass filters and sliding window
approaches are investigated.
As a result, neural networks are found to be superior compared to conventional
regression methods in terms of accuracy and model complexity. In particular,
Feedforward and Convolutional Neural Networks provide the smallest average error
deviations of around 0.16%, which corresponds to an RMSE of 5.57mV on battery cell
level. With automotive time series data as focus, neural networks additionally benefit
from their ability to learn continuously. This key capability keeps the battery models
updated at low computational costs and accounts for changing electrical behavior as
the battery ages during operation.
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Introduction
To reduce global greenhouse gas emissions and to enhance the air quality in densely pop-
ulated regions, more and more automotive manufacturers are switching to electrifying
their fleets. In 2019, the global electric vehicle (EV) market grew by more than 40% com-
pared to 2018 (International Energy Agency (IEA) 2021). Additionally, leading automotive
companies such as Volkswagen are investing heavily in the expansion of the battery value
chain in the coming years (Volkswagen AG 2021).

In order to transform the automotive sector economically and successfully, the cost of
battery cell manufacturing and analytics must be drastically reduced. A significant cost
driver in the acceleration of the EV development process is the modeling of battery cells.
The idea behind modeling is the creation of a digital twin of the battery. The digital twin
can in turn be used to perform analyses in simulations without having to investigate real
battery cells. This step saves both manufacturing capacities and, more importantly, the
very limited test facilities.

In the literature, established physical models, such as the equivalent circuit model
(ECM) (Zhang et al. 2017), are widely used in the field of battery modeling. The ECM is
a theoretical circuit that retains all the electrical characteristics of a battery by using only
passive electrical components. The passive electrical components are typically parame-
terized by laboratory measurements, such as electrochemical impedance spectroscopy
(EIS) at different temperatures and states of charge (SOCs) (Choi et al. 2020). However,
the estimated model parameters are only valid for a given state of health (SOH) of the
battery. During the battery lifetime, the SOH degrades due to a variety of complex aging
mechanisms. The main drivers are the high SOC during storage, as well as the electrical,
thermal, and mechanical stress on the battery (Waldmann et al. 2014). During EV utiliza-
tion, the electro-thermal load on the battery is highly individual and so is the aging. As a
result, the ECM needs to be recalibrated during operation. Considering costly laboratory
EIS measurements and limited test facilities, this procedure is not feasible for economical
driven large electrified fleets.

Data-driven models offer a solution to overcome extensive laboratory experiments.
According to a comprehensive review by Wu et al. (2020), battery modeling based on
machine learning (ML) is steadily gaining importance in future applications due to their
low expert knowledge and high flexibility. The majority of ML battery analysis in litera-
ture focuses on the evaluation of pre-defined feature of interest (FOI), such as capacity
fade (Severson et al. 2019) (Stanford battery data set), voltage and temperature gradients
(Stroe and Schaltz 2020), or charge throughput during laboratory cycling (Li et al. 2020)
(NASA battery data set). Although various ML methods are already investigated, includ-
ing regression methods (Wang et al. 2020), filter-based approaches (Zhang and Lee 2011),
artificial neural networks (Vidal et al. 2020), and the comparison between different ML
methods (Chandran et al. 2021), the focus remains primarily on FOI analyses subjected
to laboratory conditions. However, according to Xiong et al. (2018), the performance of
ML algorithms highly differs in terms of their application. Moreover, You et al. (2016) and
Tian et al. (2020) pointed out, that the aging characteristics and FOI during laboratory
cycling are not comparable and thus not transferable to real vehicle operation.

A way to use operational data for battery analysis is the so-called system identification
approach. The concept behind system identification is to learn the electro-thermal battery
function from operational data, as illustrated in Fig. 1. Here, ML algorithms are capable of
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Fig. 1 Concept of system identification approach. A digital battery model learns the electro-thermal
behavior based on operational in-vehicle data

independently identifying correlations based on in-vehicle data (Li et al. 2019), which can
be used for battery model parametrization. Thus, the cost-intensive and limited labora-
tory tests can be avoided. In the literature, different regression methods (Lucu et al. 2018;
Andersson et al. 2020) are investigated for system identification purposes, as well as neu-
ral networks (Shen et al. 2020; Heinrich and Pruckner 2020). These methods show good
performance both in terms of accuracy and applicability. A comparison of ML methods
for battery electric modeling using time series operational in-vehicle data is missing in
literature.

