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Dear readers,

This supplement of the proceedings of Energy Informatics.Academy (EI.A)
Asia 2021 includes 3 poster abstracts from the ELA Asia 2021 conference
submission and 10 from the co-located EIA - SDC Asia 2021 Ph.D. workshop.
The EILA-SDC Asia 2021 Ph.D. workshop [1] is co-organized with En-
ergy Informatics.Academy (EL.A) and the Sino-Danish Center (SDC)
Sustainable Energy Systems, aims to support Ph.D. candidates in their
research, offers them from the field a unique possibility to present
and discuss, receive feedback, and exchange comments with peers
and experienced researchers.

The 13 poster abstracts cover three important aspects of the energy
informatics domain (shown in Table 1):

o Energy systems
e Energy in buildings and industry
e Energy markets and business

Table 1. Themes of the 13 poster abstracts from Energy Informatics. Academy
(ELA) Asia 2021

Theme Paper title Type

Energy system Analysis and Application of Model Predictive Ph.D.
Control in Energy Systems workshop
Data-driven proactive and predictive Ph.D.
maintenance of power distribution systems workshop
Flexible time aggregation for energy systems Ph.D.
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Table 1. Themes of the 13 poster abstracts from Energy Informatics. Academy
(ELA) Asia 2021 (Continued)

Theme Paper title Type
modelling workshop
FlexChain - Blockchain-induced activation of Conference
small flexibility potentials in the low-voltage grid
Fake Reference Approach: D-STATCOM Control  Conference
Using Reinforcement Learning

Buildings and Optimizing Energy Consumption in Industrial Ph.D.

industry Buildings workshop
A PCM-based cooling solution for ventilation Ph.D.
applications workshop

Automated demand-side flexibility identification ~ Ph.D.
and utilization in energy optimization workshop

Digital Twin Framework for Industrial Production  Ph.D.

Processes workshop
A Practical Data-Driven Condition Indicator for Conference
Room-Level Building Diagnostics
Business and Agent-based simulation framework for Ph.D.
electricity market  evaluating energy flexibility solutions and workshop
adoption strategies
Evaluation of Business Profitability for Planned Ph.D.
Generation of Battery-assisted PV Considering workshop

Bidding to Wholesale Market

A digital twin framework for evaluating industrial Ph.D.
consumers’ demand response participation: a workshop
comparison between Denmark and China

The presentations for these 13 poster abstracts and two keynote speeches
(Key research fields in energy Informatics by Prof. Bo Nerregaard Jargensen;
The history of energy informatics by Prof. Rick Watson) are recorded and
available via the Energyinformatics.Academy YouTube channel [2-3].
Sincerely,

Workshop Chair

Birte Holst Joergensen, Technical University of Denmark, Denmark
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Guangchao Chen, University of Chinese academy of sciences, China
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Summary: Model predictive control (MPC) allows efficient use of energy
systems and can provide considerable energy savings. However, finding
a proper configuration of MPC in specific energy systems remains
challenging. This doctoral project aims to develop methods of deriving
the best combination of models and optimization schemes for a given
energy system. The project goal will be achieved by testing different
models and optimization techniques of MPC in a virtual testbed. An
analysis of how to choose models and corresponding optimization
techniques will be conducted based on test results. Three case studies
will be carried out to evaluate the proposed methodology. It is expected
to advance knowledge of setting up appropriate MPC configuration for
energy systems and speed up MPC transition from academic research to
wider industry implementation.

Keywords: Model predictive control, Energy systems, Simulation,
Optimization
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Problem statement

Energy shortage and climate change are global challenges as
conventional energy sources are unsustainable and will lead to a
large amount of greenhouse gas emissions as well as pollution.
Energy consumption can be broken down in various sectors.
Buildings, for instance, consume nearly 20%-40% of overall global
energy and are responsible for about 33% of the world's CO,
emissions annually [1]. In 2018, the industry sector accounted for
24% of global CO, emission and 37% of global energy use [2].
Saving energy in these sectors is therefore of extreme significance to
achieve a sustainable development and environment-friendly future.
Targeting the goals of the Paris Agreement, smart and efficient en-
ergy systems provide a feasible solution in addition to increasing re-
newable energy penetration. Advanced control is a promising
technique to be implemented in smart energy systems aiming to re-
duce energy consumption without sacrificing overall performance.
The model predictive control approach has been gaining popularity
among these advanced control strategies due to its potentially su-
perior performance [3].

The concept of MPC is illustrated in Figure 1. Firstly, MPC requires an
accurate controller model to precisely forecast a system’s future
states for a set of inputs. Secondly, with predicted states, given
constraints and cost function, MPC uses a formulated optimal control
problem that optimizes control variables for a specific horizon to
reach a defined trajectory. Next, the obtained optimal control
sequence is applied for first the control time-step rather than the en-
tire optimization horizon. Lastly, the system will repeat the
optimization process at each time step based on the feedback of the
system's real states. A simple example of a building MPC is shown in
Figure 2. The characteristics of having a predictive model, rolling
optimization and feedback correction make MPC a strategy of higher
control quality and it is extremely good at dealing with conflict ob-
jectives (i.e. saving energy without sacrifice occupants’ comfort in
buildings) and exploiting buildings’ thermal inertia to obtain a better
overall performance as compared to conventional control. However,
the configuration of MPC (here it refers to the combination of control
models and optimization schemes) in specific energy systems re-
mains challenging.

The process of a typical MPC implementation can be roughly divided
into five steps shown below:

Selection and development of models

Defining the cost or objective function

Selection of the optimization technique
Programming of control logic and strategies
Testing and commissioning of the control program

Model selection and the corresponding optimization techniques
significantly affect the overall performance of an MPC. Despite this,
they are usually chosen based on researchers’ experience and
familiarity with given approaches. There is a lack of systematic
studies comparing different modeling approaches and optimization
techniques with respect to different applications. These facts bring
up the research question: is it possible to find the best optimization
scheme for a given type of energy system model?

To answer the research question, a systematic evaluation is needed
to assess the potential optimization schemes and their performance
on models in different contexts. The breakdown of several sub-
questions is listed below, which should be investigated and an-
swered separately:

e What are the typical MPC models to be applied in selected
energy systems? What are the general optimization techniques
to be employed? How does the previous research work done
by other researchers refer to a combination of MPC models
and optimization schemes?

o What are the most appropriate metrics/KPlIs in relation to
evaluate the performance of the selected MPC model and
optimization scheme?


https://www.energyinformatics.academy/eia-asia-2021-phd-workshop
https://www.energyinformatics.academy/eia-asia-2021-phd-workshop
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e For a selected MPC model, there always exist several
optimization techniques, often with different structures and
characteristics. How do the diverse optimization techniques
influence the overall performance of MPC?

e For a selected optimization strategy, how to get a reliable
control-oriented model of proper complexity and accuracy
such that the MPC infrastructure achieves expected energy
savings?

(The difference between the top and the bottom figure is one time-
step)

This doctoral project aims to develop a methodology that can
provide guidance to find the best combination of MPC models with
optimization schemes. The methodology is expected to be
applicable in different energy systems, such as buildings, district
heating networks and greenhouse energy systems. The developed
methods should demonstrate feasibility in application in real cases as
well.

State of The Art

Previously, researchers have tested MPC in different energy
systems, such as solar tank [5], HVAC systems [6], latent heat
thermal energy storage system [7] and power plant [8] etc.
Rather than covering MPC applications in different energy
systems, this paper presents a state of the art of one typical
energy system, namely buildings, as a start point of analysis and
application of MPC in energy systems.

For many years, the academic area has intensified research on
building MPC to balance energy consumption and cost, greenhouse
gas emissions and occupant thermal comfort. There are some
existing review papers concerning building model, MPC
implementation, factors affecting MPC performance etc, which
provide brief and direct insight to the research sector of building
MPC. For instance, Rockett and Hathway reviewed MPC for non-
domestic buildings from concept to implementation, merits, prospec-
tives, challenges and related work in literature [9]. Modeling tech-
niques used in building HVAC control systems were summarized in
[10] and technologies utilized to predict building energy consump-
tion were reviewed in [11]. Afram and Janabi-Sharifi reviewed not
only control methods, with an emphasis on the theory and applica-
tions of model predictive control (MPC) for HVAC systems [3], but
also MPC for HVAC systems using Artificial neural network (ANN)
[12]. Additionally, the significance of occupancy for building MPC
was addressed and relevant papers were summarized in [13].
Building modeling is a crucial part for MPC implementation as it
significantly influences control performance [14]. Meanwhile, it is a
tough and time-consuming task to develop proper and suitable
model for mimicking building dynamics, which has been estimated
to occupy 70%-75% of the MPC implementation effort [9]. Reducing
the time and expertise for developing models will therefore improve
scalability of MPC. The modeling approaches fall into three main cat-
egories, namely white- grey- and black-box model. White-box models
describe buildings explicitly based on detailed physical processes
and equations and detailed documentation of building properties is
needed, which prohibits its wide usage. Comparisons of white-, grey-
and black- box models for building MPC are reported in [15] [16], but
whatever model type, it should be considered as a good model as
long as it can accurately capture building dynamics and predict sys-
tem future states.

Regardless of model type used for MPC, there are some other
factors that heavily impact MPC performance. For instance, the
impact of weather and occupancy disturbance on MPC
performance are addressed in [17] and [18], respectively. The
suitable model order for capturing the building dynamics is
investigated in [19] [20]. The proper objective functions to be
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formulated in MPC is studied in [21]. A systematical analysis of
practical factors affecting MPC performances is carried out in
[22], those factors span from building design to model structure,
model order, data set, data quality, identification algorithm and
software tool-chain. Moreover, the undergoing research project
IBPSA Project 1 is developing a simulation framework consisting
of test cases and a software platform for the testing of advanced
control strategies (BOPTEST-Building Optimization Performance
Test) [23].

Although a considerable number of studies have been done to
deploy well-performing MPC for buildings, they focus on developing
a specific MPC configuration for a specific building energy system,
there is still a lack of leading guidance on which MPC configuration
performs the best in general. Therefore, more studies addressing the
research question need to be carried out, which allow to enrich lit-
erature reference as well as filling up gaps before widely implement-
ing MPC in real buildings.

