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Abstract

With the rise in popularity of artificial intelligence, coupled with the growing concern
over the environment, there has been a surge in the use of intelligent energy
management systems. Additionally, as more buildings transition into the smart grid
and, consequently, more energy and environmental data is gathered, there has been
a significant increase in the number of data-driven approaches for building
management systems. This paper proposes a methodology that aims to optimize the
climatization and luminosity inside a building, using a genetic algorithm, a random
forest, and two polynomial models. The proposed methodology enables the real-
time management of the building taking into account the user needs and
preferences. Air conditioner units and light systems are optimized to minimize
energy costs, while also improving the air quality and considering the users’
temperature and luminosity preferences. This paper shows the results achieved, by
the proposed solution, in an office building case study. The promising results
demonstrate the possibility of minimizing energy costs while maximizing the users’
comfort.

Keywords: Building energy management systems, Genetic algorithm, Polynomial
regression, Random Forest, Air quality

Introduction
Globally, the industry and household sectors, combined, account for slightly over 50%

of the total final energy consumption (Energy statistics, n.d.). And, with much of the

energy coming from the burning of fossil fuels (IPCC 2014, 2014), leading to green-

house gas emissions, the transition to smarter energy management systems is becom-

ing increasingly more urgent (Vale et al., 2010). However, enhancing the energy

efficiency in buildings, both, industrial and residential, requires in-depth knowledge of

the underlying performance. Thus, the gathering of energy and environmental condi-

tions data, coupled with the use of smart management, has become an essential step to
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achieve significant energy consumption reductions (Faria et al., 2015; Abrishambaf

et al., n.d.).

A Genetic Algorithm (GA) is a metaheuristic search-based optimization algorithm in-

spired by natural selection, that belongs to the class of evolutionary algorithms (Genetic

Algorithm, n.d.). Having been used for the optimization of energy consumption as far

back as 1997 (Huang & Lam, 1997), it continues to be a highly used approach to the

problem of energy consumption reduction, as seen in (Mota et al., 2021), where it is

proposed a model for the management of loads in an industrial production line using a

GA, and (Nguyen & Nassif, 2016), where a model-based optimization process for Heat-

ing, Ventilating and Air Conditioning (HVAC) systems using a GA is presented.

Random Forest Classifiers or Random Decision Forest Classifiers are an ensemble

learning method for classification (Yiu, 2019), meaning that they resort to multiple ma-

chine learning models, in the Random Forest case, Decision Trees, in order to obtain

better predictive performance than a sole model could obtain (Ramzai, 2019). One

drawback associated with Decision Tree Classifiers is their high variance, due to the

significant change a tree can suffer from a small variance in the training data, therefore,

the Random Forest methodology was invented, so that tree classification could be more

stable (Azar et al., 2014). The use of this technique for energy consumption reduction

is also not new, as seen in (Ahmad et al., 2017), where it is used for the prediction of a

hotel’s HVAC energy consumption, and (Chen et al., 2019), where it is used for energy

load consumption forecasting of a large hypermarket.

Regression analysis is a prediction technique that entrusts the relationship between

variables, in order to obtain the best-fit regression equation, that can be used to make

predictions (Pant, 2019). Unlike, Random Forest Classifiers, which are used for class

predictions, these models aim for the prediction of continuous numerical values, such

as of monthly heating demand for residential buildings, as seen in (Catalina et al.,

2008).

The premise of this paper is to present a data-driven approach to the optimization

problem that is the climatization and luminosity management of a building, using a

Genetic Algorithm, a Random Forest model, and two Polynomial Regression models

and taking into consideration the temperature, luminosity, air quality, energy cost, and

occupant’s comfort. In an initial phase, through a Genetic Algorithm, a dataset is gen-

erated that aims to minimize energy cost and maximize user comfort and health, by op-

timizing the actions to take on each equipment in the room (i.e., air conditioner,

artificial lighting, motorized blinds, windows, and doors). Afterward, the generated

dataset is used to train a Random Forest and two Polynomial Regression models. As a

result, the main goal of the Random Forest and the two Polynomial Regression models

is to replicate the Genetic Algorithm optimization, in real-time. The Random Forest

controls the equipment status, by turning on/off the air conditioner and artificial light-

ing, and opening/closing the motorized blinds, door(s), and window(s). One of the two

Polynomial Regressions is used to determine the specified temperature for the air con-

ditioner, while the other is used to set the artificial lighting luminosity.

This article is divided into six main sections. The first contextualizes the objective of

the paper and presents the adopted structure. The second section presents several state

of art related projects, whose theme is the use of the mentioned machine learning tech-

niques for building energy management systems. The third section presents the
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proposed methodology approach for the system. The fourth section presents the case

study of the proposed methodology, along with the obtained results. The fifth section

presents the conclusion of this paper, coupled with possible future development paths,

and the sixth, and final section, presents the availability of data and materials, compet-

ing interests, funding, authors’ contributions, and acknowledgments.

