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Abstract

The appearance of citizen energy communities demands the conception,
development, and testing of new management models for the community and its
end-users. Citizen energy communities promote the active participation of end-users,
including them in the management of the community. End-users are incentivized to
participate in demand response programs and share their energy among peers,
enabling a decrease in their energy costs. In this paper, it is proposed a platform for
the management of citizen energy communities. The paper focuses and presents
four services related to energy tariffs, end-users’ aggregation, price elasticity, and load
response. The services are based on historical data and enable deep analysis of end-
users’ energy profiles. As the platform allows the upload of different scenarios, it is
possible to test and validate management models in multiple energy communities
and scenarios and study their impact in different conditions. The paper presents a
case study, where all the services are applied to a community with 996 end-users.

Keywords: Citizen energy communities, End-users’ aggregation, Tariffs management,
Price elasticity, Load response

Introduction
The implementation of smart grids is currently advancing at a significant speed, chan-

ging the interaction between energy utilities and end-users, and providing support for

the integration of renewable energy sources and energy storage (Ourahou et al. 2020).

The application of smart grids also enables energy transactions among end-users (Liu

et al. 2017) enabling end-users with generation (e.g., generated from solar panels) to

sell their surplus energy either to neighbouring consumers or to the grid (Alladi et al.

2019). In smart grids, end-users can also have an active participation in the grid man-

agement, using demand response programs (Tang et al. 2019; Faria et al. 2015), and

transactive energy (Good et al. 2019; Gomes et al. 2020).
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The willingness of the end-users to actively participate in smart grids is increasing, as

there exist more and more reasons to do so, particularly at the economic level (Feuer-

riegel and Neumann 2016). The citizen energy communities, foreseen in the Directive

(EU) 2019/944 of the European Parliament and of the Council, of 5 June 2019, allow

end-users to voluntarily participate in community programs (European Parliament

2019). Citizen energy communities can be managed using centralized or decentralized

models, similar to microgrids (Abrishambaf et al. 2021).

In an energy community, multiple types of users exist and cooperate, each one with

their energy consumption and generation profiles. The profiling of users can be done

using multiple methods, as clustering (El Kontar and Rakha 2018) or classification (Pis-

citelli et al. 2019). The profiling of users allows the aggregation of users and provides

an analysis of the user’s consumption.

This paper proposes a platform to manage a citizen energy community, providing

multiple services to manage the community and its end-users. In this paper, four ser-

vices, that are fed by the end-users’ historical data are proposed. The tariffs calculation

and attribution service provides an analysis of the end-users’ tariffs, for consumption

and generation, and provides the best tariff available in the market. The aggregation

service enables the aggregation of the end-users considering similar attributes. The

price elasticity service calculates the end-users’ elasticity considering the variation of

energy prices and their impact on the end-users’ energy demand. The load response

service provides energy price variations to adjust the community’s energy demand, con-

sidering the current balancing needs.

This paper is divided into five main sections. After the introduction, the second sec-

tion will explore and, briefly, provide a state of art regarding load response services,

clustering, and platforms focused on the management of tariffs and energy communi-

ties. The third section presents the proposed energy communities’ platform, its archi-

tecture, and the interaction between services. A case study, and its results, are

presented in section four, while the main conclusions are described in section five.

Related work
This section will address related work regarding energy communities’ management

platforms, end-users’ tariffs attribution models and platforms, demand response, and

end-users’ aggregation models.

In (van Leeuwen et al. 2020), it is proposed a platform that optimizes the energy flow

in a microgrid, besides implementing a bilateral trading service. It makes use of block-

chain technology to create a network and enables a distributed optimization using the

Alternating Direction Method of Multipliers (ADMM). In (Ku et al. 2018), a big data

platform for energy is proposed. It can forecast energy consumption and generation for

the optimal use of the energy grid, making use of big data analysis to create a robust

demand response method. A smart energy community management platform, capable

of implementing peer-to-peer (P2P) trading and managing household energy storage

systems, through fuzzy reinforcement learning, can be found in (Zhou et al. 2019).

Regarding tariffs management, in (Wu and Xia 2018), it is proposed a tariff-driven

demand management of a ship with a hybrid renewable energy system. It helps to

achieve an optimal solution in terms of power management. In (Fridgen et al. 2018), it

is proposed an empirical analysis of electricity tariffs in microgrids, where tariffs are
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used to complete the study of technical challenges in distributed residential power gen-

eration and its consequences on the energy grid.