Methodology

To fill the aforementioned research gaps of this field, the project will
contribute by analyzing diverse combinations of MPC models and
optimization schemes in energy systems. Figure 3 depicts the
research workflow of the project. The methodology for the work
involves studying the effect of model and optimization type on
overall MPC performance. It is planned to analyze three case studies
of different energy systems: (1) a building, (2) a district heating/
cooling network and (3) a greenhouse energy system. Building MPC
will be appointed as typical energy system to be investigated and
data of a live lab building (OU44) in SDU can be easily accessed.
Modelling and optimization process will be implemented via
Modelica and Python and the research will be organized in the
following steps.

e State of the art on building MPC models and optimization
schemes. The first step is to do an exhaustive literature
review identifying all available models, optimization
schemes and their combinations that can affect building
MPC performance. The study will focus on models and
optimization schemes that are in common use. A review of
metrics/KPlIs applied to evaluate building MPC performance
and the simulation tools to be employed for building MPC
is also expected.

e Development of a virtual building model which enables us
to make numerical experiments. Then testing a matrix of a
number of model types and optimization schemes. Based
on different metrics/KPIs (energy saving, cost saving,
thermal comfort improvement etc.), a comprehensive
methodology on how to choose models and corresponding
optimization techniques should be formulated.

e Implementation of the framework in a real building. A case
study of public energy applications should be conducted
based on the formulated method. Performance should be
compared between the specific building applied this method
with one that does not use the method for guidance.

o Employed strategy of MPC in other selected energy systems
will be studied based on research results and experience
gained from building experiments. The same research process
of investigating methodology for building MPC shall be
transferable to other energy systems.

Summary

The challenge of properly configuring MPC for a specific energy
system hinders wide application of MPC in the energy sector.
The presented doctoral project attempts to develop a
methodology of finding the best models and optimization
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scheme combinations for MPC applications in different energy
systems. In this work, it is aimed to fill up the gap of guidance
on MPC model and optimization scheme selection, which allow
faster and proper MPC implementation without sacrificing
performance. This methodology will advance knowledge of
setting up appropriate MPC configuration for energy systems,
which will boost the transition between intensive MPC academic
research activities and wide implementations in industry.
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Summary: Motivated by the inefficient preventive and corrective
maintenance strategies typically employed in nowadays power
distribution systems and the advances in machine learning, this
poster paper proposes research that aims to enable the application
of predictive maintenance strategies in power distribution systems.
Predictive maintenance relies on continuous monitoring of the
power system to provide timely fault warnings, so remedial actions
can be taken before permanent failures occur. Because fault data can
be scarce for power distribution systems and the employment of
high-fidelity sensors can be lacking, this poster paper proposes the
use of data-driven models that can be developed with limited fault
data or using data with a low sampling frequency.
Keywords: Predictive maintenance, Power distribution
machine learning, Data

Motivation

Today’s maintenance strategies of critical infrastructures, namely
power distribution systems, are typically preventive, e.g. periodically
scheduled maintenance, or corrective [1], meaning that maintenance
actions are taken reactively as faults occur. In some instances, power
system operators still rely on phone calls from interrupted
consumers to identify that a fault has occurred [1]. The cost of
interruptions, especially upstream in distribution systems can be high
because a larger number of downstream consumers are affected.
This emphasizes the need for proactive and predictive maintenance
strategies, which aim at supplying timely warnings so that
maintenance actions can target components with poor reliability and
be taken before failures cause interruptions in the power system,
thereby avoiding costs of lost load and dissatisfied consumers.
Related literature and theories

Predictive maintenance strategies can be divided into two broad
categories, namely, condition monitoring and prognostics. Both
approaches rely on sensors for continuous monitoring of the power
systems. Condition monitoring tracks the gradual degradation of the
health of the power system and typically also entails an element of
diagnosis that is achieved by classifying the health and failure states
of the system. On the other hand, prognostics revolve around

system,
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predicting the future health state of the power system, detecting
incipient faults early, or continuously predicting the remaining useful
lifetime.

The digitalization trend makes the use of data-driven machine learn-
ing models for predictive maintenance more feasible. Data-driven
models concern the use of historic data to develop models that can
classify states of deteriorating health or make prognoses about fu-
ture faults and abnormal events. Historic data can be divided into
two categories, namely 1) meter data, which is continuous measure-
ments of, e.g. current and voltage, and 2) Fault statistics or mainten-
ance records, that describe the characteristics of faulted
components, the time, cause, and consequence of the fault in
addition to what remedial maintenance actions were taken to repair
or replace the faulty component. Predictive maintenance can only be
realized for incipient faults and gradually deteriorating system health.
Regarding this, several studies have shown that there are multiple
fault states in power systems that develop gradually and whose
gradual development can be measured in current, voltage, and elec-
tromagnetic signals [2-4]. Russel et al.'s study showed that, in some
cases, permanent power system failures are preceded by partial dis-
charges several weeks to months in advance [1], making it possible
to take remedial maintenance actions in a timely manner. Zhang
et al. developed a prediction model based on a long short-term
memory (LSTM) neural network and support vector machines that
use the features of the current, voltage, reactive and active power
signals preceding the fault to make its prediction [5]. Similarly, in a
recent work by Bang and Skydt et al. an LSTM network is used to
give early fault warnings 10-15 minutes in advance in medium volt-
age distribution networks [6], this was achieved using a signal like
the ones shown in Fig. 1.

Both methods rely on historic meter data leading up to power
system faults for the training of the data-driven models. Generally,
having historic meter data of fault events is necessitated in the train-
ing of classification models applied to predictive maintenance, that
discriminate between healthy and degraded health. Power systems
are, nevertheless, reliable, and resilient, for which reason historic fault
data can be scarce. The scarcity is further emphasized by the em-
ployment of preventive maintenance strategies. Because of fault data
scarcity, some applications produce artificial meter data, using
methods known as virtual sample generation (VSG), to increase the
size of the training dataset [6,7]. VSG has proven useful in the con-
text of predictive maintenance, even using simple Gaussian-based
VSG methods, that produce artificial data without considering the
correlation between variables [6]. Nonetheless, traditional training
methods like the ones proposed by Zhang et al. and Bang and Skydt
et al. still rely on historic meter data leading up to power system
faults, so for new systems and new equipment that have not yet ex-
perienced any faults, these methods become impractical to apply. An
alternative data-driven approach is to learn the healthy state of a sys-
tem, in this case, the prediction of the model would deviate from the
measured meter data more as a fault gradually develops and
changes the behavior of the system. This approach has been applied
for the predictive maintenance of photovoltaic arrays [8,9]. This can
also be done with auto-encoders by monitoring the trend of the re-
construction error [10].

Predictive maintenance of power systems has also been done using
fault statistics. Clavijo-Blanco and Rosendo-Marcias calculate failure
rates of clusters of components using fault statistics, which are used
to predict how many faults will happen in some time period [11].
This information is utilized to target maintenance actions at the most
at-risk grid areas and evaluate the risk of operating the system in dif-
ferent configurations. An approach like this can be seen as a predict-
ive alternative to statistical asset management, which looks back in
time to see what component type or grid area have experienced
most failures and target grid reinforcements in that way [12].

When meter data-driven maintenance strategies for power systems
are used, they rely on high-fidelity measurements of voltage and
current signals to detect and classify short-lived events whose lives
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span from a few milliseconds to seconds [2,4]. Despite the
digitalization trend, there are still many power systems that do not
possess high-quality sensor equipment, let alone the communication
infrastructure to support it. In these systems, meter data is sampled
at a lower rate and the sensor coverage is low. When the sampling
rate is very low, common signal processing methods, such as fre-
quency decompositions, become impossible to apply according to
the Nyquist-Shannon sampling theorem [13]. This poses an add-
itional challenge as frequency decompositions are used widely, to
great effect, for feature extraction in machine learning e.g. in [14],
where a cycle-by-cycle decomposition is used for features in a deci-
sion tree ensemble model used for early fault detection.

Objective

Based on the highlighted challenges of data-driven predictive main-
tenance in power distribution systems, the objectives of the research
proposal are:

1. Identifying the potential of classes of methods for fault
prediction in power systems with limited and low-frequency
meter data

2. Developing methods for fault prediction in power systems
with limited and low-frequency meter data

3. Field testing of the developed methods

Methodology

Guided by the intuition that training one model to work for multiple
states of operation is a harder task than a single state of operation,
data analysis methods will be applied with the aim of characterizing
the operational states and grouping them by similarity, e.g. with time
series-based clustering. If it is feasible to combine datasets from dif-
ferent components or operational states, the amount of training data
is effectively increased. Additionally, the research will consider the
possibility of using VSG to further expand the training dataset focus-
ing on VSG methods that consider the correlations between vari-
ables. A schematic of the proposed workflow focused on data
preprocessing can be seen in Fig. The novelty lies in the last two
steps in the workflow, that both aim to increase the amount of data
for model development. Prior to combining datasets and employing
VSG, a functional base model will be created. The research will study
the effects of the two proposed additions on the base model. The
author considers different choices for the base model appropriate,
e.g. auto-encoder, LSTM regression model, or generative adversarial
networks, where the discriminator could be used to produce a likely-
hood type measure of whether a sample represents a healthy system
state or not. Typically, the generator of a generative adversarial net-
work is a component of interest, which can be used to create artifi-
cial data, either used for VSG or fake imagery [15,16].

The research proposal also considers a fault statistics-based approach
to predictive maintenance, that combines maintenance records with
summary statistics from meter data and external factors, like weather
effects to predict failure frequencies in power distribution systems.
This approach poses an alternative to maintenance in statistical asset
management schemes. This approach will make use of correlational
analysis to find the best predictors of fault frequency.

Expected results

Based on the proposed additions to the preprocessing workflow,
introduces in the previous section, the research is expected to
provide knowledge on how the method used to combine datasets
affects the generalization ability of the model and whether it is
feasible to create one model for multiple modes of operation and/or
for multiple system components. Additionally, the effects of VSG are
to be studied, so that it becomes clear whether virtually created
samples are equally good for training as real samples, and whether
there is a limit to how many virtual samples it is feasible to use for
model development. This knowledge is crucial for systems with low
amounts of data because it allows for more efficient usage of
available data.

Regarding the statistics-based approach to predictive maintenance,
the project aims to determine the best predictors of failure frequency
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in electrical components, study the maintenance applications of the
prediction model, and compare predictive maintenance to statistical
asset management.
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Summary: With high shares of renewable generation and a reliance
on storage, modelling large scale energy systems is computationally
challenging. One factor driving the complexity of these models is the
need for a high temporal resolution over a long period; a typical
baseline is modelling all 8760 hours in a year. While simple methods
such as down-sampling and segmentation are effective at reducing
the number of time-steps in a model, there is potential for more so-
phisticated simplifications. In this work, we propose a flexible time
aggregation framework where individual components in the systems
(e.g. generators, storage units) may be modelled at a lower time
resolution. We base the method on the theory of aggregation in lin-
ear programming, giving the possibility for provable bounds on the
resulting objective value. These ideas have only been explored in a
limited fashion in the context of energy systems modelling, and we
highlight their potential for large scale energy system models and
the next steps for research.