Related works
The use of artificial intelligence methods for building energy management systems is

nothing new, as seen by the large number of studies done. However, improving this

type of system is not one solution only type of problem. Therefore, throughout all the

research and applications currently available, the computational techniques used, ran-

ging from control and diagnosis to prediction, and optimization, with each category

having its own set of recommended implementation algorithms. For prediction, the

most used technique is Artificial Neural Networks (ANNs) (Ahmad et al., 2017), for

optimization, Genetic Algorithms (Nguyen & Nassif, 2016), and for control and diagno-

sis, Fuzzy Logic (Ali & Kim, 2015) and Expert Systems (Faia et al., 2017; Ahmad et al.,

2016). While on one hand, Genetic Algorithms are already widely used in the building

energy domain, on the other hand, the use of Decision Trees (DTs) and Regression

models are still very limited.

In 2011, Fernandes et al. proposed a Genetic Algorithm methodology to manage the

consumption of typical house loads, while considering consumers’ preferences for each

load and context (Fernandes et al., 2011). The proposed approach aims to manage the

energy consumption by cutting or reducing certain loads whenever the consumption is

higher than the setpoint, and taking into consideration the load’s weights, which are

based on the preferences for the current day and time. Furthermore, this paper also

presents a Mixed Integer Nonlinear Programming approach to the problem, with both

solutions able to achieve positive results with, and without, consumers’ actions (Fer-

nandes et al., 2011). More recently, in 2013, Nguyen and Nassif proposed another

model-based optimization process for HVAC systems using a Genetic Algorithm, rely-

ing on real measured data, and aiming for a decrease in energy costs while maintaining

or improving indoor environmental conditions (Nguyen & Nassif, 2016). The presented

evolutionary algorithm works by taking in the supply air temperature, duct static pres-

sure, and outdoor airflow, and then trying to reduce the fitness, which is the energy

consumption value, using the previous 15 min data interval. Additionally, the used algo-

rithm was improved by the use of constraints, stochastic universal sampling (SUS), and

elite-preserving operator, having achieved a 26% total energy consumption reduction

when compared to traditional operating strategies (Nguyen & Nassif, 2016).

Ali and Kim, in 2015, also proposed an approach to building energy management sys-

tems using a Genetic Algorithm but taking into consideration, both, the energy con-

sumption and the occupant’s comfort index (Ali & Kim, 2015). For this, the proposed

technique is able to integrate the users’ comfort index, which is calculated using the

thermal comfort (temperature), visual comfort (illumination) and air quality (CO2 con-

centration), and the corresponding energy usage into the fitness function, therefore,

targeting the satisfaction of the occupants’ requirements while using minimal energy

consumption. In more detail, this system works by optimizing the comfort parameters,

through the Genetic Algorithm, and then inputting the difference between the optimal
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parameters and the real environmental parameters, which are obtained through sen-

sors, into Fuzzy controllers (one for each of the 3 parameters). Additionally, the pro-

posed system also implements the Kalman Filter in order to predict the energy

consumption, while taking in, as input, the actual consume energy. With the proposed

GA based model, the authors were able to achieve an improvement in the occupants’

comfort index and reduction of the energy consumption when compared to Particle

Swarm Optimization (PSO) based systems, while also enabling its integration with

SCADA software of buildings for real-world applications (Ali & Kim, 2015).

As seen, the improvement of building energy management systems can be accom-

plished through optimization. However, prediction approaches are also valid. In 2016,

Ahmad, Mourshed, and Rezgui used Random Forest models to predict a Madrid hotel

HVAC energy consumption (Ahmad et al., 2017). The dataset used consisted in 5 min

historical values of HVAC electricity consumption for the studied building, total daily

number of guests and rooms booked, 30 min outdoor weather conditions, which in-

cluded air temperature, dew point temperature, wind speed, and relative humidity, and

the time, consisting in the hour, day, and month. In total, after removing outliers and

missing values, there were 10,972 data samples. Having the necessary data, the authors,

then, trained the Random Forest models according to three studies they performed,

which consisted in obtaining the optimal depth of the tree, optimal number of features,

and importance of features. The first study consisted of training several models, using

all features, but different depths, concluding an optimal depth value of 10. The second

study consisted of evaluating several Random Forest models, all with a depth of 10 and

each with a different number of features, which were randomly selected, obtaining 5 as

the ideal number of parameters. The third study, consisted of replacing, in turn, each

input variable for random noise and analyzing the deterioration of the performance of

the model, allowing the measurement of the importance of each variable and conclud-

ing that the previous hour’s electricity consumption is by far the most important fea-

ture. With these results, the authors were then able to evaluate two Random Forest

models of depth 10, one created using the model with all features and the other with

just the most important ones, achieving better performance using all features. Add-

itionally, a Feed-Forward Back-Propagation Artificial Neural Network was also devel-

oped using the available data, resulting in slightly better results than both Decision

Trees. Nonetheless, it was concluded that all models can be feasible and effective for

predicting hourly HVAC electricity consumption (Ahmad et al., 2017).

Chen, Piedad Jr., and Kuo, in 2019, also used a Random Forest for energy consump-

tion load forecasting (Chen et al., 2019). In this approach, the authors propose the use

of a level-based methodology, contrary to the conventional value-based methodology

approach, that works by training the model with the pre-processed dataset values and

then converting the results into consumer-preferred levels (e.g., low, average, high).