In this work, we address this problem and investigate the strengths and weaknesses
of a wide range of possible ML approaches for battery electric modeling. In contrast
to the commonly used laboratory procedures to parameterize battery models, we focus
exclusively on automotive operational cycles. Contrasted are a variety of established
ML approaches, such as regression methods and different neural network architectures.
The goal is a comparative analysis of battery electric modeling based on relevant ML
algorithms using a uniform time series data set.

The remainder of this paper is organized as follows: “Battery electric modeling” section
introduces the used methodology, together with the data set. Afterwards, “Machine
learning methods” section briefly describes the evaluated ML methods. After a short
description of the hardware and evaluation metrics in “Evaluation” section, the results of
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our experiments are provided and discussed in “Results and discussion” section. Finally,
a short conclusion is drawn in “Conclusion” section.

Battery electric modeling
The aim of the data-driven methods is to replace the physical models, such as the ECM. As
shown in Fig. 2, the physical model can also be considered as a black box, whose battery-
electric function outputs the voltage response U(t) for a given electrical load described
by a sequence of the current I(t), temperature T(t) and the remaining battery charge Q(t)
(Heinrich et al. 2021).

The basis for learning the battery-electric function is exclusively dynamic battery data
during automotive operation. For this purpose, ML methods require a large amount of
data from as many different driving situations as possible (Heinrich et al. 2021). To pro-
vide a comprehensive, large, and diverse quantity of data, synthetic battery data is used.
The synthetic load behavior of the battery is provided using an ECM. The ECM is param-
eterized in advance using laboratory experiments on an automotive 60Ah NMC battery.
The parameterized ECM then simulates four different driving cycles including Worldwide
harmonized Light Duty Test Cycle (WLTC) (Orliński et al. 2019) as well as comparable
individual urban and interurban driving scenarios. The database comprises the required
battery-electric signals (I,T,Q,U) in 100ms (10Hz) resolution during vehicle operation at
random ambient temperatures between -10°C to 40°C. To increase diversity, the current
of each driving cycle within a sequence is randomly amplified by a factor α ∈[0.5,1.5]
to simulate different variations in driving intensities. In addition, this process is repeated
based on several battery cell aging states, resulting in a total of over 48 Mio. data points,
representing 352 individual automotive discharges. Based on this uniformed data set, dif-
ferent ML algorithms are evaluated in terms of prediction accuracy, model complexity,
speed, and computational resources.

Fig. 2 ML methods replace physical based ECM
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Training, validation and testing set

The training (56%), validation (19%), and testing set (25%) are built as follows: First,
one of the driving profiles is held out as a testing set, which leads to 264 discharges for
training and validation and 88 for testing. For the validation set, 25% of the discharges
are randomly selected from each of the remaining driving profiles and each battery cell
aging state. This leads to 66 discharges in the validation set and 198 discharges in the
training set.

Two additional preprocessing steps are done on the data: First, white Gaussian noise is
added on I, T, and U in order to fit the synthetic battery data to real measurement inac-
curacies. For the mean and standard deviation, characteristics of automotive sensors are
used to obtain a data set as close as possible to the situation inside real EVs (Li et al. 2020).
Therefore, the sensor inaccuracies are considered using a tolerance of cell temperature
(�T : ±1K), voltage response (U : ±8mV), and electric current (�I: ±0.5% of the actual
current, with a least ±10mA and at maximum ±2.5A). As the charge throughput Q is
calculated by the integration of I (Coulomb-Counting), it is also affected by the noise,
especially by the sensor drift. Second, all features are normalized, so that each input sig-
nal is considered equally. For normalization, the MinMaxScaler( ) (Pedregosa et al. 2011)
scales each feature to an equal range between -1 and +1 in a linear way.

Time-dependent battery behavior

According to Klass (2015) it is important to capture the effects of a time-dependent volt-
age response in battery modeling. The necessary temporal information is provided by
extending the input sampling in two different ways: either the input is extended by vari-
ables of the current history (CH) or by the past sequence of selected signals (sliding
window approach).

The CH variables are calculated by using a low pass filter (PT-1 term) as shown in Eq. 1.