Keywords: Energy systems modelling, optimisation, time aggregation.
Motivation

In the Paris Agreement we have set out to achieve a carbon neutral
world by mid-century, necessitating a global shift to renewable en-
ergy sources. One element enabling this transition is mathematical
modelling in order to explore and design future energy systems.
With accurate models, we can determine an optimal transition path
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and optimal mix of technologies which respects emission limits while
minimising costs.

While energy system expansion is not a new problem, the
emergence of wind, solar and other intermittent renewable energy
sources introduces new challenges. There is a need for flexibility in
order to even out local mismatches in time between generation and
demand, which can be provided by transmission capacity, sectoral
coupling and energy storage units, among others. The less
predictable generation and the use of storage in turn make newer
energy systems significantly harder to model. This has spurred a
renewed interest in the fundamentals of energy systems modelling
and motivates the search for more efficient modelling techniques.

In this paper, we are interested in the capacity expansion problem
for large-scale energy networks at the transmission level, with a time
scale of months to decades. Well-known models addressing this
problem include TIMES [1], ReEDS [2], OSeMOSYS [3], PyPSA [4] and
Calliope [5]. Theoretically, large energy systems can be modelled
quite well with (linear) mathematical programs, allowing the opti-
misation of both operation and design of the system. However, the
systems are large and complex enough that we run into computa-
tional limits when building detailed models. Therefore, we must
make simplifications and corresponding compromises to accuracy. As
an example, PyPSA-Eur [6] is a model of the European energy system
consisting of hundreds of nodes over one year at hourly resolution,
and takes in the order of one day and tens of gigabytes of memory
to run.

Recent advances in computational power are driven by increasing
numbers of processing cores, which linear program solvers are not
able to take advantage of effectively [7]. Thus, to improve the
capabilities of energy system models, we focus on improvements to
the models themselves. There are many different ways to reduce the
complexity of energy systems models [7], and comprehensive
models employ a combination of techniques suited to problem
which the model addresses [8]. Basic factors to consider are level of
technological detail, spatial resolution and temporal resolution. These
factors all influence the size and complexity of the linear program
defined by the model. In this work, we are mainly interested in
temporal resolution.

Large-scale energy systems are usually modelled at an hourly
resolution at best. However, several methods exist to address the
number of time steps in energy systems models [9], collectively
referred to as time aggregation techniques. A uniform down-
sampling of the model (e.g. going from hourly to 4-hour time steps)
is perhaps the most basic reduction. A more sophisticated method,
called segmentation, is to aggregate adjacent time steps based on
how similar the input data for the model is at these time steps. For
example, the state of our system might not change much between
02:00 and 05:00 at night, allowing us to aggregate these three hours
into one longer step. Finally, the most drastic simplification is to
model only a select subset of representative time periods, for ex-
ample a few typical days per season. However, implemented naively,
a model using representative time periods can’t keep track of the
state of charge of storage between periods.

While time aggregation techniques have been the object of much
research, up-to-date surveys have still identified significant gaps in
the literature. For example, [7] mentions the need for a more abstract
or flexible approach to aggregation. Together with the lack of sys-
tematic comparison between different studies, we can conclude that
there is no consensus yet on the best way of using time aggregation
in energy systems modelling.

The wuse of representative periods specifically is becoming
questionable in energy systems which are influenced more and more
by the weather. A traditional system with conventional power plants
may have a few typical demand profiles for each season, and the
behaviour of this system is almost solely determined by the demand
input data. However, a system spanning a large geographical region
with generation relying heavily on wind and solar power may not
have any global typical periods which repeat at all. This is because
the operation of such a system depends on many different external
variables, and the probability that all these variables (and hence the
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operation of the whole system) repeat themselves simultaneously in
a typical pattern is very low. A similar problem has been identified in
[9] in the context of adding representative extreme periods to a
model.

In this work, we do away with the traditional use of representative
time periods. Instead, we investigate the idea of modelling individual
components at different time resolutions, or indeed applying the
technique of representative time periods to individual components.
Some limited attempts at this have been made previously and are
used for inspiration. However, we pursue a synthesised and general
perspective on how to use variable and constraint aggregation
techniques at the component level to reduce the temporal
complexity of energy system models.

Related literature and theories

For comprehensive reviews on the topic of time aggregation in
energy system models, we refer to [9-11]. In the following, we
merely outline the most relevant work in our context.

As mentioned, modelling (long term) storage presents a particular
challenge and is one of the motivating factors for this work.
However, while we abandon the model-wide use of representative
periods, significant work has also been done recently on reconciling
the use of representative periods with seasonal storage. In particular,
a number of independent publications [12-15] have pioneered the
idea of “linking” representative periods in some way, keeping track
of the state of charge of storage between periods. The performance
of some of these new methods has been compared on large instance
in [16]. However, while linking representative periods takes care of
the state of charge of seasonal storage, the more fundamental prob-
lem with representative periods (there being no repeating patterns
in high-dimensional input data) remain.

Existing literature is sparse on the topic of modelling individual
components at different time resolutions. The work in [12, 13]
could be seen as modelling seasonal storage at a coarser
resolution, but the idea is not investigated as such. To the
authors’ knowledge, the topic (in the context of energy systems
research) has been the most thoroughly investigated in [17].
There, inspiration is taken from literature on the scheduling of
chemical plant operations. But although the paper highlights the
potential of separate time resolutions, the scope considered in
[17] is fairly narrow. The instance on which various component-
level time aggregation techniques are tried out is a simple
single-node system. While the results are positive but not dra-
matic, it is acknowledged that the impact on larger systems may
be quite different. Moreover, there is much potential for different
component-level aggregation strategies.

Research questions

In this work, we address two questions.

1. Is there a reasonably simple energy system model formulation
in which the representations of individual components are
independently simplified in the time dimension?

This formulation should generalise existing time aggregation
approaches such as down-sampling, segmentation and representa-
tive time periods.

2. How do we choose appropriate simplifications at the
component level, and what is their impact on the
performance and accuracy of typical energy system models?

Of course, the proposed simplifications should be compared with
existing approaches to evaluate their impact.

Methodology

While we want to simplify energy system models to reduce the
computational burden, we should recognise that some components
may suffer more from simplification than others. On one hand, for
example, the operation of a nuclear plant or seasonal energy storage
may not vary much throughout a day and could be modelled at 6-
hour intervals. On the other hand, the operation of batteries, which
often work with daily cycles, may need to be modelled at an hourly
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resolution in order to take peaks in demand and production into
account. There may also be components, such as gas turbines
providing peak generation, whose operation may only need to
be modelled in detail during hours or even seasons where peak
demand typically occurs. As we outline in more detail below,
varying the time resolution at a component level can be
achieved by simply aggregating individual operational variables
of the model.

It is instructive to compare this approach visually with existing time
aggregation techniques. The left drawing in Figure 1 illustrates the
operational variables in a model without any time aggregation. Each
box represents a variable, and we have arranged the variables by
which time step and component they correspond to. The approach
of this paper is illustrated on the right in Figure 1, highlighted by the
red box. Here, we have aggregated some of the variables, but
differently for each component. Contrast this with aggregation by
segmentation and representative time periods, illustrated in Figure 2.
There, variables have been aggregated uniformly for all the
components.

As a theoretical underpinning, we can use the aggregation and
disaggregation framework proposed in [18]. Simply put, we can
aggregate variables x, ..., x, by replacing all their occurrences in a
linear program by a new variable x. This produces a new linear
program, potentially with a different optimal objective value. The
idea is that if are all similar in an optimal solution, then replacing
them by x won't change the objective value much.

Dually, we can also aggregate constraints. In the context of energy
system models, each operational variable often has one or more
simple constraints associated with it. For example, the output of a
power plant is at any given time limited by its maximum capacity.
Now, if we have constraints x;<b; for i=1, ..., n and we aggregate
into , then we can simply replace the constraints by the single
bound x< min b;.

(i=1,...,n)
As we can see, any set of variables and constraints can be
aggregated in theory. However, the natural question is which
variables (and associated constraints) we can aggregate without
changing the objective value too much. There are a few different
kinds of aggregations which we could consider. For one, we can
aggregate sets of variables, associated with one component, which
represent contiguous sections of time. This is analogous to
segmentation, but for a single component. Another approach is to
use aggregation to create representative time periods for single
components. Moreover, while we choose to focus on temporal
resolution, variable aggregation may also be applied flexibly to
components. For example, sets of components may be aggregated
for specific time periods only.
All in all, the approach outlined in this section answers our first
research question in the affirmative.
Expected results
The second research question, asking how effective the flexible
aggregation technique can be, is harder to answer. We plan to try
out a variety of different aggregation techniques and levels of
aggregation on large instances of energy systems in order to
compare their performance and accuracy to that of a full resolution
model. We will use the PyPSA-Eur as a reference and a basis for ex-
perimentation. In this way, we hope to elucidate which kinds of com-
ponents deal well with which kinds of simplifications. The
performance and accuracy of our tests will additionally be compared
to existing time aggregation methods, and indeed incomplete solves
of a full resolution model.
Since our aggregation method is a strict generalisation of previous
time aggregation approaches, our results in terms of performance
and accuracy are expected to be at least as good as for previous
approaches. What remains to be investigated is whether the flexible
time aggregation approach leads to significant enough
improvements to justify its use.
Finally, following [18], it is also possible to calculate bounds on the
objective function of aggregated models without solving the full
resolution model. These bounds will be investigated and compared
with empirical results in order to evaluate their usefulness. This may
provide an effective tool for designing new simplifications, and lend
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new insight into the accuracy of existing time aggregation
techniques as well.

Conclusion

In this work, we introduce a new, flexible way of simplifying energy
system models by directly aggregating operational variables for
individual components. In this way, we hope to enable good
approximations of large-scale energy systems with a big share of
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Summary: The activation of flexibility potentials and using them for
stabilizing the power grid is a crucial component to overcome the
challenges of the energy transition. Flexibility potentials are not only
provided by centralized, large-scaled traditional power plants but
also by private households. The increasing availability of electric-
powered vehicles, photovoltaic systems, and energy storage systems
in private households make such flexibilities even more available and
increases the importance of private households. The role of house-
holds, therefore, changes from pure consumers to consumers and
producers of electric power. These households are called prosumers.
The activation of small prosumer flexibilities can thereby make a de-
cisive contribution to the systematic stabilization of local power
grids. FlexChain research project goals are developing an easy-to-
use, decentralized efficient trading platform and generating incen-
tives for private households to provide their prosumer flexibility to
stabilize their local power grid.