The proposed approach consists of converting the dataset values into levels during the

pre-processing phase, instead of the post-processing phase, allowing the direct predic-

tion of the desired levels using simpler classifier models without undergoing regression.

Using a 12-month dataset of a large hypermarket, consisting in hourly energy con-

sumption and temperature, as well, as 10-time cross-validation, it was concluded that

the proposed approach performs better for all tests done, which were of 3, 5, and 7

levels, then the conventional way, however, the performance of the conventional
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classifier was also concluded to be able to approach the proposed method in terms of

classification accuracy at the expense of computation time (Chen et al., 2019).

In 2008, Catalina, Virgone, and Blanco proposed the use of Regression models for the

prediction of monthly heating demand for residential buildings (Catalina et al., 2008).

For the models, the inputs consisted in the building shape factor, the building envelope

U-value, which is the thermal transmittance in the envelope of a building (Franco,

2018), the window to floor area ratio, the building time constant, and the climate,

which is defined by the difference between the heating set-point temperature and the

monthly average sol-air temperature of the considered city. With the inputs defined,

the authors resorted to simulations to obtain the necessary data to train the models,

having found that quadratic (second order) polynomial models are the most appropri-

ate solution. Additionally, the authors validated the obtained models through 270 dif-

ferent scenarios, having achieved an overall positive outcome, with a maximum

deviation of 5.1% and an average error of 2%. It was, also, concluded that the shape of

the building and the energy consumption has a good correlation, that the thermal iner-

tia has a significant impact on the energy demand, and that the proposed approach to

summarize the climate is efficient (Catalina et al., 2008).

This paper aims to fill the gaps of the above-cited works, by considering both user

comfort and health with cost-effective optimization, by taking into account the usage of

locally generated energy, volatile energy market prices, equipment configuration (e.g.,

availability and power consumption), in a real-time application. It proposes a method-

ology capable of retaining the Genetic Algorithm’s robust searching solution, to

minimize energy cost and maximize user comfort and health, while also delivering fast

(i.e., real-time) optimizations, through the usage of a Random Forest and two Polyno-

mial Regression models, that replicate the Genetic Algorithm optimization results.

Additionally, it proposes the inclusion of windows and doors as factors for the

optimization, that is, to minimize energy cost and maximize user comfort and health,

by recommending the user for the opening or closing of windows and doors.

Proposed methodology
The proposed solution aims to minimize energy cost and maximize user comfort and

health in a given room in smart buildings and smart homes, through a real-time appli-

cation of sensor data acquisition and optimization of equipment configuration. It

achieves these results by adjusting the air conditioner temperature, artificial lighting lu-

minosity, motorized blinds, and by advising the opening of doors and/or windows.

The solution proposed in this paper uses the combination of artificial intelligence

techniques of Random Forest, Polynomial Regression, and Genetic Algorithm, to

achieve a system capable of delivering fast solutions with high precision and accuracy.

The Random Forest and Polynomial Regressions are used for real-time application,

while the Genetic Algorithm, being slower, is used for offline training of the previous

models. Figure 1 shows the proposed solution structure.

In an initial phase, described by Fig. 1 a), before the system is applied for real-time

application on smart buildings and smart homes, an initial dataset, containing different

scenarios, is provided to a Genetic Algorithm. Then, the Genetic Algorithm is used to

minimize energy cost and maximize user comfort and health by optimizing the actions

to take on the equipment, that is, the air conditioner temperature, artificial lighting
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luminosity, opening or closing of the remote blinds, and by suggesting/advising the

opening of doors and/or windows. From the Genetic Algorithm, a dataset is generated,

containing the optimized actions to take on each equipment for each scenario, which is

then used to train a Random Forest and two Polynomial Regressions models, in order

for them to replicate the Genetic Algorithm’s optimizations. Therefore, the genetic al-

gorithm is used exclusively for complex resource optimization, to train the Random

Forest and two Polynomial Regressions, in an offline environment. The Random Forest,

also described in this paper as a real-time discrete control optimization, is used to con-

trol only the equipment status (i.e., turn on/off and open/close) for the air conditioner,

artificial lighting, motorized blinds, door(s), and window(s). From the two Polynomial

Regressions, described in the paper as a real-time variable control optimization, one of

them is used to determine the optimized temperature for the air conditioner, while the

other is used for the optimized artificial lighting luminosity value. All of these tech-

niques are developed in Python.

The application in real-time of the proposed solution, described by Fig. 1 b), begins

5 min before each passing hour (e.g., 15:55, 16:55, 17:55, …), with the acquisition of all

the data needed to predict the optimized actions to be taken in a room. Such data is

characterized by room data (e.g., air conditioner power, artificial lighting power, and

the existence of motorized blinds), user’s preferences (e.g., air conditioner target

temperature, and artificial lighting target luminosity), and sensor data (e.g., outside

temperature, the room’s inside temperature, outside luminosity, the room’s air quality,

available PV, …). Afterward, a discrete control optimization is done to equipment status

for the air conditioner, artificial lighting, motorized blinds, door(s), and window(s).