In energy communities, there are many options to perform local energy management

with active participation of end-users (Chen and Liu 2017). An example is the use of

demand response and load response programs. Demand response programs have been

deeply explored in the last years, considering the greater capacity to use them in real-

life problems (Wang et al. 2017). Thus, new methodologies have been suggested, with

different goals, regarding the problem context.

The use of distributed blockchain mechanisms for delivering secure and reliable en-

ergy flexibility is proposed in (Pop et al. 2018). In (De Sá et al. 2013), it is suggested an

optimization of time-of-use (ToU) tariffs design, based on quadratically constrained

quadratic programming, using price elasticities of demand.

There is also the possibility to develop demand response programs to maximize the

profits of energy retailers (Chai et al. 2021), control retail electricity markets (Alasseri

et al. 2018), cope with power outage events (Tian and Talebizadehsardari 2021), like

natural disasters, and, like the work proposed in this paper, for energy communities

management (Huitema et al. 2020). There are a lot of different possible approaches to

this technique, always considering the problem context and the willingness of the end-

users to actively participate in the market (Pinto et al. 2016).

To participate in demand response programs, it is usually needed an aggregator entity

that represents a group of end-users (Ma et al. 2017). For this reason, end-users should

be aggregated, through a clustering algorithm, according to their similarities.

In unsupervised learning, clustering has the objective to separate a finite, unlabelled

dataset into a finite number of groups, named “clusters”, considering data similarities

(Xu and Wunsch 2008). There are multiple types of cluster algorithms, each one with

its pros and cons. The most recognized ones are hierarchical (agglomerative or divisive)

and partitional (distance-based, model-based or density-based) (Saxena et al. 2017). In-

side each one of the types, there are a lot of algorithms, such as k-Means, Density-

Based Spatial Clustering of Applications with Noise (DBSCAN), Clustering Using Rep-

resentatives (CURE), and Support Vector Machines (SVM) clustering.

In energy systems, clustering algorithms are normally used to deeply analyse end-

users. Through clustering, it is possible to perform end-user aggregation (Iria and

Soares 2019) for the active participation in demand response programs (Lin et al.

2019). In (Teichgraeber and Brandt 2019) multiple clustering methods, including K-

Means, are studied in the problem of optimization of energy systems, through the find-

ing of representative periods. It is also possible to study electricity use patterns, as pro-

posed in (Nepal et al. 2021) and optimize energy systems design (Kotzur et al. 2018).

The evaluation of clustering algorithms is possible using methods that evaluate the

optimal number of clusters (or neighbourhood, in density-based clustering), such as

Elbow and Silhouette. Normally, the evaluation metrics are coefficients corresponding

to intra-group homogeneity and inter-group heterogeneity.

The Elbow method considers the total Within cluster Sum of Square (WSS) as a

function of the number of clusters suitable for the dataset (Asri et al. 2019). It enables

the choice of the appropriate number of clusters in such a way that adding more clus-

ters does not have any impact on the data analysis results (Aggarwal and Sharma
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2019). The optimal number of clusters is achieved when the function curve draws an

elbow since the function stabilizes.

The Silhouette Score (SS) is a measure that assesses the cohesion of the clusters

(Choi et al. 2019). It calculates not only the similarity between one point and the rest

of its group but also the dissimilarity between that same element and the points of the

other groups. Thus, a value between − 1 and 1 is obtained, where 1 means that there is

a high cohesion in the groups and − 1 reflects that there is no conformity between

members of the same group (Lengyel and Botta-Dukát 2019).

Energy-targeted systems can have completely different approaches, and all of them

valid in their conditions. From all the studied platforms, none of them combines tariffs

analysis and management, end-users’ aggregation, and a load response program, mak-

ing the platform proposed in this paper stand out.

Proposed energy communities’ platform
The developed energy communities’ platform is web-based and allows the community’s

operator to analyse end-users’ historical data and execute multiple services regarding

the community’s management. The platform is divided into four main services, as

shown in Fig. 1. The arrows specify the normal procedure of the operator from the mo-

ment he starts using the platform until all services have been successfully executed. Be-

sides that, the platform data flow is described, and each step is explained.