CHt+1 = (1 − �t
τ + �t

) CHt + �t
τ + �t

· It (1)

The current at time step t is denoted as It and the sampling rate �t = 0.1s is equal to
the signal resolution. The time constant τ represents the time look-back and makes the
PT-1 term equivalent to an exponentially weighted moving average. For the experiments,
two separate CH variables are calculated by using two different time constants τ . The
time constant of the first CH is set to τCH ,1 = 1 and aims to model the fast-changing
battery resistances, charge transfer procedures, and double-layer capacities occurring
inside the battery cell (Zhang and Harb 2013). The time constant of the second CH is set
to τCH ,2 = 250, in order to model the slow-changing diffusion processes inside the cell
(Hu et al. 2012).

However, using CH variables comes with two major drawbacks: First, finding the opti-
mal values for τ needs to be done in advance by laboratory experiments, which are
undesired. And second, the optimal τ is changing depending on the individual aging state
of the battery.

As a consequence, a sliding window approach as input for the neural network models
is investigated. The sliding window approach does not make use of the PT-1 term and
is therefore not dependent on any time constant τ . The selected sequence length is set
to SL = 100 with a stride of Str = 12, as illustrated in Fig. 3. Whereas the sequence
length is limited by computational resources, the stride needs to be set as a trade-off: A
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Fig. 3 Sliding window approach applied to historical current signal at sample-time 1760 (green). The selected
sequence length SL = 100 and stride Str = 12 is representing a look-back of 1200 current samples (2min)

far look-back, corresponding to a high stride, is beneficial to capture more information
about the slow diffusion processes. However, the stride also needs to be kept low enough
to obtain enough information in the recent history to capture the fast processes in the bat-
tery cell. The mentioned stride of 12 shows to be a good compromise between those goals.
It enables the networks to observe the current signal Iseq as well as the temperature Tseq
and charge Qseq of the last two minutes in a high resolution.

Machine learning methods
Using the preprocessed battery signals, a wide range of ML methods are trained and
evaluated with the goal of learning the electric battery behavior based on a uniform
database of automotive driving cycles. The explored ML methods include classical regres-
sion methods implemented using the python library Scikit-learn (Pedregosa et al. 2011),
whereas the framework of the neural network is based on Keras (Chollet and et al
2015). Due to the different processing principles, the studied ML algorithms are divided
into methods using low pass filter or the sliding window approach as temporal current
information.

Methods using low pass filter variables

The ML algorithms studied with PT-1 history variables include various conventional
regression methods as well as neural networks:

• Multiple Linear Regression (MLR)
• Support Vector Regression (SVR)
• K-Nearest Neighbor Regression (K-NN)
• Decision Tree
• Random Forest
• AdaBoost
• Gradient Boosting Regression (GBR)
• Feedforward Neural Networks (FFNN)
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Although the discharge behavior of the battery cell is highly non-linear, especially at low
SOCs, the simple and intuitive MLR model (Hastie et al. 2009) is primarily analyzed. In
order to pay more attention to the non-linearity, the kernel SVR is also taken into account,
which is also used for SOH estimation out of a virtual battery model in Klass (2015). In
SVR, important hyperparameters are the width of the ε-insensitive zone, and C, which is
a trade-off parameter between the two optimization goals in SVR: a flat model function
on the one side and as few deviations as possible from the ε-tube on the other side (Smola
and Schölkopf 2004).

The prediction of K-NN is based on the comparison to a large reference table of train-
ing samples (Hastie et al. 2009). Here, the important hyperparameters are the number
of nearest neighbors k, which also controls the model complexity, and the metric power
factor p in the Minkowski distance. Additionally, the K-D tree structure for organizing
the data set is used, as this enables logarithmic query times in the number of training
samples (Pedregosa et al. 2011), leading to significantly shorter validation and testing
times.