Then, a variable control optimization is used to predict the temperature of the air con-

ditioner and artificial lighting luminosity. Finally, the actions are sent to an equipment

management system capable of executing said actions in the room.

The proposed solution, applied to each room of the building, focuses on the

minimization of four equations and the balance between them: energy cost,

temperature deviation, luminosity deviation, and Volatile Organic Compound.

Fig. 1 Flowchart of the proposed solution: a) Initial training, b) Real-time execution
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The energy cost, to be minimized, considers the consumption of air conditioner units

and artificial lighting. To further minimize energy costs, the solution considers locally

renewable-based generation. The energy cost of a room is represented by:

Energycost ¼ EGen− PAC ∙ TAC−TInsidej j∙t þ PAL∙LAL∙tð Þ½ ��EPrice ð1Þ

where EGen represents the available generated energy, EPrice the energy price per unit of

power, and t the time, in hours, the equipment is switched on (i.e., the time interval of

the optimization). The power per air conditioner temperature degree difference from

the room’s temperature is represented by PAC, TAC portrays the air conditioner target

temperature, and TInside the room’s current inside temperature. The power per artificial

lighting luminosity is portrayed by PAL, and LAL is the luminosity from the artificial

lighting.

The difference between the intended temperature and the room’s temperature, also

known as the intended temperature deviation, represents the user’s comfort regarding

temperature. The closer to zero, the better the room is appropriated to the user, being

zero the perfect scenario. The following equation portrays this metric:

Temperature Deviation ¼ TAC ∙WAC þ TBlinds∙WBlinds þ TDoor ∙WDoor þ TWindow∙WWindow þ 1−WAC−WBlinds−WDoor−WWindowð Þ∙TInside½ �−TIntendedj j

ð2Þ

where TAC, TBlinds, TDoor, and TWindow represent, respectively, the air conditioner

temperature, temperature by opening the blinds, door, and windows. The same applies

for WAC, WBlinds, WDoor, and WWindow, which portrays the temperature weight in chan-

ging the overall temperature, for the air conditioner, by opening the blinds, door, and

windows, respectively. The variable TInside represents the room’s temperature, and TIn-

tended the intended room temperature.

The intended lighting luminosity deviation follows the same concept as the intended

temperature deviation. It is a calculation of the difference between the intended lighting

luminosity and the room’s luminosity. In case the difference is zero, the maximum

comfort for lighting luminosity is reached, if not, the closer to zero, the better. The

next equation represents this calculus:

Luminosity Deviation ¼ LAL þ LBlinds∙SExteriorð Þ−LIntended½ �j j ð3Þ

where LAL, LBlinds, and LIntended portray the artificial lighting luminosity, blinds luminos-

ity, and intended luminosity, respectively. The variable SExterior represents the exterior

sensor, which takes a value of one during the day and zero at night.

The Volatile Organic Compound (VOC) in a room is correlated with a room’s air

quality. Lower VOC values represent higher air quality, thus decreasing the chance of

long-term health problems for users. The proposed solution considers that when an air

conditioner is turned on, the circulation mode is always active, which reduces the

VOC. Also, opening doors and windows increase the circulation of air, and conse-

quently, it increases air quality. The equation to estimate the VOC is the following:

VOC≅VOCInside∙ 1−WAC−WDoor−WWindowð Þ ð4Þ

where VOCInside portrays the room’s VOC, obtained through a sensor. The variables

WAC, WDoor, and WWindow, correspond to the weight the air conditioner switched on,

opening a door, and opening the windows, respectively, have in reducing the VOC.

Mota et al. Energy Informatics 2021, 4(Suppl 2):42 Page 7 of 18



Complex resource optimization using a genetic algorithm

A Genetic Algorithm is proposed for complex resource optimization, that aims to

minimize energy costs and maximize user comfort, by adjusting the air conditioner

temperature, artificial lighting luminosity, remote blinds, and by advising the opening

of doors and/or windows. The proposed Genetic Algorithm not only allows energy cost

and user comfort optimizations, but it also takes into account the user’s health by

achieving low values of VOC. Figure 2. Flowchart of the proposed complex resource

optimizer.represents the flowchart of the proposed complex resource optimizer.

The Genetic Algorithm begins by creating an initial random population where each

individual is characterized by: air conditioner temperature, artificial lighting luminosity,

blinds state, door state, and window state.

The crossover performed is of the uniform type, where each optimization parameter

is chosen from either parent 1 (individual 1) or parent 2 (individual 2), with equal prob-

ability, to be inherited to the child (offspring). The mutation procedure is done using a

random value to determine whether or not the mutation will be applied to an individ-

ual. If the mutation is to be applied, then it is based on defining a new value for one of

the optimization parameters. The selected value is randomly chosen, within the defined

limits of the parameter (e.g., the parameter of door status, can only be either “Open” or

“Close”), and is different from the old value (i.e., value before the mutation).