The proposed platform is not data-dependent, as it allows the input of an excel file

with end-users’ historical data, considering possible different scenarios. In this file, a

line corresponds to a single end-user and a column represents a period. In every sheet

of the file is specified a parameter (attribute). There are multiple types of parameters,

as some require being studied by period (consumption, generation, etc.) and others just

require a numerical or categorical value (contracted power, generation type, etc.).

Then, when a dataset is already imported, all the services are unlocked, and the plat-

form can list all the available end-users and present their historical data, giving the

community’s operator the ability to change it manually. In Fig. 2 it is shown, in a) and

b), respectively, a locked and unlocked menu, that represents its state before and after a

dataset upload.

As it is possible to see, in Fig. 2, when there is not a dataset loaded in the platform,

the services are unavailable, and as such they cannot be executed. The only task avail-

able besides the dataset upload, is the platform customization, where it is possible to

Fig. 1 Platform architecture
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change the available parameters for the end-users (add, remove, change type), add or

remove tabs and charts in the players analysis page, change chart types, and more.

Tariff calculation and attribution model

There are multiple energy providers with different energy tariffs, adapted to the distinct

types of end-users. As the consumption and generation profile of an end-user can

change, it may exist the necessity to change their energy tariffs, to ones adapted to their

energy profiles.

The tariffs of end-users are individual, and not by community, meaning that multiple

tariffs can be used in a single community. The tariffs calculation service provides an

analysis of the available tariffs to each end-user, intending to find the most cost-

effective tariff for each one.

This service requires the input of a file with different consumption and generation

tariffs, that can be applied to the end-users. Then, these tariffs will be analysed indi-

vidually for each one of the end-users, calculating its total cost (in case of consumption

tariffs) or profit (in case of generation tariffs), considering their consumption and gen-

eration historical data. In the case of the consumption tariffs, the objective is to

minimize the cost, and relatively to the generation tariffs, the objective is to maximize

the profit. In Eqs. (1) and (2) is described the tariff cost/profit calculation:

Tariff cost ¼
Xn

p¼0

ctp�cp ð1Þ

Fig. 2 Side menu of the application: a with locked services, b with unlock services
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Tariff profit ¼
Xn

p¼0

gtp�gp ð2Þ

where n is the number of periods available on the dataset, ctp is the consumption tar-

iff price in period p, in EUR/kWh, gtp is the generation tariff price in period p, in EUR/

kWh, cp is consumption value in period p, in kWh, and gp is the generation value in

period p, in kWh.

The most profitable tariff will be assigned to the end-user, and, after the execution of

the service, the operator will have the ability to apply them to the end-users. The attri-

bution can be made in two different ways:

� All tariffs: All the assigned tariffs will be applied to the end-users, existing the possi-

bility of the original tariff being kept, in the case of being advantageous to the end-

user.

� Selected end-user: Only the tariffs from the selected end-users will be applied. The

users are selected by the operator in the platform graphical interface through a list

of the available end-users.

After applying the desired tariffs, is possible to save the dataset with the applied

changes on the end-users. The saving functionality is available at any time.

End-users’ aggregation model

The objective of the aggregation service is to group end-users by similar attributes, and

then present the results to the operator. The aggregations have special importance

since the introduction of the demand response programs.

The clustering algorithm used in the proposed service is K-Means, also known as

Centroid-Based Clustering. Because this algorithm only accepts numerical data, the cat-

egorical parameters are encoded to numerical values. The aggregation service receives

as arguments the dataset, the minimum number of clusters, and the maximum number

of clusters.

Even though the platform backend is developed in Python, the used aggregation ser-

vice is developed in R. The K-Means algorithm will run one time for each possible

number of clusters, saving the results of each one. It should be noted that this is a

semi-random algorithm, so it is executed several times and the best execution is

chosen. The used K-Means method allows you to define how many times it will run

through a parameter.

The operator has the possibility to choose which parameters should be included in

the aggregation service, and it is suggested every possible combination of the chosen

parameters. Figure 3 represents the selection panel. It is also possible to assign a weight

to each parameter, between 0 and 10, if needed to give more importance to some

parameters.

After selecting the parameters, the operator must choose all the pretended combina-

tions between the parameters. For each combination, the K-Means algorithm will be

executed, and the results can be studied individually for each chosen possibility. Figure 4

shows the panel where the operator can combine the parameters for the aggregation

service.
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This service is implemented with a task queue, which allows that time-consuming

tasks can be performed in the background, without interrupting the proper functioning

of the platform. In this way, it is possible to request the aggregation by multiple combi-

nations and perform other platform’s services while this one is executing.