Keywords: Smart Grid; Flexibility; Home Energy Management System;
Blockchain; Smart Contract
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Introduction

The increasing spread of renewable energies is leading to a
fundamental structural change in the energy sector. Centralized
scheduled power plants are superseded increasingly by flexible,
weather-dependent, and decentralized generators. Those can be in
the form of wind and solar farms, among others. [1] The increasing
use of small-scale generators in private households, such as photo-
voltaic systems, transforms consumers into consumers and producers
in one, the so-called prosumers. [2] This change of consumers to pro-
sumers leads to a continuing decentralization of power generation.
Therefore, new requirements arise for the power grids. Those
requirements demand new, intelligent solutions to ensure a stable
basic electrical supply. The concepts of smart grids ideally try to
avoid the cost-intensive and often lengthy implementation of infra-
structure measures and the use of control measures by transmission
system operators. [3] Gaps between available and the required
amount of energy is dynamically closed in terms of time and location
by exploiting flexibilities. These solution concepts build on the fact
that there is a high willingness to activate flexibilities among prosu-
mers in principle. [4]

The research project "Blockchain-induced activation of small
flexibilities in the low-voltage grid (FlexChain)" is funded by the Ger-
man Federal Ministry for Economic Affairs and Energy (BMWi). It has
started in September 2020 and will end in August 2023 after a
planned duration of three years. The funding code is 03EI6036A.
Related Work

In addition to the traditional stabilization of the grid by large,
centralized generators [5], the possibility of stabilizing the grid also
by demand-side resources [6] is receiving more and more attention
in research. These potential resources include households, which can
be either traditional consumers or prosumers. The fact that house-
holds can be motivated for stabilization on the transmission grid
level and the distribution grid level has been described by [7]. An es-
timation of the principal flexibility potential from household appli-
ances such as washing machines or dishwashers was made by [8]. [9]
also acknowledges high potentials for the supply of flexibilities by a
household for electric cars and battery storage. In general, the versa-
tile flexibility potential of households has been already discussed and
presented several times. [10] [11] [12] To be able to control and de-
termine these flexibility potentials of a household in a targeted man-
ner [13], and [7] refer to the advantages of the use of Home Energy
Management Systems (HEMS).

Due to the small size of the flexibilites of a household, the
households can't participate directly in the classical electricity
markets with their flexibility potentials. [14] An option is to use an
aggregator, which offers the small flexibilities of several households
aggregated on the classical electricity markets. But this option is also
not purposeful if the flexibilities should stabilize the local grid. Such
an approach has been described by [15] and [16]. [15] focuses
specifically on the aggregation of multiple electric vehicles located in
a large geographic area. The combination of the flexibilities makes it
possible that the aggregator can eventually offer the electric cars to
the electricity market as one load/storage unit with sufficient size. In
[16], the total flexibilities of several households get offered
aggregated in the energy market. A HEMS represents the interface
between the aggregator and the flexibilities of households in this
approach.

New trading mechanisms have to be designed for local trading for
many households offering their small flexibility potentials by
themselves. [17] In the flexQgrid project, a trading mechanism is
applied, which enables such peer-to-peer trading of small flexibilities
between households within a low-voltage grid area. However, in
flexQgrid, the flexibility trading does not specifically stabilize the
power grid. Instead, the trading aims to utilize the maximum possible
energy from renewable resources. [18] One example of an approach
that pursues trading of small flexibilities, which are provided by
households, for targeted stabilization of the local distribution grid is
the "Altdorfer Flexmarkt". [19] The “Altdorfer Flexmarkt” is based on a
central trading platform where households can trade their flexibility
potentials with the grid operator. The particular challenge in devel-
oping such an approach is still the volume of transaction costs. If
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trading is to take place economically, the transaction costs must not
exceed the business value of the traded flexibilities. The small size of
the traded flexibilities leads to a low business value.

Objectives

The goal of the research project FlexChain is to realize an easy-to-
use, decentrally organized trading platform for small flexibilities.
Through FlexChain, prosumers are to be encouraged to make their
potential flexibilities available for the stabilization of the grid. The
goal of FlexChain is to offer grid operators an alternative to conven-
tional grid reinforcement using infrastructure measures to resolve
congestion situations in the power grid. The focus of FlexChain is on
the local stabilization of power grids in the low-voltage range.

Using a blockchain-based solution for trading flexibilities will ensure
simple manageability, low transaction costs, and permanent docu-
mentation of the trading processes. By using smart contracts, trans-
actions are automated, transparent, and forgery-proof. The goal is to
achieve the lowest possible transaction costs. Lower transaction costs
lead to smaller, economically tradable flexibilities. This benefits
households in particular.

The realization of the research project relies on an interdisciplinary
approach. Thereby, electrotechnical, information-technical, as well as
socio-economic questions will be holistically answered.

Approach

The idea of FlexChain rests on the activation of small prosumer
flexibilities in a market-based process. The goal is to identify, fore-
cast, and activate the potentials of a household via a HEMS. The data
exchange with both the metering point operator and the distribution
grid operator via the existing smart-meter-gateway infrastructure.
The intelligent local network station and the intelligent, automatic
trading platform FlexChain are the upstream nodes. Fig. illustrates
the concept of FlexChain.

Elements of the research project include research and development
of, among other things, the following processes and technologies:

- Definition of an economic and legal framework for blockchain-
based marketing of small flexibilities

- Design and implementation of standardized trading processes
to trade small flexibilities for the stabilization of the distribution
grid

- Generation of forecasts for individual households using a HEMS,
as well as prognoses for the local low-voltage grid

- Control of prosumers energy assets by the HEMS, for
conducting of flexibility after a successful trade transaction

- Developing the required blockchain technology and smart
contracts that are necessary for automated trade execution

- Consideration of the stakeholders of a decentralized trading
platform and evaluation of the potential digital market and
business models

- Investigation and evaluation of the economic benefits of a
blockchain-based trading platform for the grid-supporting use
of small flexibilities from households

The project goal will be evaluated in a field trial in addition to the
research and development work. These will take part in a dedicated
residential area connected to the transmission grid of the project
partner Stadtwerke Saarlouis GmbH. Customer acquisition takes
place by active inquiries. Incentives will be developed for that
purpose. Those can be based, for example, on cross-selling effects or
the development of innovative business models. In a follow-up
evaluation, both the technical and the economic feasibility of the ap-
proach are determined.

Project Partners

The consortium of the FlexChain research project includes the
August-Wilhelm-Scheer-Institut fir digitale Produkte und Prozesse
gGmbH (AWSi), Hager Electro GmbH und Co. KG (Hager), Stadtwerke
Saarlouis GmbH (SW SLS), VIVAVIS AG (VIVAVIS) and OLI Systems
GmbH (OLI).

The AWSi acts as consortium leader in the research project
FlexChain. The AWSi is responsible for the conception and
implementation of the trading processes required to trade small
flexibilities. The resulting subtasks contain the realization of an
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efficient matching algorithm and the specification of the therefore
necessary smart contracts.

Hager is responsible for activating the flexibility potential in
households. For this purpose, the company's HEMS technology will
be refined to include the required functionalities. New functions
result from the determination of flexibility potentials of individual
plants and devices and the calculation of the total flexibility of a
household. The creation of flexibility offers and the retrieval of
flexibility demands are also part of the required functionalities.

The SW SLS assumes the role of grid operator and energy supplier.
From the network operator's point of view, SW SLS provides the
network information required for the simulations and tests planned
in the project. Furthermore, the SW SLS is responsible for the
organization and execution of the field test. For evaluating the
market platform, the SW SLS takes the market view in their role as
an energy supplier.

VIVAVIS is responsible for configuring the blockchain gateway, as
well as for the connection between blockchain gateway, and HEMS,
and blockchain gateway and smart-meter-gateway.

OLI brings its extensive experience in the design of blockchain
systems to the FlexChain research project. The tasks of OLI consist of
rolling out the necessary blockchain infrastructure, developing the
blockchain gateway, and designing and implementing the interfaces
between the smart contracts and the HEMS.

Results and Impacts

In the following part, the current concept status of the FlexChain
trading process gets described. The HEMS installed in the
households creates forecasts for the installed energy assets
regarding their expected usage. The result of this is a baseline. This
baseline gets transmitted to the grid operator. For the grid operator,
these baselines are essential to simulate the grid. The grid simulation
identifies potential grid bottlenecks to which the grid operator must
respond. Grid bottlenecks generate demand for flexibilities. The grid
operator sends this demand as a request to the blockchain, which
leads to the creation of smart contracts. Via push messages, the
affected HEMS get informed by the blockchain of the demand that
has arisen. If a HEMS sees itself capable of responding to demand
with an offer, it sends this information to the blockchain. A HEMS
offer gets stored as a smart contract on the blockchain. When
dynamically parameterizable criteria between supply and demand
match, the matching occur and subsequently a transaction.
Currently, two trading modes are conceptually supported. The first
trading mode bases on a fixed price, given in the smart contract of a
demand. The second trading mode bases on simplified auction
trading. The aim is to keep transaction costs as low as possible. The
successful completion of the research project will change the
possibilities of grid stabilization in the long run. Grid stability can get
achieved by the efficient activation of flexibilities instead of an
expensive and lengthy conventional grid expansion. In the ideal case,
active control measures by the grid operator are no longer necessary.
As a result of the increasing distribution of electromobility, photovoltaic
systems, and others, the research project participates in the rising
flexibility potential. The politically promoted change from consumers to
prosumers in private households also plays a decisive role.

Conclusion

The research project FlexChain offers grid operators an intelligent
alternative to conventional grid reinforcement. FlexChain enables
effective and efficient stabilization of the local energy grid by
activating and economically trading small flexibilities. The focus is on
the flexibilities of private households. Thus, active participation in
stabilizing electric grids through private households is encouraged
by FlexChain. Based on the increasing shift to weather-dependent,
renewable energy, FlexChain can be a crucial grid stabilization tool
for grid operators.
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Summary: The increased use of intermittent renewable sources in
large power system, and more harmonics infused into distribution
system; both prompt high distortion level in the power system. This
paper analyzes electric power quality by applying D-STATCOM, one
of the Flexible AC Transmission System (FACTS) devices, into 4.16kV
distribution system. The new control method, named ‘fake reference
approach’, coordinates with reinforcement learning; especially, Deep
Deterministic Policy Gradient (DDPG) algorithm. The action vector
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from the reinforcement learning creates a new fake reference apply-
ing to the voltage control. The real-time simulations confirm that the
system voltage is more stable with D-STATCOM. As a final outcome,
the proposed model is compared with the conventional control
method.