The decision tree is introduced by Breiman in Breiman et al. (1984) and appears to be
an interesting solution due to its simplicity and white-box nature. In decision trees, the
maximum number of leaf nodes Nleaves can be adjusted in order to control the total size
of a tree. However, special attention must be paid to efficiently limit the maximum num-
ber of Nleaves, otherwise the tree has the possibility to memorize each individual training
sample. To prevent the tree from overfitting, a minimum number of training samples
in each leaf node is set to 5. Multiple decision trees can also be combined to build an
ensemble, such as Random Forests (Hastie et al. 2009) or AdaBoost (Drucker 1997). Ran-
dom forests use bootstrap averaging, whereas in boosting, each subsequent tree takes the
performance of the previous tree into account. Although AdaBoost belongs to the cate-
gory of “weak learners”, the performance improves with increasing number of leaf nodes
along with negligible impact on computational effort. For comparability, both ensemble
approaches use the optimized number of leaves Nleaves from the decision tree experiment.
In the Scikit-learn version of AdaBoost.R2, additional important hyperparameter choices
are the loss function and the learning rate η. GBR (Friedman 2000) is another boosting
approach, in which the histogram-based version is chosen instead of the standard GBR,
due to its strong improvement in speed (Ke et al. 2017; Pedregosa et al. 2011).

As a last method, neural networks are used, as they are known to be a universal func-
tion approximator and have shown huge success in a wide area of different ML problems
(Goodfellow et al. 2017). To learn the electrical battery behavior using CH variables,
FFNNs are investigated with respect to their optimal network structure. Considering the
computational speed, Rectified Linear Units (ReLUs) are selected as the activation func-
tion of the fully connected (FC) neurons. The number of hidden layer LFC defines the
depth of the network, where the number of neurons NFC is kept uniform across all lay-
ers. Additional optimization parameters such as dropout, further activation functions,
and individual interconnections, and deep neural network structures are omitted as they
show no significant impact on the model performance.

Methods using the sliding window approach

The sliding window approach is independent of the CH variables and instead focuses on
the analysis of the sequential feature input vector using the sliding window approach.
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Fig. 4 Illustration of the “Merge Neural Network” architectures. The architectures differ by the chosen network
type in the top branch (orange). The MergeFFNN uses dense layers exclusively, whereas the MergeLSTM
utilizes LSTM neurons. In terms of the MergeCNN architecture, multiple convolutional layers are selected

In addition to FFNNs, specialized neural networks such as recurrent Long Short-Term
Memories (LSTMs) or Convolutional Neural Networks (CNNs) are suitable for the
processing of time series data.

In this context, a distinction is made between the sequential feature input preprocess-
ing, leading to two different network architectures. On the one hand, the “Merge Neural
Network” processes the historical vector of the electric current Iseq separately to the cur-
rent load state, as illustrated in Fig. 4. The merged outputs are then further processed by
the following dense layer, rendering the final prediction.

In contrast, all available input features are processed together as a multidimensional
time series in Fig. 5. However, only the specialized neural networks are able to pro-
cess such multidimensional time series sequentially. As a consequence, the following
architectures are investigated:

• Merge Feedforward Neural Networks (MergeFFNN)
• Long Short-Term Memory Neural Network (LSTM)
• Merge Long Short-Term Memory Neural Networks (MergeLSTM)
• Convolutional Neural Network (CNN)
• Merge Convolutional Neural Networks (MergeCNN)

Using the “Merge Neural Network” structure, different types of neurons can be investi-
gated, as shown in Fig. 4. By exchanging the upper dense layer with NLSTM neurons, the
MergeLSTM is assembled. The LSTM is a promising candidate, as it is designed for pro-
cessing sequential data, especially for memorizing long-term dependencies (Goodfellow

Fig. 5 The CNN architecture consisting of 3 convolutional (Conv) layers and one hidden dense layer. By
replacing the convolutional layer with a layer of LSTM neurons, the LSTM architecture is designed accordingly
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et al. 2017). The output of the LSTM layer is the hidden state, such that in our architecture,
the hidden state is merged to the output of the dense layer of the lower branch.

In terms of the MergeCNN, the upper dense layer is replaced by three one-dimensional
convolutional layers, to investigate the benefits of using local connectivity and parameter
sharing approaches (Goodfellow et al. 2017). By using convolutional filters and corre-
sponding strides, the time dimension of Iseq is compressed in each layer, such that after
three layers, the sequence length is reduced to 1. In each layer, the compression and fea-
ture extraction is done by Nfilter , such that in the last layer, an output with the depth
of Nfilter is produced. This output is flattened and connected to the merge layer. The filter
size and convolution stride are set in such a way, that the filter positions do not over-
lap and no padding or pooling layer needs to be involved. This combination of CNN and
sliding window approach is known in the literature as Temporal Convolutional Network
(TCN) (Zhou et al. 2020).