The selection phase begins with the union of the crossed and mutated population

with the initial population of the previous generation. Also, repetitions of individuals

are eliminated. Then, each individual is evaluated through (1), (2), (3), and (4), which

correspond to the calculus of the energy cost, intended temperature deviation, intended

lighting luminosity deviation, and VOC, respectively. Afterward, the values are normal-

ized, using a Min-Max approach, and each individual is evaluated using the following

fitness equation:

Maximize Fitness≅
1

EcNorm
∙ecW þ 1

TdNorm
∙rdW þ 1

LdNorm
∙ldW

þ 1
VocNorm

∙vocW ð5Þ

where EcNorm, TdNorm, LdNorm, and VocNorm, represent the normalized energy cost,

normalized intended temperature deviation, normalized intended lighting luminosity

deviation, and normalized VOC, respectively. Also, ecW, rdW, ldW, and vocW, corres-

pond to the weights of the energy cost, intended temperature deviation, intended

Fig. 2 Flowchart of the proposed complex resource optimizer
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lighting luminosity deviation, and VOC, respectively. In the fitness equation, the inver-

sion is applied for each evaluation factor (i.e., EcNorm, TdNorm, LdNorm, and Voc-

Norm), since the lower the value of these factors, the better the solution.

Afterward, the selection of the n best individuals is done, based on the input data.

The remaining individuals participate in non-elite tournaments. Each tournament con-

sists of two randomly selected individuals, competing on the basis of their fitness rat-

ings, in a probability approach. The algorithm calculates the probability of individual 1

winning the tournament, through the following equation:

Individual1probability ¼
fit1

fit1þ fit2
ð6Þ

where fit1 and fit2 represent the fitness of individual 1 and individual 2, respectively.

Then, a random decimal number between 0 and 1 is generated. If the generated deci-

mal is lower than the probability of individual 1 winning, (6), then individual 1 is de-

clared the winner. Otherwise, individual 2 leaves victorious. Therefore, the individual

with the highest fitness is the one most likely to be chosen.

Discrete control optimization using random Forest

For the discrete control optimization, a Random Forest Classifier is proposed with the

objective of learning how to predict the actions to take, in each possible scenario of an

office or room, considering temperature, lighting, and air quality.

The first step is to split the data into two groups, training and testing, using the

Holdout Method (Sharada, 2020). In the proposed solution a percentual value of 80

was used for training and 20 for testing. A good practice when using Holdout is to

shuffle the data before splitting, to avoid dependencies between all testing scenarios, as

being all of the same room.

Next, was performed a tuning to the hyper-parameters of the Random Forest. The

technique used was RandomizedSearchCV (RandomizedSearchCV, n.d.) that randomly

chooses one of the possible values for each one of the hyper-parameters and scores the

estimator. The best estimator will be used in the model. Table 1 presents the hyper-

parameters, their possible values, and their optimal values, result of the execution of

the algorithm.

The used classifier is the RandomForestClassifier from Scikit-Learn. In the training

process, the classifier will create the rules to achieve the minimum error relative to the

training classes. After the model is correctly fitted with training data, it is prepared to

do its predictions.

Variable control optimization using polynomial regressions

A variable control optimization is proposed using Polynomial Regressions, which aims

to predict the air conditioner temperature, and artificial lighting luminosity, for each

scenario that uses (i.e., turns on) the air conditioner and/or artificial lighting. The pre-

diction is made for a one-hour execution time of the equipment (i.e., air conditioner

and artificial lighting), however, it can be adjusted to other time intervals. Also, it pre-

dicts 5 min before each hour, using the average sensor data from the hour. The 5-min

delay can be lowered by the user at the cost of compromising time consistency (i.e., the

prediction could come after the hour has passed), but increasing accuracy (i.e., more
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recent data). Two Polynomial Regression models were created, using the Holdout

Method, with 80% of the data set apart for training, and the rest for testing. All the data

for training and testing was normalized, beforehand, using a Min-Max approach. Both

models were trained using a technique that explores exhaustively the training data,

within specified parameters, for the best polynomial equation; available through the

Scikit-Learn library using the function GridSearchCV (GridSearchCV, n.d.). The tech-

nique was used with a 10 fold cross-validation, searching through polynomial equations

of degree 1 to 10, and the metric Root-Mean-Square Error (RMSE) was used to evalu-

ate the performance of the cross-validated model. The dependent variables chosen for

each model were based on correlation maps, tests, and knowledge of the Genetic Algo-

rithm equations (i.e., (1), (2), (3), and (4)). Also, the performance of each model was

evaluated using the metrics: Mean Absolute Error (MAE), Root-Mean-Square Error

(RMSE), Coefficient of Determination (R2), and Adjusted Coefficient of Determination

(Adjusted R2).

The best air conditioner temperature prediction model obtained is of degree 6, with

the following dependent variables:

� temperature sensor – inside room temperature.

� weighted doors temperature – temperature when opening room’s door(s),

multiplied by its weight in affecting the overall temperature of the room.

� weighted windows temperature – temperature when opening room’s window(s),

multiplied by its weight in affecting the overall temperature of the room.

� intended temperature – mean intended temperature from all the users in the room.

� air quality sensor – room’s VOC.

� available energy – available locally generated energy, in Wh.