Keywords: D-STATCOM, FACTS DEVICE, Reinforcement learning
Introduction

In recent years, the continuous growth of the power industry has
contributed to increased demand for high-precision equipment such as
power electronic devices. The result of this trend is an increase in
power demand while deteriorating the power quality of the distribu-
tion system [1, 2]. The matters concerning the distribution system's
power quality shall be as follows: Power factor degradation, Harmonic
current introduction, Interruption, Instantaneous voltage drop [Sag], In-
stantaneous voltage rise [Swell], and Voltage unbalance. FACTS facilities
have recently been introduced to mitigate/compensate for these power
quality problems [3-5]. In addition, D-STATCOM, which operates on a
Voltage Source Converter [VSC] basis, is installed parallel to the distribu-
tion system, acting as an active filter, and is flexible in responding to
the external disturbances and load variation [6, 7].

A D-STATCOM is a shunt-connected bidirectional converter-based de-
vice that operates as an impedance converter to utilize either induct-
ive or capacitive electrical elements by revising its output voltage
levels. D-STATCOM can solve the problem mentioned earlier; the
poor load power factor, the poor voltage regulation, and the unbal-
anced loads [8]. D-STATCOM, consisting of three controllers (AC Volt-
age Regulator, DC Voltage Regulator, and Current Regulator), uses
voltage source PWM[Pulse Width Modulation] inverters that utilizes
the Insulated Gate Bipolar Transistor (IGBT) to compensate for the
voltage in discrete space by generating reactive power as much as
the system needed [9]. Thus, the study of enhancing control per-
formance, such as making improvements on transient response, be-
comes more vital; especially in the emerging power system with a
higher portion of renewable energy sources integrated [10]. The ran-
dom and intermittent characteristic of renewable energy gives rise to
significant challenges in terms of how to control bus voltage in case
of power system collapse.

In accordance with the previous paragraph, this paper introduces
a new control method that has difference from the existing
control method and describes how the new control method will
be applied with reinforcement learning. The concept of the new
technique is to apply ‘fake reference’ instead of ‘real reference’ to
the voltage controller, and the responses as observed value,
follows the ‘fake reference’ rather than the ‘real reference’ even
though it desires the ‘real reference’. In section 2, DDPG
algorithm and the fake reference that used in the model will be
described. In section 3, ‘Case study and results, it shows
transient response improvement, compared to conventional
method. Furthermore, the case study is composed of
programmable voltage source for testing that the model properly
works at the intermittent power system conditions.

Fake reference approach using ddpg algorithm

In this paper, reinforcement learning is used to focus on voltage
regulation. If controller designer originally wanted a power supply
voltage of 1 pu, the theory is to set the voltage command to 1.
However, our approach stems from the idea that a reference should
be given instead of 1 pu even though the desired real reference is 1,
and the result, response characteristic, would be more accurate and
fast. In this paper, we called this as ‘Fake reference’. In this paper,
only reinforcement learning is the solution to this concept since the
‘Fake reference’ approach deals with an area where human cannot
reach, and not be organized by formulas.

The Deep Deterministic Policy Gradient [DDPG] algorithm is an
algorithm that is learned using artificial neural networks and
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reinforcement learning [1, 11, 12]. DDPG is a model-free off-
policy actor-critic algorithm that combines 'Deep Q Net-
work[DQN]" with 'Deterministic Policy Gradient. However, the
DQN could solve the problem using high-dimensional observation
spaces, but only discrete and low-dimensional action spaces.
Therefore, DQN split action space into discrete action as a way to
apply it to continuous domain problems. In addition, DQN is con-
sidered an episode as a bundle, but DDPG is not, so it is suitable
for control in a variety of power system conditions. A major chal-
lenge for deep learning in continuous action space is how agent
explore in the environment. DDPG learns through off-policy way
by adding random noise vector for action exploration, as not tak-
ing action to get the best return, but sometimes taking random
action to try new attempt.

DDPG algorithm basically consists of state, action, and reward vector.
These components let DDPG agent learn the value function from the
reward vector through the observations by exploring the system’s
environment. Especially, storing information such as state, action,
reward, and next state in mini-batch let agent can learn by sampling
all the experience what it has accumulated so far, instead of learning
only from recent experience. There are more details that explain the
DDPG algorithm well about how it is updated the parameter as for-
mulated by each process [13-15].

This paper introduces a technique for applying the actor-critic
model-free policy gradient method as an algorithm that controls
discrete action domains to achieve the system's desired objective.
The unpredictable disturbance is definitely an obstacle in the control
system, resulting in lagging performance in controller design. In a
way, the fake reference is extra-disturbance and a technique for
matching real references by giving them an extra-noise. However,
this is not an unpredictable one but a predicted one under variable
systematic conditions, which will be learned by reinforcement learn-
ing to form the appropriate fake reference.

Case study and result

In this proposed method IEEE 13-bus real unbalanced distribu-
tion network is taken as a base case which is shown in Fig 1.
Data of line impedance and system information are referenced
in the IEEE 13-bus system from Electric Power Research institute
(EPRI). The goal is to prove that the proposed approach de-
velops bus voltage control performance with an improved tran-
sient response. The system profile shown in Figure 1 is used to
evaluate that performance in various conditions. The slack bus
voltage is set at 120.6kV, and the transformer turn ratio is given
as 120kV/4.16kV.

In Figure 2, the voltage source at bus 650 is variable that designated
in programming, and it fluctuates between 0.99 and 1.01.
Experiment has proceeded on the assumption that D-STATCOM is in-
stalled in parallel to the bus 632, and electric circuit breaker is in-
stalled between 671 bus and 692 bus.

The real reference of D-STATCOM is set at 1pu which is shown
as blue line in the Figure 3. In Figure 3, it shows that DDPG ap-
proach commands a variable ‘fake reference’ when the
programmable voltage source is changed. The reinforcement
learning has been implemented for 500 iterations, and the action
of reinforcement learning as a disturbance, develops transient re-
sponse in control system.

The response characteristics with and without D-STATCOM are
shown in Figure 4. Figure 4 shows that a specific value is near 1
and not be controlled when without the D-STATCOM. Besides,
the transient response is enhanced when the ‘fake reference’
control method is applied in comparison with existing control
theory. This confirms that the model works adaptably with
programmable voltage source that indicates various power sys-
tem conditions.
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Conclusion

In a condition that the power system gets more complicated these
days, the role of FACTS devices becomes highlighted for the stability
of power system. In this paper, simulation is conducted by a model
of 4.16kV distribution system with D-STATCOM in Simulink. The pro-
posed model makes fake reference to control bus voltage by
reinforcement learning instead of real reference what exactly desired
by control designer. The simulations confirm that the system voltage
is more stable when operating D-STATCOM with proposed model.

In this paper, only AC Voltage Regulation is covered. However, as
described in the introduction, the more controllers, DC Voltage
Regulation, and Current Regulator will be covered in a further study.
Moreover, more case studies considering the variable AC voltage
reference of D-STATCOM and OPF problem will proceed together.
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Summary: The electricity consumption of industrial buildings with
many office spaces is significantly affected by the behavioral
patterns and activities of the building users. Furthermore, external
factors such as temperature changes, humidity and grid data are
some of the common parameters that could have an effect on the
energy consumption. Hence, there is a need for developing
sophisticated energy consumption optimization strategies while
considering all the possible factors that might affect the energy
consumption to help minimizing the running cost of the buildings.
The goal of this paper is to propose an intelligent framework for the
optimization of the energy consumption of an industrial building
while maintaining the thermal comfort inside the building

Keywords: Building energy management, Optimization, Artificial
intelligence, Neuroevolutionary learning

Motivation

Over the past years, there has been a significant increase in the
energy demand. This is mainly due to many industrial developments
emerged as a result of the advancements in the technology as well
as the population growth. When we observe the energy
consumption statistics, it is evident that the building sector accounts
around 40% of the total energy consumption in the European Union
(EU) including Norway and 36% of the EU s CO, emissions [1, 2].
However, according to the U.S. Energy Information Administration,
about 57% of building energy consumptionis due to heating,
ventilation, and air conditioning (HVAC) system [3]. As a result, the
designing of efficient building management systems has received a
significant importance considering the fact that optimizing energy
consumption is beneficial for both consumers and service providers.

Building energy management system (BEMS) is a computerized
system designed for monitoring and controlling energy related
building services. BEMS connects various systems in buildings
including lighting, HVAC systems along with their auxiliary units and
provides a centralized platform to monitor energy consumption of
the building while creating a platform to get insight on building’s
energy utilization [4, 5]. Building energy optimization (BEO) is a
process of identifying optimal design that minimizes the total cost of
energy consumption in the building while maintaining the thermal
comfort for building users. Energy optimization mainly based on
physical models. However, the construction of accurate physical
models is computationally expensive [6]. Therefore, the focus has
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been shifted towards data-driven methods for BEO. Numerous stud-
ies have been conducted on BEO. Genetic algorithm (GA), particle
swarm optimization (PSO), generalized pattern search methods (GPS)
and reinforcementlearning (RL) are the most common optimization
methods found in literature [7, 8].

Controlling heating and cooling inside the building is one of the
main concerns when considering building energy systems. The HVAC
system helps to maintain the indoor temperature and ensure
thermal comfort inside the building by maintaining the set
temperature. It is a well-known fact that the HVAC system has a
strong correlation with the outside temperature. Moreover, external
factors such as time of the day, type of the day (weekdays or week-
ends), number of people inside the building need to consider to en-
sure thermal comfort [9,10]. Therefore, to optimize the energy
consumption of the building, one of the main objective functions is
to reduce the heating and cooling energy consumption.

The aim of this paper is to explore strategies to evaluate the existing
approach for multi-objective BEO and incorporating additional inno-
vations while considering the two objective functions cooling and
heating energy consumption. Furthermore, we also plan to incorpor-
ate the external factors such as weather changes, time of the day
into the optimization process so that we can further enhance the
thermal comfort inside the building. The rest of the paper is orga-
nized as follows. In Section 2, we briefly describe the related litera-
ture and theories while the background related to the proposed
framework is given in Section 3. The proposed framework is provided
in Section 4 before the paper is concluded in Section 5.

Related literature and theories

Optimization of energy consumption is being extensively studied in
literature. In the following, we have summarized the optimization
strategies considered in the existing building energy systems.
Genetic algorithm (GA) is one of the optimization methods utilized in
relation to BEO [11]. In this direction, the authors in [12] adopted
three black-box optimization methods - direct search, metaheuristics
and model-based method and evaluated their performance when
deployed in BEMS. In comparison, multi-objective GA optimization is
more appropriate when compared to single objective optimization
for BEO due to the fact that it can optimize several objective func-
tions concurrently. Thus, a simulation-based predictive control (MPC)
model is proposed in [13] to achieve GA based multi-objective
optimization. Furthermore, the authors in [13] also considered the
operating cost for space conditioning and thermal comfort for the
optimization process while using GA with a combination of Energy-
Plus simulation software' [14] and MATLABZ2. In contrast to [13], an
active archive non-dominated sorting GA (aNSGA-ll) while using
EnergyPlus is proposed in [15] to optimize the energy demand of
existing residential buildings. In [16], a multi-criteria tool is developed
with thehelp of an improved multi-objective GA (NSGA-II) [17] while
coupling TRNSYS software®. Although GA has been widely adopted
as an optimization strategy, there are many drawbacks associated
with GA when used for optimization purposes including the associ-
ated computational cost when dealing with a large number of func-
tions, slow convergence and the lower stability. However, it is
possible to address these drawbacksby using simplified models and
selecting small GA population while having a small number of gener-
ations to potentially reduce the computational cost as evident from
the research work in [18, 19]. Although the aforementioned options
would lead to better computational efficiency, but such approaches
could run the risk of over simplification leading towards inaccurate
modeling of the building.