As another approach, the sequence of [ Iseq, Tseq, Qseq] is used as inputs for an LSTM
and CNN. This approach tests the usefulness of the input sequences Tseq and Qseq. For
the case of the CNN, the architecture is shown in Fig. 5. In this case, the convolutional
layers are still one-dimensional, as the three inputs are organized in the depth dimension.
In terms of the LSTM architecture, the convolutional layers are replaced by one hidden
LSTM layer.

Evaluation
The evaluation metrics introduced are a measure for comparing the strengths and weak-
nesses of each individual method. In this work, we concentrate on the performance and
model complexity. In addition, from the perspective of a vehicle manufacturer, a special
focus is set on a possible application with respect to automotive framework conditions.
Automotive frameworks are often restricted to reduced computational capacities and aim
at efficient data processing, which needs to be considered for battery modeling of large
EV fleets.

Performance

For evaluating the accuracy of the ML models, the root mean squared error (RMSE) in
Eq. 2 and mean absolute error (MAE) in Eq. 3 is used.

RMSE =
√
√
√
√

1
N

N
∑

n=1

(

ŷn − yn
)2 (2)

MAE = 1
N

N
∑

n=1
|ŷn − yn| (3)

The parameter N denotes the total number of samples in the validation/testing set, ŷn
is the prediction, and yn the ground-truth. For statistical reasons and to mitigate the
effects of randomness, all experiments are repeated an additional time on another ran-
domly drawn data set. The overall performance score of an ML model is then obtained by
averaging over the repetitions of all different battery aging states.
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Model complexity

The model complexity is divided into processing time and required memory. The pro-
cessing time is measured during training, validation, and testing of each model, by using
the python library time.process_time( ). Memory consumption is considered in two pro-
cess steps. First, the maximum memory peak required to parameterize the ML models
during the training phase is determined. Here, the additional memory allocation in the fit
call is measured, such that the measurements do not include the size of the data set. The
used python library is tracemalloc. Second, the memory required to store the final ML
model, which remains on the hard disk, is considered. This memory is needed to run the
algorithms on an automotive ECU and is determined by the number of model parameters
based on theoretical considerations.

All experiments are carried out on a desktop computer with an Intel I5-8600K CPU
with 32 GB RAM. Although neural networks tend to benefit from GPU process-
ing, their impact is negligible using small network architectures and low batch sizes
(Goodfellow et al. 2017). Hence, for reasons of comparability, all experiments are per-
formed on a single CPU core.

Hyperparameter tuning

In the first stage of the experiments, hyperparameter tuning is performed individually
for each ML method by using the validation set. The main metric for this decision is the
RMSE. In all models, the evaluated hyperparameter space is chosen in such a way, that the
RMSE shows stagnation effects at some point in the hyperparameter space. Then, only
negligible performance gains can be achieved for the more complex models at the expense
of higher training and testing times. Therefore, the chosen optimal model is selected in
such a way, that it combines near minimal RMSE values with a low as possible model
complexity. This approach is also useful to prevent the models from overfitting. Table 1
shows the selection of the optimal hyperparameters with respect to the validation set
performance.

As a next stage of the experiments, the optimal models of each ML method are
compared by using the testing set.

Results and discussion
The RMSE on the testing set of each optimized ML model is shown graphically in Fig. 6.
In combination with the evaluation metrics in Table 2 and the observed training time in
Fig. 7, three conclusions can be drawn:

1 The neural network models show a significantly better performance than all other
regression methods.

2 All neural network models using the sliding window approach show a similar
performance with respect to the RMSE and MAE.

3 The FFNN, which uses the low pass filter variables, shows the best prediction
accuracy.

In the following, the characteristics of each ML method are discussed in more detail.