The dependent variable available energy was chosen since it is the variable that most

influences the final energy cost, (1). Therefore, this variable, greatly affects the air con-

ditioner temperature, because the higher the difference in room temperature and air

conditioner temperature, the higher the energy consumption, and so the energy costs.

The energy market cost was not considered, in this case, because it showed to have a

low correlation when predicting the air conditioner temperature. The variables

temperature sensor, weighted doors temperature, weighted windows temperature, and

intended temperature are used, due to being the main variables that affect the differ-

ence in room temperature and intended temperature, (2). Also, the variable air quality

sensor was used since it has a high correlation with predicting the air conditioner

Table 1 Hyper-parameters possible and optimal values

Hyper-parameter Possible Values Optimal Value

Number of Trees 200 to 2000 400

Max Features Auto, Sqrt or Log2 Sqrt

Criterion Gini or Entropy Gini

Max Depth 10 to 32 26

Min Samples to Split 2, 5 or 10 10

Min Samples in a Leaf 1,2 or 4 1

Bootstrap True or False False
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temperature, and results showed that the inclusion of said variable, greatly decreased

the error.

Other variables were tested, such as the difference between inside and hall tempera-

tures, the difference between inside and intended temperatures, and the difference of

current and previous intended temperatures. However, these variables did not yield

good results, despite having a high correlation to the air conditioner temperature.

The best artificial lighting luminosity prediction model obtained is of degree 5, with

the following dependent variables:

� light sensor – Inside room luminosity.

� blinds light – luminosity given by opening the blinds, at night the luminosity is

always zero.

� blinds status – specifies if the blinds are open.

� intended luminosity – mean intended luminosity from all the users in the room.

� energy market cost – energy cost in EUR/Wh.

� available energy – Available locally generated energy, in Wh.

The dependent variable available energy was chosen for the same reason as in the air

conditioner model because it affects greatly the energy cost, (1). Also, the more bright-

ness (i.e., higher luminosity) the higher energy consumption, and so the energy costs.

In this case, the energy market cost was included since it has a high correlation with

predicting the artificial lighting luminosity, and prediction results improved with its

addition. The variables light sensor, blinds light, blinds status, and intended

temperature are used because they influence the difference in room luminosity and

intended luminosity, (3).

Case study
The initial dataset, which, through the complex resource optimization, was processed

for the training of the Random Forest and Regression models consists of real data from

the GECAD’ building, located in Porto, Portugal. It was considered five rooms from the

building, all of them with temperature and lighting sensors, but just two of them with

air quality sensors. The data that was read from the sensors has an interval of 10 s,

which were then converted to hour averages, to get considerable changes between pe-

riods. Besides that, it contains the rooms’ users’ preferences, considering the

temperature and lighting to each period of the day. Besides the rooms’ sensors, it was

also used exterior sensors, which provide information about exterior temperature and

lighting.

As such, the complete dataset has information about the temperature in the room,

hall and outside, luminosity levels indoor and outdoor, room’s VOC level, air condi-

tioner, and artificial lighting power, available renewable energy, and if a room has mo-

torized blinds.

Additionally, it is used the energy market cost from Mercado Ibérico de Eletricidade

(MIBEL), and the intended temperature and luminosity, which were randomly created

according to valid intervals defined by the studied building users. These values were de-

fined by room and time of the day. In total, the dataset has data relative to 4 rooms,
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with each having 8760 hourly data samples, totaling 35,040 data samples, which span a

1-year interval.

Offline complex resource optimization

The case study for the resource optimization uses real sensor data collected from the

1st of May 2019 to the 30th of April 2020. To this data set, it was added the energy

market prices from MIBEL. Also, all the data is provided in intervals of one hour. For

this case study, the Genetic Algorithm was executed for 30 s for each scenario. A sce-

nario represents all the data from a room needed to predict the air conditioner

temperature, artificial lighting luminosity, blinds state, door state, and window state, in

a given timestamp (i.e., each row of the dataset). Furthermore, each optimization com-

ponent (i.e., energy cost, intended temperature deviation, intended lighting luminosity

deviation, and VOC) was balanced with a weight of 25%, thus having equal importance

during the optimization. The algorithm was executed on a computer with an Intel®

Core™ i3-7020U processor running at 2.30 GHz using 8 GB of RAM, running Windows

10 Home version 2004.

Figure 3 shows the average monthly energy costs of the optimization, considering a

dynamic energy price and locally generated PV. The local energy generation, provided

by photovoltaic panels, was used as much as possible by the algorithm, reducing the ne-

cessity to resort to energy retailers, thus reducing energy costs. For example, during

October of 2019, even though there was a shortage of solar energy (i.e., available PV),

and high energy prices, the algorithm was capable of maintaining low energy costs, by

partially compromising the user’s comfort. The maximum monthly average total energy

cost obtained, in the case study, is 0.03245 EUR, and a minimum of 0.00579 EUR.

Figure 4 represents a comparison between the four main equations that the Genetic

Algorithm tries to balance: energy cost, intended temperature deviation, intended light-

ing luminosity deviation, and VOC. The components that most fluctuate are the

intended luminosity deviation and the total energy costs.