In [20], the authors have compared seven multi-objective evolution-
ary optimization algorithms used to solve the design problems in
nearly zero building (nZEB). It is found that none of the tested algo-
rithms mentioned above converge completely within 1800 evalua-
tions and concluded that this is due to the stochastic nature of the
population-based algorithms that cannot assure a global minimum
within a finite number of evaluations. In addition, the performance of
the three optimization algorithms namely, GA, PSO and sequential
search algorithms are considered to optimizing the building envelop
and HVAC system design for residential buildings in terms of compu-
tational time and cost reduction in [21]. Although they found that
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the GA and the PSO require less computational time to obtain opti-
mal solutions than a sequential search algorithm, the optimal results
obtained using the three aforementioned algorithms were almost
similar. In recent years, reinforcement learning (RL) also known as
model-free approach has drawn huge attention concerning BEO [22].
Authors in [23] proposed a dynamic pricing and energy consumption
scheduling for a microgrid where the service provider acts as a bro-
ker between the customer and the utility company using the Q-
learning algorithm. Furthermore, they considered multi-agent learn-
ing in smart gird including both the service providers“dynamic pri-
cing and the customers “energy consumption scheduling for their
study. Moreover, RL-based BEMS with the integration of photovoltaic
(PV) panels is proposed in [24, 25]. The RF-based approach is consid-
ered superior in solving the decision-making problems with uncer-
tainty such as energy generation of PV panels. Reducing energy cost
and thermal comfort inside the building are main objective functions
of these studies. In addition, Artificial neural network (ANN) coupled
with the Q-learning algorithm is utilized in [26] whereas in [27], a RL-
based approach is used to solve the residential scheduling or load
commitment problem. A Deep reinforcement learning (DRL) method
is used to perform online optimization of schedules of BEMS in [28].
The learning procedure is conducted using the deep Q-learning and
deep policy gradient methods andthey have identified that the deep
policy gradient method is more suitable for online scheduling.
Although extensive research work has been conducted on building
energy management using RL, it is evident that the integration of
renewable energy sources have not been considered in most of the
studies. In addition, the multi-task RL and multi-objective RL algo-
rithms are not considered in most of the work in the literature. Our
intention is to identify what techniques have been utilized for the
purpose of optimizing energy consumption as well as identifying the
critical objective functions that must be considered when developing
an efficient BEMS. We will use this knowledge as a basis and propose
a framework and strategies to be investigated in future works for
better optimization of energy consumption in an industrial building
which includes office spaces and laboratories.

Background

In this section, we provide an overview of optimization and machine
learning techniques that have been widely utilized for the purpose
of efficient management of energy consumption.

Genetic Algorithm (GA): GA is a classical evolutionary algorithm based
on randomness along with the natural selection and the survival of
the fittest which was first introduced by Charles Darwin [18, 28].
When executing a GA, it randomly selects an initial population where
the population size is equal to the number of solutions. Each
individual in the population is considered as a solution to the
problem that needs to be solved and represented with a
chromosome. A fitness function is used to evaluate how each
chromosome fits as a solution. Based on the fitness values parental
chromosomes are selected and with the help of crossover and
mutation operations, the next generation of solutions are
constructed. The algorithm terminates when the population has
converged meaning that it is not possible to develop off-springs or
solutions that are significantly different from the previous generation
[28].

Particle swarm optimization (PSQO): PSO is a population-based stochas-
tic algorithm inspired by the social behavior of bird flocking or fish
schooling in nature [29, 30]. PSO randomly selects the initial solutions
which are called particles. In each iteration, the fitness value of each
particle and the global best value of the population (global best) is
calculated. The movement of the particles is influenced by the calcu-
lated values and this process is repeated until the particles reach the
target. However, given that all the particles follow their own best
and the global best particle, all particles may trap in local minima in
the solution space [31].

Artificial Neural Networks (ANNs): ANNs are inspired by the human
biological system; especially how the human brain process
information and communicate via the nervous system. The basic
structure of an ANN is consisting of an input layer, an output layer, a
set of hidden layers along with a set of highly interconnected
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elements referred to as the neurons. These neurons transform a set
of inputs to a set of desired outputs while the transformation is
dependent upon the characteristics of the elements as well as the
weights associated with the interconnections. Given that weights
influences the output, it is necessary to adjust the weights and the
thresholds accordingly, which is referred to as the learning process
of an ANN [32, 33]. Deep neural network (DNN) is an ANN with
multiple hidden layers between the input and the output layers and
this allow to learn more complex patterns. Thus, DNNs can be used
to model complex non-linear relationships [34].

Reinforcement Learning (RL): RL also known as the model-free control
approach, is a form of machine learning technique which does not
require any model to ensure optimal control of the system. RL
consists with an agent that interacts with its environment and
learn the type of the action depending on the state of the envir-
onment. During every step of the learning process, an agent
chooses an action based on its current policy and the current
state of the environment. Then, the environment returns a re-
ward and the new state to the agent. The agent adjusts its policy
with regards to the state, action and the reward. After successive
iterations, the agent can determine the optimal policy with max-
imum reward [24, 25, 26].

Neuroevolutionary Algorithms (NEA): NEA is a machine learning algorithm
that uses evolutionary algorithms to train ANN and can replace the use
of standard gradient-based methods. NEA can provide more flexibility
and also it can generate interpretable rules that are useful to explain the
predictive decisions. NEA is capable of tuning hyperparameters of ANN
such as the architecture of the network, learning rate, activation,
optimization and loss functions. Besides, NEA maintains the population of
solutions during the training by enabling parallelization. The training is
done by allowing learning with explicit targets, with arbitrary neural
models, network structures, and with only sparse feedback. Given only
sparse feedback without revealing information about what exactly it
should be doing, NEA can find an optimal neural network. [35, 36].
Methodology

In this section, we provide an overview of the proposed framework
which is illustrated in Fig.1. The framework consists of four main
modules - input data, data handling, ML model and optimization.
Input data

This module aims to collect relevant input data and feed them into
the data handling module. There are two inputs to the system -
building data and external information.

Building data: Many systems integrated with buildings such as HVAC
systems, power systems, security systems. These systems contain
various sensors and meters which provide energy-related data such
as temperature and electricity consumption. To ensure thermal com-
fort inside the building, it is necessary to adjust the temperatures ac-
cordingly. Therefore, we consider temperature and energy
consumption data as inputs to our model.

External information: We define external information as the outside
factors that affect the building energy consumption. Hence, in our
model, we are going to consider outside temperature, humidity,
wind speed, solar irradiance, as the environment induced external
factors. In addition, the grid data such as electrical load, peak load,
electrical price variation during the day will also be considered as
external input data in our model.

Data handling

This module is responsible for data collection, pre-processing, stor-
ing, normalizing, and feature extraction. The data collector collects
both building data and external data. Considering the fact that the
raw input data is incomplete due to noise and inconsistencies, it is
necessary to perform pre-processing of data. Then, feature extraction
and data normalization is carried out to ensure that that the data is
conditioned properly before being fed to the ML model. In the fol-
lowing, we have described the tasks associated with data pre-
processing, feature extraction and normalization.

Data pre-processing: Data pre-processor helps to perform transform-
ing and scaling the data set before data feed to the ML model. There
are several steps associated with data pre-processing:
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e Data cleaning: Data cleaning is responsible for identifying,
smoothing, filtering outliers and noisy data as well as resolving
the inconsistencies of the data.

e Data integration: Data integration refers to the process of
combining data from different sources. It is necessary to
perform this task to ensure that all data is compatible, with no
conflicts between data from different databases. In addition,
data integration ensures data redundancy.

e Data reduction: The task of data reduction is to select a subset
of data from the dataset to be used for the experiments. The
reduction is performed in such a way that it will not drastically
affect the results in comparison to the utilization of the
complete dataset for the experiments.

e Data discretization: Data discretization is carried out to replace
numerical attributes with nominal ones.

Data normalization and feature extraction: We carry out data
normalization to convert the inputs to a common scale. This process
is required if the input features have different value ranges. Feature
extraction is the process of selecting a subset of relevant features
and thereby reducing the number of features in a data set. This
would help in avoiding over-fitting, improving generalization along
with reducing the training time.

ML model

The ML model is used to predict the heating and cooling energy
demand for a pre-defined period of time with the help of the histor-
ical data. Before feeding historical data to ML model, we need to
evaluate and filter appropriate ML models relevant to the problem
domain. Then, we split the data set, so that 80% of data isused for
training and cross-validation, while the remaining 20% is kept for
testing. Thereafter, the training data is used as the input to train the
algorithm. It is intended to incorporate NEA for training and
optimization phase of our framework. After completion of the train-
ing phase, we use test data to validate the trained model before ap-
plying it to our problem.

To get the estimated values, the new data will be fed to the trained
model after performing data handling which includes pre-processing,
data normalization, and feature extraction. The estimated values of
energy consumption are then utilized for optimizing the energy con-
sumption by creating efficient schedules for heating and cooling of
the building in near future.

Optimization

Next we focus on to find a way to minimize the total heating and
cooling energy consumption of the building while maintaining
thermal comfort inside the building. To achieve this, we will
formulate an optimizer as mentioned below.

Assume that the comfortable range of temperature inside the
building is given by [Tmin,Tmax]. Then, we can formulate the
optimization problem for the consumption of heating and cooling
energy as,

Tope = argming, < Epeating + Ecooling + ax (| Torgx—Tx|)
> Vk,ke{1,2,...,K} and Tyuin < Tk < T

where, Topw Ti T, Tog represent the optimal temperature,
temperature at time k, temperature set point, and the original
temperature  at  given settings respectively. Moreover,
Eheating andEco0jing represent the energy consumption of heating and
the cooling energy consumption respectively.

Thereafter, we need to minimize the cost of energy in the building.
To achieve this, first, we need to inspect the types of loads in
cooperate with the BEMS. We can divide the load into two types,
fixed loads and flexible loads.

Fixed loads: The fixed loads include security systems, alarm systems
and surveillance systems. These loadshave a critical energy demand
requirement that needs to be satisfied when considering the load
distribution.