Classical ML methods

As expected, the MLR shows the highest inaccuracies due to the high non-linearities,
especially in areas of low SOCs, where a further discharge causes a strong voltage drop
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Table 1 Table showing the fixed parameters during evaluation, and the parameters, which are
optimized by using grid search

Method Fixed parameters Evaluated feature space Optimal

constellation

MLR - - -

SVR RBF kernel w. γ =“scale” C =[ 1, ..., 80], C = 30,

ε =[ 0.008, ..., 0.032] ε = 0.016

K-NN weights="uniform" p =[ 1, 2, 3], p = 1,

K-D tree k =[ 1, ..., 80] k = 40

Decision Tree min_samples_leaf = 5 Nleaves =[ 100, ..., 30000] Nleaves = 10000

Random Forest Nleaves = 10000, Ntrees =[ 5, ..., 140] Ntrees = 20

AdaBoost Nleaves = 10000, Ntrees =[ 5, ..., 140], Ntrees = 40,

loss=“linear” η =[ 0.5, ..., 2] η = 2

GBR Nleaves = 31, η = 0.1, Ntrees =[ 60, ..., 900] Ntrees = 480

loss=“least squares”

FFNN activation=“ReLU” LFC =[ 1, 2, 3, 4], LFC = 3,

NFC =[ 8, ..., 100] NFC = 48

MergeFFNN activation=“ReLU” Ntop =[ 5, ..., 50], Ntop = 35,

NFC,a.m. = Ntop + Nbot Nbot =[ 10, ..., 40] Nbot = 30

MergeLSTM NFC,a.m. = NLSTM + NFC NLSTM =[ 5, ..., 30], NLSTM = 5,

NFC =[ 15, ..., 40] NFC = 25

LSTM - NLSTM =[ 5, ..., 35], NLSTM = 15,

NFC =[ 0, ..., 40] NFC = 40

MergeCNN NFC,a.m. = Nfilter + NFC Nfilter =[ 5, ..., 25] , Nfilter = 15,

filter_size, conv_stride NFC =[ 10, ..., 40] NFC = 40

CNN filter_size, conv_stride Nfilter =[ 5, ..., 40], Nfilter = 25,

NFC =[ 0, ..., 50] NFC = 35

All neural networks use ADAM (Kingma and Ba 2017), a batch size of 256 and a learning rate η = 0.0005. The parameter NFC,a.m.
denotes the number of neurons in the dense layer after the merge layer

Fig. 6 RMSE of the different ML methods using CH variables (blue) or sliding window approach (orange)



Heinrich et al. Energy Informatics 2021, 4(Suppl 3):17 Page 12 of 17

Table 2 Comparison of the performance of the different ML methods

ML method RMSE MAE Tr. time Test. time Memory Npar/

in [mV] in [mV] in [s] in [s] in [MB] in [-]

MLR 48.0 37.7 0.02 <0.01 15.4 6

SVR 18.3 10.1 1676 51.0 2.82 28048

K-NN 37.9 22.3 0.50 7.10 17.2 2.2 Mio.

Decision Tree 14.6 8.34 1.89 0.01 2.56 29998

Random Forest 11.7 6.48 24.4 0.22 11.5 0.6 Mio.

AdaBoost 10.8 5.98 61.7 0.59 29.8 1.2 Mio.

GBR 10.4 5.29 6.92 3.29 31.3 43681

FFNN 5.57 3.51 69.7 0.15 3.51 5041

MergeFFNN 7.63 4.75 78.2 0.22 3.54 8011

MergeLSTM 8.45 5.66 1307 2.89 4.15 1201

LSTM 8.24 5.46 1793 4.87 4.15 1821

MergeCNN 7.39 4.73 194 0.68 3.76 5651

CNN 7.99 5.21 273 0.80 3.75 7511

The number of parameters Npar for model parametrization is derived from the optimized model architecture

in the battery cell. Also, high current excitations are leading to strong mispredictions.
Advantages are the low training and testing times and the low model complexity after
fitting is complete.

The unsatisfying result of the SVR is due to one main reason: It does not scale well
to large data sets, as the computation requirements increase rapidly in the number of
training samples (Pedregosa et al. 2011). Therefore, we decide to reduce the training set
size of the SVR to one-tenth of the original size. Even for this limited set, the training
time is already much higher than for all other methods, excluding LSTMs. Additionally,
the training time also heavily depends on the choice of C and ε. Low C and high ε showed
training times which are magnitudes lower, but also weaker RMSE scores. Additionally,

Fig. 7 Logarithmic plot of the training time of the ML models in seconds. Although the methods using CH
variables (blue) and the sliding window approach (orange) need to process the same amount of data, the
training time differs in order of decades
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the SVR shows by far the highest testing times of all models, as the kernel needs to be
computed between the new observations and all estimated support vectors (Smola and
Schölkopf 2004). Due to this high requirement on computation power, SVR for battery
state estimation can not be recommended.