The balance for user comfort can be seen clearly in Fig. 4 with the average monthly

temperature and luminosity deviations. The algorithm always tries to maximize both

comfort components when possible, this can be observed by comparing Fig. 4 with

Fig. 3, since when more PV is available both deviations are closer to one another, and

the opposite can be seen as well. The monthly average temperature deviation, in the

case study, had a maximum value of 5.2 °C deviation and a minimum of 1.8 °C. The

Fig. 3 Energy costs considering retailer prices, and available PV
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maximum monthly average luminosity deviation, for the case study, is 20.2%, and a

minimum of 5.4%.

The optimization done to the VOC (i.e. air quality improvement done by the algo-

rithm) is portrayed in Fig. 4 by the VOC difference, which represents the difference be-

tween the default VOC (i.e. room’s VOC without any action taken, such as turning on

the air conditioner, opening doors and windows) and the VOC obtained through the

resource optimization. One of the crucial points the solution proposed in this paper fo-

cuses on is the user’s health, and through the difference in VOC, it is clear that the al-

gorithm delivers those results. The difference in VOC has a maximum monthly average

value of 10.923 units of VOC, and a minimum of 0.544 units of VOC, in the case study

for the proposed resource optimization.

Real-time discrete control optimization

In this case study, for the multiple output classification problem, three models were

trained using the dataset generated by the offline complex resource optimization’s Gen-

etic Algorithm.

Regarding data preprocessing, besides what is proposed in the methodology section,

it is also needed to encode one of the categorical values. The variable ‘OpenBlinds’ can

take three different values: ‘True’, when the blinds are automatically opened, ‘False’,

when the blinds are automatically closed, or ‘None’, when the blinds in the room are

not motorized. Considering these possible values, the variable is binary encoded, and,

consequently, split into two variables: ‘OpenBlinds_1’ and ‘OpenBlinds_2’. Table 2

shows the original value and the corresponding encoded values of the new variables.

The first model trained was a Random Forest, which is an ensemble method, more

specifically a bagging technique. The second model trained was a Decision Tree, due to

being the Random Forest base estimator, and the third was a Gradient Boosting Classi-

fier, which is an example of a boosting technique that also uses Decision Trees as a

base estimator. Table 3 presents the precision values of the three trained models.

As presented in Table 3, all models were able to predict all targets with high preci-

sion, with the Random Forest achieving the lowest precision of 92% on the target

‘OpenDoors’ and overall precision of 70.28%. Using the Decision tree model as the pre-

dictive model it was achieved an overall precision of 63.58%, with the lowest precision

of 91% also on the target ‘OpenDoors’. And for the Gradient Boosting model, a final

Fig. 4 Comparison between the four main equations: temperature deviation, luminosity deviation, VOC
difference, and total energy cost
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precision of 73.40% was achieved, with the lowest precision being 94% on the targets

‘AirConditionerTemp’, ‘OpenDoors’ and ‘OpenBlinds_1’. We can observe that the Ran-

dom Forest model outperformed its base estimator, with an overall improvement of

6.7%. This notable decrease in performance indicates that the Random Forest model, as

expected, is better to handle this large quantity of data. The Random Forest creates a

set of unpruned trees that are very diverse from each other, handling overfitting much

better than a single Decision Tree. Comparing with the other models, Gradient Boost-

ing outperformed both of them, with an overall precision improvement of 3.12%. Gra-

dient Boosting also improved or matched the precision of every target and predicted

‘ArtificialLightingLight’ almost perfectly.

To better understand what each model did differently, Table 4 shows the three most

important features of each model, coupled with their feature importance values.

From Table 4, it is observable that the Random Forest algorithm is focusing mainly

on the remotely controllable blinds flag and the air quality sensor. The Decision Tree,

similarly to the Random Forest algorithm, is also focusing on the remotely controllable

blinds flag. In this model, the difference between the current and the intended

temperature has more importance than the AirQualitySensor. Gradient Boosting fo-

cuses on the same features as the other models, however, the difference between the

current and the intended temperature is now the most important feature, and the re-

motely controllable blinds flag and air quality sensor have the same importance.

Concluding this sub-section, boosting proved to be a slightly better solution over bag-

ging. The way boosting improved this problem was due to the use of a Genetic Algo-

rithm that optimizes the data, reducing a lot of the noise in the data. The noise

reduction provided by the Genetic Algorithm has a greater impact on the gradient

boosting algorithm since this technique is known to overfit easily with noisy data when

comparing with the Random Forest algorithm. The use of the Genetic Algorithm may

also increase slightly the bias, which has a greater negative impact on the Random For-

est algorithm since bagging tries to reduce the error by reducing the variance while

boosting techniques try to reduce the error by reducing bias. This leads to boosting not

being impacted so much with this problem while being able to take more advantage of

the benefits of the optimization phase.

Real-time variable control optimization

Using the same training and test data set, multiple models were created with dif-

ferent dependent variables to search for the highest performance polynomial equa-

tion. The polynomial equation degree is not taken into account since the function

GridSearchCV (GridSearchCV, n.d.), already provides the highest performance de-

gree between 1 and 10.