Flexible loads: The flexible loads include the devices that can operate
during off-peak hours when the costis low and the manageable loads
such as heaters, fans, lights. The operation of these devices can be
scheduledduring the day.
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Then the optimal cost of energy for theithconsumer can be
calculated as,

minzle (QL_k ZLPG.FQM* Z: (PFLxed.l.k + ZZ:]PFIEZlde.Lk)) de{l,2,..,n}

Where Q. Qu, P:, Prixed: Priexw Sa represent the price that the utility
company pays for a customer, electricity price of the utility company,
power generation, fixed power consumption, flexible power
consumption, and the status of the electrical devices "On/Off"
respectively. Moreover, n is the number of electrical devices.
Conclusion

The objective of this paper is to present possible strategies for an
energy consumption optimizing framework in an industrial setting
having office spaces and laboratories. The proposed framework
suggests workflows for collecting the input data and the pre-
processing steps: cleaning, normalization and feature extraction.
Thereafter, the utilization of ML and neuro-evalutionary techniques
are proposed for prediction of future energy loads. Then, we aim to
identify optimization techniques for better scheduling of heating and
cooling energy demand for a period of time ahead. Finally, we try to
minimize the total cost of energy for a particular consumer. Key re-
search areas identified through this paper is using machine learning
techniques and neuro-evaluation inrelation to energy consumption
optimization.
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Summary: In order to meet increasingly ambitious energy goals,
buildings being one of the major consumers in the sector needs
alternative technologies and solutions to meet heating, ventilation
and air conditioning demands. Phase Change Material (PCM)-based
cooling technologies in ventilation have shown potential in the
recent years. In this work, a PCM-driven air heat exchanger cooling
module for comfort cooling in office buildings is investigated. A nu-
merical model of the PCM module utilizing the apparent heat cap-
acity method with hysteresis is developed. The integration of the
PCM module with a room model and a ventilation unit model is per-
formed in order to test the system in different conditions. Simula-
tions of the system operation under standard climatic conditions in
Denmark and a short period of extreme ambient temperatures are
conducted. The results demonstrated that the module performance
is highly sensitive to the ambient conditions. Thermal comfort viola-
tions of 16.6°Ch for a year and 94°Ch for a five-day period of extreme
temperatures are reported. Additionally, a large reduction in energy
consumption was observed with the PCM module scenario com-
pared to a conventional Direct Expansion (DX) cooling technology. A
yearly electricity consumption of 109 kWh was reported for the PCM
module compared to 220 kWh for the DX technology.

Keywords: Phase Change Materials, Thermal comfort, Heating
Ventilation and Air Conditioning, Modeling and Simulation.
Motivation

The building sector has been experiencing an increased demand
for alternative cooling solutions that provide thermal comfort
with reduced energy consumption and increased efficiency. In
2015, the building sector accounted for 30% of the global energy
consumption where 40-50% of this was consumed by Heating,
Ventilation and Air Conditioning (HVAC) [1-3]. Conventional cool-
ing technologies are energy-intensive with the Direct Expan-
sion(DX) technologies being the most used solution [4]. Phase
Change Material (PCM) based solutions have showed potential in
this area, utilizing the large thermal capacity present in the latent
energy of the phase change [4, 5]. However, the use of such so-
lution is still mostly limited to passive applications while the use
of PCM as part of a standalone cooling/ventilation solution is
very limited and needs additional investigation.
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Related literature and theories

Several studies have investigated PCM-based cooling solutions for
meeting the cooling demand. Experimental and numerical investiga-
tions of an active cooling application utilizing PCM in a PCM-water
heat exchanger was carried out by Roccamena et al. [6, 7]. Different
control strategies for reduction of peak power consumption were
tested for an air-PCM heat exchanger cooling device, which was
placed directly in the supply air stream of a ventilation unit by Man-
kibi et al. [8] and Stathopoulos et. al [9]. Building up on the block of
investigations, this study will present the design, modeling and per-
formance simulation of an innovative air-PCM heat exchanger-based
cooling solution for ventilation in office buildings under Danish cli-
matic conditions.

Research questions

- In terms of energy efficiency, what are the impacts of utilizing
active PCM-based ventilation systems compared to conven-
tional energy-intensive cooling technologies?

- What are the optimal design parameters for the PCM cooling
solution to maximize thermal comfort and minimize electricity
use?

- Is the active PCM-based cooling solution capable of sustaining
indoor thermal comfort with minimal energy use as an alterna-
tive to a DX-based cooling technology?

Methodology

PCM-based ventilation cooling

A cooling system concept utilizing PCM is proposed. The PCM is
stored in a module allowing for heat exchange between the PCM
and the supply air to the room. The PCM module is designed to
serve as a modular and flexible addition to a conventional ventilation
unit with no cooling capabilities.

The module is charged by cooling down the PCM during the night
when ambient air temperatures are low. The module can then be
discharged by heating up the PCM during the day, when ambient air
temperatures are high, as shown in Fig. . The PCM is stored in small
aluminum plates, each containing 2 kg of PCM. The plates are placed
above each other in a stack with a small air gap between them,
thereby serving as a heat exchanger between the PCM and the air in
the channels.

The storage potential in the climate module will provide flexibility
options in the building sector that can balance the electricity grid
and aid in reducing the fluctuations in supply and demand. This will
be enhanced by implementing intelligent control strategies that will
enable interaction with the demand response market [10, 11]. The
climate module also allows for load shifting strategies to be
employed with intelligent forecasting of production patterns and
local weather conditions.

System modeling

To quantify the added benefit of the climate module and
demonstrate the expected performance of the concept, a dynamic
energy performance model for the room and the overall ventilation
unit, consisting of the heat exchanger and the PCM climate module
is developed. The interaction between these is illustrated in Fig. 4.
The PCM module is modeled using a 2D numerical modeling
approach that assumes uniform behavior from each PCM plate and
therefore allows modeling of only a single PCM plate. The numerical
model uses the ODE15s solver in MATLAB to solve the finite
difference formulation of the discretized 2D heat equation for the
heat transfer dynamics in the PCM material. The heat transfer in the
climate module is calculated through estimation of the convective
heat transfer coefficient, using correlations for the Nusselt number
for flow between two isothermal plates [12]. The latent part of the
PCM is modelled using an apparent heat capacity method, where
the specific heat capacity includes the latent heat of the PCM and
the phase change temperature [13]. The PCM model considers the
hysteresis of the PCM, meaning the non-isothermal phase change
and different solidification and melting temperatures, as shown in
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fig. 5. An R2C2 room model is developed to evaluate the behavior of
the room to be cooled under different climatic conditions, internal
loads and operation schedules. [14].

The ventilation unit has a cross flow heat exchanger with an overall
heat transfer coefficient calculated based on the NTU method [16].
The modeling of the room and the ventilation unit is developed in
MATLAB. The evaluation of the performance is done using two Key
Performance Indicators (KPI), thermal comfort violations and energy
consumption.

Case study

A case study is considered to quantify the performance of the
proposed PCM-based cooling solution. The case study is a small
standard Danish office room of 30m?, for approximately 2-4 people.
In order to evaluate the performance, two different investigation sce-
narios are conducted; (1) Full year simulation using standard Danish
typical meteorological year and (2) one-week simulation of extreme
temperatures in a Danish summer. The typical temperatures are a de-
sign reference year [17] for Copenhagen. The extreme temperatures
were measured at SDU in Denmark during the summer of 2018
where temperatures exceeded 30°C on four out of five of the consid-
ered days. The system is modeled considering a module with 48
PCM plates with a melting temperature of approximately 21°C, of the
type SP21EK [15]. The internal generation of the room has a peak of
0.36 kW for the main use part of the day and the solar heat gains
contribute with approximately 0.6-1.3 kW during the summer
months. Thermal comfort violations are evaluated through the viola-
tions of the room temperature upper comfort limit and the time
period it occurred in with the unit (°Ch). Results from the simulations
showed thermal comfort violations of 16.6°Ch for the entire year. For
the extreme temperature investigation, the air temperatures around
the module can be seen in Fig. , with the modeled PCM temperature,
the ambient air temperature and the resulting supply air
temperature. This period resulted in total thermal comfort violation
of 94°Ch. This suggests that the system is highly sensitive to the am-
bient environment, which needs to be further considered in the final
design phases of the module.

To evaluate the energy use of the proposed solution, the energy
consumption from the fans and the added pressure drops in the
PCM module are considered. The energy consumption for a year was
compared to that of a DX technology. The DX system is assumed to
have a pressure drop of 15 Pa and an average coefficient of
performance of 2 over the entire year. The comparison can be seen
in Fig. . A substantial saving in the electricity consumption is
achieved with the PCM solution with a consumption of 109 kWh
where the DX system consumes 220 kWh of electricity on an annual
basis.

Expected results

The developed model is planned to be used as a basis for detailed
design analysis and actual production of the proposed PCM cooling
unit, allowing the assessment of important design and operational
parameters along with control strategies. Investigations of demand
response is expected to show an advantage of this technology
compared to conventional cooling technologies. Parametric analysis
of design parameters for the module and of control set points for
the control of the module is expected to yield optimal conditions
and increase the performance of the system both in terms of
efficient utilization of resources and the archived thermal comfort.
The technology is a contender for the DX-based cooling technologies
that are in use currently. It is expected that the PCM based cooling
concept will allow for more efficient operation than the DX solutions,
but that the PCM technology will not be able to maintain as high
level of thermal comfort at all times as the DX-based solutions.
Conclusion and Discussion

The development of a cooling concept utilizing a PCM module
for comfort cooling is described. The boundary conditions are
found to be crucial for the thermal comfort of the considered
room, resulting in substantial comfort violations during periods of
high ambient temperatures. This issue can be counteracted by
using a PCM with a higher melting temperature resulting in
better performance during extreme conditions but worse
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performance in normal operation conditions. The result is a
tradeoff between a reduction in the maximum thermal comfort
violation and better average thermal comfort. More PCM mass
could also be employed to increase the usage time of the PCM

unit. However, this will

increase the investment costs of the

module and lower its overall cooling yield/kg of PCM. Substantial
energy savings are found with the PCM based solution in
comparison with the conventional solution. Part of these savings

are due to

the PCM based solution lacking the same

performance as the conventional technology and it is therefore

possible that the benefit
overstated when

in the current configuration are
considering the consumption pr. energy

delivered. Future work will investigate the performance under
different climate zones where it is expected that hotter climates

in

Southern Europe, the middle east or Asia will prove more

fruitful for the proposed solution and will yield an increased
efficiency due to a higher cooling demand.
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Summary: The utilization of demand-side flexibility is vital in future
energy systems where the supply-side relies on renewable energy
sources. In this transition, it is widely recognized that the building
sector will hold a key role in providing demand-side flexibility, being
currently responsible for 40% of total energy consumption in the EU.
To provide this flexibility, advanced building control must be made
more accessible considering that most buildings today still use inflex-
ible rule-based control. Currently, implementation of advanced build-
ing control is associated with cumbersome and time-consuming
manual work which requires expert knowledge. In this work, a data-
driven and autonomous approach is therefore proposed, in the form
of three general project objectives, to overcome these barriers.
Namely, building energy modelling and performance data monitor-
ing and evaluation algorithms will be identified to support energy
flexibility identification and quantification. Subsequently, an auto-
mated building flexibility methodology will be developed to form
the basis for energy operational optimization. Finally, this method-
ology will be implemented and tested in case studies to assess the
impact on the energy system operation.