After the algorithm execution, it is possible to check the clustering results, and the

Elbow and Silhouette evaluations.

Price elasticity model

The price elasticity is the measure of the consumers’ response to price changes. It is

important because it helps to understand the correlation between consumption and

price and gives an idea of the implications that a price (tariff) change brings to the

community’s energy demand.

Fig. 3 Parameter selection for aggregation

Fig. 4 Combinations’ selection
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Price elasticity (Pe) is defined as the ratio of consumption variation over the price

variation before and after the load response program, as proposed in (Faria and Vale

2011):

Pe ¼ ΔQ
Q

=
ΔP
P

ð3Þ

where ΔQ represents the difference between the final energy quantity (Q), in kWh, and

the energy quantity of the last period. Relatively to ΔP, the same logic is applied, but it

represents the difference between the final energy price (P), in EUR/kWh, and the last

period’s energy price.

This equation, when applied to all the periods of the available dataset, results in

points that can be placed in a scatter chart. Then, multiple regressions are be applied

to those points, to create a complete end-user’s profile relative to the price elasticity

rate. The available regressions, in the proposed platform, are linear and quadratic. The

metric used to compare the regressions and evaluate which is the most adequate, is the

coefficient of determination, denoted R2.

Both regressions can be analysed graphically, through the representation on a chart,

or analytically, through the regressions’ equation.

Load response model

The load response model is a direct consequence of the price elasticity model, due to

the use of the created regressions in that service. The objective is to predict new con-

sumption values for each end-user considering a determined price change.

The main objective is to change the community’s consumption (i.e., reduce or in-

crease) through the variation of the energy price based on the end-users’ price elasti-

city. This service requires as input the expected consumption variation needed, and it

will return the necessary price change to achieve it, and the estimated variation per

end-user. The max reduction that can be applied is the sum of the end-users’ consump-

tion, which will take the community’s consumption to zero. In the opposite case, in

which an increase in consumption is requested, the limit is reached by the decrease of

100% of the price (i.e., the price is equal to zero). None of these situations is what is

intended with the service, but they serve as validation.

The regression with the highest score is applied to find the new consumption, which

will result in a more accurate result, and consequently in a more realistic approach.

Case study
The case study for the platform services was realized using a dataset based on the one

used in (Silva et al. 2019). The dataset contains information on 996 end-users, consid-

ering 5 full days, with a granularity of 15 min. The dataset contains information

regarding:

� Consumption Profile: energy consumed during each period, in kWh;

� Generation Profile: energy generated during each period, in kWh;

� Consumption Type: type of end-user, i.e., domestic, small commerce, medium com-

merce, large commerce, or industrial;
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� Generation Type: type of generation of the player, i.e., photovoltaic, wind, biomass,

or hydrogen;

� Consumption Tariff: energy consumption tariff applied, in EUR/kWh;

� Generation Tariff: energy generation tariff applied, in EUR/kWh;

� Flexibility: the percentual value of consumption flexibility for each period;

� Contracted Power: power defined in the consumption tariff contract, in kVA.

The data must be uploaded through an excel file, with n sheets, each one of them

with x rows and y columns, where n is the number of parameters, x is the number of

players, and y is the number of periods.

Some of the considered parameters are not measured by periods, as the contracted

power or the generation type, as they are characteristics of the end-user and do not

change between periods.

For this case study, the main services of the platform were analysed, in terms of re-

sults obtained and response times. A sequence of models was used to test and validate

the use of the proposed platform: tariff calculation and attribution model, end-user ag-

gregation model, price elasticity model, and load response model.

Energy tariffs

To enable the execution of the tariff calculation and attribution model, the developed

platform demands the input of an excel file with a set of available consumption and

generation tariffs. The used tariffs were generated considering hourly prices based on

the MIBEL market. The tariffs file contains five consumption tariffs and five generation

tariffs.

After the tariffs are loaded to the platform, it is possible to calculate the best tariff, by

type (consumption or generation), to each one of the end-users. Depending on the

characterization of the end-user, only one tariff may be attributed, for instance, pro-

ducers will not have consumption tariffs. After the calculations are finished, the oper-

ator can visually analyse the original and the most profitable tariff to each end-user,

through a comparative graph, shown in Fig. 5. It is also possible to check if the best-

calculated tariff is better than the original, considering the cost or profit. Above the tar-

iffs graph is displayed an information box, with a contextualized colour, demonstrating

the positive or zero profit, in the case of the original tariff is the best for the current

end-user, reflecting the tariff assignment.