Table 2 Open Blinds variable encoding

True value OpenBlinds_1 OpenBlinds_2

False 0 1

True 1 0

None 1 1
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The performance of the best air conditioner temperature prediction model obtained,

using a validation set (i.e., different subset than the one used for training) has an MAE

value of 0.16892 and RMSE of 0.23377, which indicates that the error is low to

medium. Also, R2 with 0.57131 and Adjusted R2 of 0.57092 imply that the model has

acceptable results in predicting with a high number of dependent variables. These re-

sults are expected, since the temperature deviation, represented by eq. (2), is complex,

which makes it harder to create a function that fits a model capable of predicting reli-

ably the air conditioner temperature.

Figure 5 represents the mean absolute error (i.e., MAE) between the resource opti-

mized air conditioner temperature, provided by the complex resource optimization,

and the control optimized air conditioner temperature, obtained through the Polyno-

mial Regression model. The proposed Polynomial regression model for the air condi-

tioner temperature performs close to the resource optimization values, having a

maximum monthly average absolute error of 0.214 °C, and a minimum of 0.024 °C.

The performance for the best artificial lighting luminosity prediction model obtained,

using a validation set, has very low levels of error, with an MAE value of 0.01855 and

an RMSE of 0.05835. Contrary to the air conditioner model, the prediction of the artifi-

cial lighting luminosity shows that the model is suited almost perfectly. The metrics R2

of value 0.95977 and Adjusted R2 of 0.95973 show that the function has high accuracy

with the number of chosen dependent variables, having less than the number of

dependent variables from the air conditioner model. Since the luminosity deviation

equation is much simpler, (3), the Polynomial Regression is able to more easily adapt

to a function capable of predicting the artificial lighting luminosity with high accuracy.

The MAE between the resource optimized artificial lighting luminosity, provided by

the resource optimization, and the control optimized artificial lighting luminosity, ob-

tained through the Polynomial Regression model, is represented in Fig. 5. Comparing

with the air conditioner model, the artificial lighting luminosity model seems less

adaptable (e.g., from May to September the control optimized absolute error values are

very high, compared with the rest of the year), however, we have to take into account

Table 3 Target precision of the trained classification models

Target/Model Random Forest Decision Tree Gradient Boosting

AirConditionerTemp 0.93 0.95 0.94

ArtificialLightningLight 0.98 0.99 0.99

OpenDoors 0.92 0.91 0.94

OpenWindows 0.94 0.94 0.95

OpenBlinds_1 0.93 0.93 0.94

OpenBlinds_2 0.96 0.92 0.96

Table 4 The three most important features of classification models

Model/Feature Random Forest Decision Tree Gradient Boosting

Most important
feature

ControllableBlinds (0.210) ControllableBlinds (0.240) DifBetweenCurrentAnd
IntendedTemp (0.175)

Second most
important feature

AirQualitySensor (0.180) DifBetweenCurrentAnd
IntendedTemp (0.180)

AirQualitySensor (0.120)

Third most
important feature

DifBetweenCurrentAnd
IntendedTemp (0.95)

AirQualitySensor(0.90) ControllableBlinds (0.120)
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that the range for the luminosity is much wider than the temperature, with 0% to 100%

and 18 °C to 28 °C, respectively. The maximum monthly average absolute error, for the

artificial lighting luminosity, is 5.020%, and a minimum of 1.325%.

Conclusion
This paper proposes a methodology, using a Genetic Algorithm, classification models,

and Polynomial Regression models, to manage the climatization and luminosity of

rooms in a building. The proposed methodology is able to minimize energy costs while

taking into account its users’ preferences and improving indoor air quality. The consid-

eration of users’ preferences enables the solution to manage energy loads and resources

avoiding the generation of negative impact to users, contributing to their acceptance

and engagement.

The results showed that the proposed methodology is able to achieve high-quality re-

sults in real-time, using Random Forest for discrete control and Polynomial Regressions

for variable control, with the actions taken by the proposed solution contributing to

building management systems (BMS) and energy management systems (EMS), promot-

ing a real-time optimization and management of resources. The real-time optimization

results were compared to the results provided by the offline optimization that used a

Genetic Algorithm, demonstrating the real-time capabilities.

Regarding future work, the main development path would be the execution of further

testing of the proposed methodology in real-world scenarios, through the integration of

the achieved solution onto the GECAD’ energy management system. Additionally, the

proposed methodology also presents some limitations in order to become commercially

viable, such as not being able to process missing or corrupted data (e.g., no data or cor-

rupted data provided by a faulty temperature sensor). Also, the proposed solution de-

mands the building to have controllable resources, such as air conditioner units, and

lighting, and have sensors that can measure temperature, clarity, and air quality. Such

limitations could easily be surpassed by implementing systems capable of detecting

faulty sensor data and correct it accordingly, in case of missing resources, the system

could be used to provide notifications for the users to interact manually with the

Fig. 5 Air conditioner and artificial lighting absolute errors
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resources. However, the proposed system needs the installation of sensors in the

building.

The results of the proposed solution allow the validation of real-time optimizations

inside a smart building considering the minimization of energy costs while maximizing

the user comfort and health promoted through the maintenance or air quality.
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