K-NN can also not be recommended, as it shows a low-performance score, together
with high testing times. Those high testing times are due to the fact that the distances
from a new observation to each training vector need to be calculated. This results in
high computational demands, even if the K-D tree structure (Pedregosa et al. 2011) for
organizing the training samples is used. Furthermore, the K-NN algorithm requires the
entire data set to be permanently stored in memory. Additionally, K-NN does not work
well with CH variables, as the PT-1 terms correlate to the current. As a result, the distance
calculations are biased towards the current. This problem also occurs in a weakened form
with SVR, as the RBF kernel also requires the calculation of a euclidean distance.

The decision tree shows rather unsatisfying RMSE and MAE scores, but very small
training and testing times. Even in ensemble methods with roughly 100 trees, the train-
ing time stays within a reasonable amount of time. However, decision trees have another
drawback: as they produce only piece-wise constant predictions (Pedregosa et al. 2011),
they are not well suited for predicting continuous variables like the voltage.

This problem can be greatly mitigated if ensemble methods are used. Of the ensem-
ble methods, both bagging (Random Forest) and boosting approaches (AdaBoost, GBR)
show a significant gain in RMSE, from which the gradient boosting approach achieved the
largest improvement with approximately 4mV. When comparing the MAE, the ensem-
ble methods even achieve performance close to the neural network models. However,
the ensemble methods show a strong increase in memory occupation with approximately
30 MB due to their high amount of parameters. As a consequence, these methods can
only be partly recommended for situations where memory is not a critical factor.

Neural network models

Neural networks show better RMSE values than the conventional regression methods
and are therefore recommended as the method of choice for battery state estimation.
Furthermore, the memory requirements of neural networks are rather small. Based on
Table 2, all networks comprise of a low number of parameters, which allows them to be
used even in situations where memory is limited. Additionally, due to the training with
stochastic gradient descent (SGD), neural networks enable continuous learning, assuming
that the network is already trained and new samples are recorded afterwards. To update
the neural network, the SGD organizes the new unseen situations into batches and applies
them to the next update step. In contrast, all other methods have to start the training from
scratch as they require all seen situations for parameter optimization. Hence, the entire
data set needs to be allocated in memory.

Regarding the performance, all network architectures, which use the sliding window
approach, show similar results. The first observation is that the CNN shows worse results
regarding all performance metrics compared to the MergeCNN, whereas the LSTM
shows a slightly improved RMSE but a higher computational complexity than the MergeL-
STM. Therefore, we can conclude that the inputs Tseq and Qseq are contra-productive,
especially regarding the computational requirements. Both variables T(t) and Q(t) are
slow-changing, such that for the prediction, the most recent value is sufficient. When
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not using both variables, the dimensionality of the input is significantly reduced, while
keeping all relevant information at the same time.

The LSTMs show the lowest results of the sliding window approaches, which can be
attributed to the selected LSTM architecture. The LSTM architecture is kept deliberately
simple with a correspondingly slightly lower RMSE in order to maintain the training time
within limits. The reason for the high training times in LSTMs is the one-after-another
calculation of the hidden state vector, in which the subsequent hidden state requires
the previous hidden state to be already computed. Processing a sequence of 100 inputs,
therefore, requires 100 updates of the entire LSTM and therefore a massive amount of
computations, whereas FFNNs and CNNs can process the sequential input in a single
forward pass.

In both MergeFFNN and MergeCNN, additional tests show that the training times are
only slightly higher if we increase the sequence length to 200 and beyond. We want to
point out that in such a case, more than twice the history of the current can be observed,
such that prediction performance can be further improved. This also explains why all
sequential networks stagnate at a similar RMSE, as for better performance scores, higher
look-backs are required.