Besides the comparison between the most profitable tariff and the original one, it is

also possible to compare all the calculated tariffs in terms of total cost/profit. When

comparing the consumption tariffs, as seen in Fig. 6, the best tariff is the one with the

Fig. 5 Most profitable tariff comparison with original tariff
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smallest bar, in other words, the one with the smallest cost. Concerning the generation

tariffs, is the opposite, the biggest bar represents the most profitable tariff.

The last step of the tariffs service is the update of end-users’ tariffs. The operator can

assign the best tariffs to each end-user, according to their consumption or generation

profile. The assignment can be simultaneous to the whole community, or just to the

pretended end-users.

Regarding the response times of the service, it is surprisingly quick. It takes 2.9 s to

read a file with 10 tariffs, with 5 days of prices information, and it takes 2.5 s to execute

the calculations, considering all the tariffs, to the 996 end-users.

Aggregation

For the aggregation service, multiple parameter combinations were studied, considering

equal weights. The chosen parameters were Consumption Profile (C), Consumption

Type (CT), Generation Profile (G), Generation Type (GT), and Contracted Power (CP).

The operator is responsible to select the pretended combinations, while the proposed

service has the responsibility to execute the end-users’ aggregation model for each

combination. The executed combinations are presented in Table 1.

Fig. 6 Calculated tariffs comparison

Table 1 Studied combinations

Parameters Elbow Evaluation
(number of clusters)

Silhouette Evaluation (SS) Response Time
(minutes)

G, GT, C, CT 2 10 clusters (0.93) 12

G, GT, CT 2 10 clusters (0.93) 5

G, GT, C 3 9 clusters (0.99) 14

G, GT 3 8 clusters (0.99) 6

GT, C, CT 2 10 clusters (0.93) 6

G, C, CP 2 3 clusters (0.99) 17

G, C 2 3 clusters (0.90) 21

C, CT 2 5 clusters (0.99) 7
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The whole process took, approximately, 1 h and a half to be concluded. Because the

used K-Means algorithm is a semi-random algorithm, and to ensure that the results are

reliable and accurate, it runs 25 times for each parameter combination, and the best re-

sults are the chosen ones.

Besides the chosen combinations shown in Table 1, one more was tried in the aggre-

gation service. This one, only containing the parameter Contracted Power, had the ob-

jective to show that the service validates the input parameters with the selected

number of clusters. As, in the case study dataset, only exists 3 different values for this

parameter, and the cluster interval was one to ten, the service has thrown a validation

error, as shown in Fig. 7. It is not possible to execute the service if the maximum num-

ber of clusters is smaller than the unique column values of the chosen combination.

To examine the details on the aggregation service, the results for the combination

Generation and Generation Type are analysed individually. The optimal number of

clusters obtained by the Elbow method was 3, and by the Silhouette method was 8. In

Fig. 8, it is possible to analyse the generated evaluation graphs by those methods, as

well as the optimal results.

Considering the Elbow method result as optimal, the data will be divided into three

different groups. In Fig. 9 is possible to analyse the created clusters. The first cluster is

composed totally by the end-users without energy generation (generation type is None).

The second cluster contains the end-users with wind-generated energy, and the last

one contains all the other end-users. It is an interesting separation because it does not

split any of the end-users with the same generation type into more than one cluster,

Fig. 7 Aggregation validation error

Fig. 8 Evaluation metrics
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being helpful to future analysis. However, it also is an expected division, considering

that the non-producers (i.e., consumers) have an exclusive group, and the wind gener-

ation is in majority on the dataset (254 end-users).

If the considered evaluation method is Silhouette, the optimal number of groups is

eight. It is an expected number since there are eight different generation types on the

dataset. In Fig. 10 is possible to observe that with eight clusters, it is made a perfect

division, considering that each one of the clusters is exclusive to one generation type.

Both considered number of clusters provides a good division to the dataset. The

chosen number of groups will always depend on the context and the goal of the div-

ision since there are multiple possible applications for both obtained cluster numbers.

Price elasticity regressions

The first step of this service is to calculate the price elasticity for each period of the

dataset, to each of the end-users. Then, all the calculated points are plotted in a scatter

plot, where it is possible to analyse the elasticity of each user. An example of a scatter

plot, only with 2 end-users for the points to be readable, is represented in Fig. 11. The

platform takes around 6 s to calculate the price elasticity of 995 end-users considering

each period, and to load the graphic.

Fig. 9 Aggregation results for three clusters

Fig. 10 Aggregation results for eight clusters
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Besides, the scatter plot, the operator has the possibility to consult a table where is

displayed the linear and quadratic equations from the regressions, and the respective

scores. An example extracted from the table is shown in Table 2. The regressions

scores were calculated, as previously stated, with the R2 metric.

With the analysis of the table, it is noticeable that all the regression coefficients are

negative. It is an expected result since consumption and price should have opposite di-

rections. This because, if the end-users’ profiles are explored, it is normal to decrease

the energy consumption when there is a price increase, and the same happens for the

opposite situation.

The regressions calculations of 995 end-users take about 9.5 s to be complete. As ex-

pected, none of the linear regressions achieved a greater score than quadratic regres-

sions. Even so, the linear regressions in the graph were maintained for purposes of

comparison and testing. The average score for linear regressions was 0.498, and for

quadratic was 0.688.

Load response service

The load response service has the goal to reduce the end-users demand, with an in-

crease in the energy tariff. In a price-based demand response program, to decrease en-

ergy peaks, the operator knows how much the peak should decrease, but to the end-

users only is communicated an energy price change.

Considering that the developed platform has the goal to analyse end-users’ historical

data, it does not have a mechanism to, after the reduction is requested, wait for the re-

sponse of the end-users. Instead, the load response service predicts the end-users’ re-

sponse considering their elasticity profile, made available by the price elasticity model.

Fig. 11 Price elasticity graph

Table 2 Regressions details (information extracted from Web Platform)

Player Linear Regression (LR) Quadratic Regression (QR) LR score QR score

Prosumer2 −0.811x − 0.0921 −0.589 × 2–1.540x - 0.0605 0.335 0.590

Prosumer3 − 0.571x − 0.0919 −0.300 × 2–1.168x − 0.0727 0.247 0.461

Prosumer 5 -0.497x - 0.0908 -0.226 × 2 - 1.020x - 0.0731 0.259 0.480
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To achieve the pretended reductions the price is incremented by 0.01% in every iter-

ation, and if with that increase the pretended reduction is reached, the service returns

the results. The maximum possible reduction is the sum of all end-users’ consumption,

and the platform notifies the percentage of the requested reduction towards the max

one. The studied reductions are represented in Table 3.

To complement the information for the operator is displayed a graph where is pos-

sible to observe the applied reductions by the service. It can show the reduction applied

to the whole community, or a single end-user. The graph for all end-users is shown in

Fig. 12.

Despite not being the main goal of the service, it is also possible to request a con-

sumption increase, through a tariff price decrease. This functionality of the service was

also tested, and the results are displayed in Table 4.

Conclusion
This paper proposes a web-based platform to manage local energy communities. With

the increasing interest in smart grids and local communities, there is a need for plat-

forms capable of dealing with the most important services related to the communities,

such as the services proposed in this paper.

This platform can run with multiple scenarios, being able to manage multiple com-

munities or periods in the same system. It is very useful to analyse the effect of the

available services on the most diverse type of end-users and communities. Besides that,

the combination of multiple services can provide community operators with vital tools.

The results of the case study validated the proposed services for a community with

996 end-users, reaching economic benefits for end-users, through the application of

new tariff, and enabling price-based demand response programs to promote the

Table 3 Studied load response reductions

Requested
reduction (kWh)

Applied
reduction (kWh)

Price
increase
(%)

Minimum reduction per
player (kWh)

Maximum reduction per
player (kWh)

7.5 7.51 0.42 0 0.039

10 10.01 1.94 0 0.045

25 25.2 10.9 0.0009 0.075

100 100.19 61.27 0.007 2.642

900 900.47 109.1 0.009 2.896

Fig. 12 Reduction graph (All end-users)
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community energy balancing. The promising results show the potential of such a plat-

form. However, future services must be developed, such as peer-to-peer transaction

models, resource optimization algorithms, and grid simulations, enabling the develop-

ment of a complete platform for the operation and management of citizen energy

communities.
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