The FFNN with CH does not suffer from the problem of a finite look-back, as the PT-
1 term is dependent on all past current values, and therefore encompasses information
that is out of the range of the sliding window. In our experiments, this enabled the FFNN
with CH to achieve the best prediction performance, as shown in Fig. 8. The RMSE of
5.57mV is less than two standard deviations of the sensor noise of the voltage. This perfor-
mance corresponds to 0.16% with respect to an average battery voltage of 3.6 V. The FFNN
also shows smaller training and testing times than the other neural networks. However,
as mentioned in “Battery electric modeling” section, the time constants τCH ,1 and τCH ,2
suffer from the disadvantage of being determined in advance. This can become a problem
if the algorithm should be used for a large number of battery cells, as the electric battery
behavior changes depending on the construction case, material composition, and aging
state.

Therefore, in an additional experiment, the prediction performance of three different
FFNN architectures using a non-optimal time constant τCH ,2 is investigated. This exper-
iment aims to simulate the case, that the time constant is optimized using a different

Fig. 8 FFNN performance under automotive driving conditions. The FFNN prediction (orange) achieves an
overall RMSE of 5.57 mV compared to the true voltage characteristic (blue)
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Fig. 9 The performance changes, if the slow history time constant τCH,2 is varied. The test set is used to
determine the RMSE for three different FFNN architectures, which are notated as (layer, neurons)

battery cell. From the results in Fig. 9, we conclude that the area of the optimal time con-
stant is between 100 and 800. Hence, estimating one time constant for multiple battery
cells of the same construction can be sufficient.

In summary, taking into account the given data set, the performance, and model com-
plexity, the FFNN with the CH is able to provide the greatest potential. However, one
should be aware that our data is synthetically generated based on an ECM, which also
relies on time constants, as shown in Fig. 2. Therefore, the good result of the FFNN
with CH is limited to the precision of the ECM. If the battery cell can be modeled by an
ECM with high accuracy, then the FFNN with CH models this ECM with low error, and
if both errors are assumed to add up, then the total error would still be small. In such a
case, an FFNN with CH can be an extremely effective choice. On the other side, if the
ECM itself already shows weaker results in modeling the battery cell, then the assumption
is that the time constant-based FFNN will also not perform well. Hence, switching to the
sliding window approach can be more beneficial.

The two recommended candidates are MergeFFNN and MergeCNN. From those two
possibilities, it should be evaluated whether it is profitable to accept longer training times
of the MergeCNN for the gain in performance. In a conclusion, testing all three architec-
tures is recommended, as the performance of the ML algorithm always depends on the
individual data situation.

Conclusion
ML models share the ability to learn the electric behavior of automotive battery cells
directly from in-vehicle sensor data. As a consequence, expensive laboratory experiments
for battery model parametrization is no longer required, which makes data-driven meth-
ods interesting for large EV fleets. However, the performance of ML methods highly
depends on the application as well as on the given data set. Hence, a comparison among
these methods is required beforehand to select the optimal candidate for a given task.

In this work, the advantages and drawbacks of a wide range of possible ML methods
for data-driven battery-electric modeling are investigated. In a comprehensive study, each
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ML method is trained and optimized on a large and qualitative data set, which includes
multiple automotive driving profiles, battery SOHs, and a broad temperature range.

By comparing the optimized ML models, all conventional regression methods could
not be fully recommended, as each method shows one or multiple disadvantages. As a
result, neural networks are found to be superior in terms of model complexity and accu-
racy, which is consistent with the evaluation of ML methods used in other applications
(Chandran et al. 2021). In particular, FFNNs provide the smallest average error deviations
of 0.16%, which corresponds to an RMSE of 5.57mV and falls within two standard devi-
ations of the voltage sensor noise. Furthermore, the MergeFFNN and MergeCNN show
similar performance using the generalized sliding window approach. Adding the fact of
continuous learning renders the neural networks the method of choice for battery state
modeling. This key capability keeps the battery models updated with a low computational
effort and accounts for changing electrical behavior as the battery ages during opera-
tion. Altogether, this high accuracy and continuous learning capability is making neural
networks an interesting alternative for future battery electrical modeling approaches.

Future work will test the three architectures on further automotive data sets, which are
obtained from real battery cells. In addition, the behavior of the serial combination of
multiple cells needs to be evaluated as the next step towards EV battery system modeling.
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