Page 20 of 39

Keywords: Demand-side, Flexibility, Optimization, Building, Auto-
mated, Data-driven, Machine-learning

Motivation

The increasing integration of renewable energy sources (RES) is a
necessary step towards low emission energy systems. However,
energy systems with a production portfolio comprised majorly of RES
such as wind or solar power provide considerably less flexibility on
the supply-side compared to traditional production units such as
coal-fired plants. In parallel to this transition of the supply-side, the
demand-side is also seeing extensive electrification with e.g. electric
vehicles and heat pumps. Therefore, with the expected increase in
electricity consumption and decrease in supply-side flexibility, future
energy systems are expected to face considerable challenges balan-
cing production and demand. While extensive research efforts have
been performed on the supply-side for optimal operation and alloca-
tion of resources, it has for many years been under the assumption
of an inflexible demand. Therefore, there is currently an unexploited
flexibility potential on the demand-side, especially within the build-
ing sector, which is vital to utilize to deal with the before-mentioned
system-balancing challenges. In recent years, much attention has
already been put on the building sector by the EU, acknowledging
the high potentials for cost-effective energy savings Eurl18lg. It has
been estimated that buildings are responsible for 40% of energy use
in the EU MJr17lg with electricity accounting for over 48% of the
total energy consumption KOA16lg. With such a large share of the
total energy use, it is thus essential to consider buildings as one of
the major sources of flexibility in future energy systems KOA16lg.
Related literature and theories

Demand-side flexibility can be directly related to the portion of
demand in the energy system that can be reduced, increased, or
shifted within a specific duration. In a recent report [4], demands-
side flexibility was further divided into two categories; explicit and
implicit demand-side flexibility. Explicit demand-side flexibility re-
flects dispatchable energy managed by aggregators acting on the
wholesale, balancing, and reserves markets. Implicit demand-side
flexibility, on the other hand, is related to the change in energy con-
sumption based on price signals. One of the widely implemented ap-
proaches dealing with these concepts is Demand Response (DR). A
commonly used technique within DR is load shifting where the con-
sumers willingly shift their consumption away from peak consump-
tion hours and/or towards peak production hours, with some form of
monetary compensation Nik17lg. The benefit of load shifting is that
the net final consumption is unchanged and that no energy storage
conversion losses are introduced Pet15lg. Contrary, it is completely
dependent on the consumers’ willingness to shift their demand,
which is one of the major barriers to broadly adopt this concept
Nik17lg. Therefore, a major part of current research targets the use
of energy storage, where the disruption of the consumer consump-
tion habits is avoided at the cost of storage conversion losses. In the
report Examples of Energy Flexibility in Buildings, developed as part of
the Annex 67 initiative, the sources of flexibility were identified ma-
jorly as energy storage approaches. Among the cases studied the
thermal mass of the constructions was considered in 66% of the
cases, thermal storage in 34%, battery storage in 29%, and fuel
switch in 6% Int19lg. For buildings, these numbers give a good indi-
cation of where the flexibility potential currently is believed to be
found. As indicated by these numbers, the use of the thermal mass
in constructions is a popular approach, as there are no investment or
operational costs associated with this source of flexibility, all other
things being equal. The method works by storing energy in the en-
velope of the building by manipulating the indoor temperature as il-
lustrated in Fig. 8.

In Fig. 8 the setpoint of a building is controlled according to a
simple rule-based controller with two price thresholds determin-
ing three different temperature setpoints. As seen from the fig-
ure, the setpoint is decreased when the electricity price is higher
than the high price limit and increased when the electricity price
is lower than the low price limit, while it is kept constant in-
between. Although this type of control is very simple to imple-
ment and has demonstrated flexibility benefits compared to a
constant setpoint controller Hic18lg, it doesn’t take into account
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the operational costs of the building. Ensuring that complex and
often highly non-linear building systems are controlled reliably
and effectively, considering both price and CO2 signals, poses
significant requirements to the control algorithmThi19lg. Recently,
Model Predictive Control (MPC) has been demonstrated to be a
promising candidate for this purpose. This control method is
based on a repeated optimization scheme for a given time hori-
zon, where only the first part of the solution is implemented in
the operation strategy for each time step. Contrary to rule-based
control, MPC is thus able to account for future system states as a
consequence of current control actions using a model of the sys-
tem and typically weather and price forecasts. Though MPC has
shown significant cost and efficiency improvements in both simu-
lation environments and real case studies Chr20lgmDat, it has
not been adopted widely in commercial applications due to sig-
nificant hardware, software, and technical knowledge require-
ments Janlg. This problem was also encountered in a recent case
study, which found that employing MPC in a Swiss office building
resulted in higher total costs than the operational savings gained
compared to a traditional controller Dav16lg. Because of this,
most energy service controllers are currently rule-based Datlg, al-
though it is expected that model-based methods such as MPC
will be utilized to a much larger extent in the future Int19lg.
Therefore, to quantify and utilize the available demand-side flexi-
bility, there is a need for making advanced building control more
accessible in both residential and commercial applications.
Currently, one of the major barriers, to implementing model-based
control, is the expensive and labour-intensive task of manually creat-
ing and calibrating an accurate building energy model. Additionally,
the model complexity must be constrained to allow for operational
optimization, which typically has been handled by using model re-
duction techniques to reduce the order of the model Col13lg. How-
ever, this adds additional work to the model development. In the
context of holistic modelling of energy systems, Reynolds et al.
Rey18lg reviewed white, grey, and black box energy modelling tech-
niques for conversion technologies, forecasting, and buildings. In the
study, it was concluded that for real-time optimization purposes,
white box modelling is not ideal, being computationally very expen-
sive. The paper instead recommended data-driven, grey, or black-box
models claiming that especially machine learning methods perform
very well concerning the important trade-off between computational
complexity and prediction accuracy. Additional advantages for data-
driven modelling are discussed in Fra18lg; firstly, data-driven models
are scalable, which means that the same model structure and model
development methodology could be applied to similar systems. This
means that no assumptions or approximations must be made expli-
citly by the modeler, which might make it possible to develop a
methodology allowing for effective and automated model develop-
ment and optimization. In addition, such models are flexible and
adaptable, allowing implementation in various applications and
building types with minimal manual work or modifications intro-
duced. In this regard, the success of this modelling approach is com-
pletely dependent on both the availability and quality of data, but
not as dependent on the domain-specific knowledge and skill of the
modeler, as for first-principles modelling.

Using data-driven techniques for automation is not a novel idea, but
has been a popular research topic in the industry with the concept
of Industry 4.0 Dje19lg. In recent years, the concept of a Digital Twin
(DT) has also emerged with successful implementations in sectors
such as manufacturing and production Fei19lg. In the energy build-
ing sector, it is still in its early stages and there is still no consensus
on a specific definition of DTs among researchers. However, a DT is
generally understood as a digital representation of a system that
continuously adapts to the real system through the use of data col-
lected on-site Raf20lg. According to Fei19lg, a DT can thus be divided
into three main components; the actual system, the digital represen-
tation, and the data flow linking these two components together.
Even though data-driven modelling and control have shown promis-
ing results in the past years, there are still critical questions left un-
answered as presented in Datlg, a review on data-driven predictive
control in buildings. Firstly, it is not yet well understood which data
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sets and features are relevant for data-driven building energy model-
ling and how the selection of these differ, considering different types
of buildings. Hence, it is also not well known under which conditions
data-driven modelling and control methods scale to different build-
ing types and how the quality and quantity of data affect the per-
formance of data-driven approaches. This is required to understand
relevant use-cases and requirements for sensory placements in the
buildings. Finally, data-driven black-box models such as Neural Net-
works, Support Vector Machines, etc. usually are highly non-linear
models, which makes them hard to implement in model-based con-
trol schemes such as MPC, due to the often non-convex solution
space. Although several studies have demonstrated successful imple-
mentations [20, 21, 22, 23], there is still no consensus on an ap-
proach that generalizes across multiple types of buildings and
datasets. Therefore, further research must be conducted to find how
the developed data-driven models can be used for operational
optimization in buildings.

Project objectives

Based on the aforementioned potential of data-driven methods, this
research proposal will seek to accomplish the following objectives:

3. Identification of building energy modelling and performance
data monitoring and evaluation algorithms to support energy
flexibility identification and quantification within a holistic DT
environment.

4. Design and development of an automated building flexibility
methodology to form the basis for energy operational
optimization.

5. Implementation of the automated methodology in multiple case
studies to assess the impact on the energy system operation.

Methodology

In objective 1, the use of machine-learning and statistical
methods will have a major role in modelling specific components
or to create whole building energy models as an attempt to
automatize the modelling phase. The identified methods will be
tested in both simulation environments as well as in real case
studies where conditions will be established, for the type of sys-
tems as well as the quality and the amount of data for which
the data-driven modelling methods can be successfully imple-
mented. Here, an important judgment condition for the model
performance is the generalizability and robustness of the data-
driven models, i.e. how well it performs outside the range of op-
erating conditions upon which the model was trained. Using the
data-driven methods identified in objective 1, an automated
methodology is developed in objective 2. Here, the methodology
will define applicable data-driven methods along with necessary
model inputs, data quality, and quantity for different building sys-
tem components or whole building models. The methodology
will make it possible to construct an algorithm, which can
automatize a major part of the model development phase. It is
furthermore investigated how these data-driven models can be
implemented in operational optimization. Objective 3 will be
completed in cooperation with the industry through a series of
case studies in the form of buildings or clusters of buildings.
Hence, the validity of the developed automated methodology will
be demonstrated and tested in real-life applications.

Expected results

During the project, it is not expected that the identified data-driven
models will necessarily outperform more traditional and well-calibrated
white-box models in terms of prediction accuracy. However, the goal is
that the developed methodology will contribute with a more autono-
mous and flexible building energy modelling than traditional modelling
approaches, which fits well within a dynamic DT environment. Coupling
the developed models with model-based control such as MPC, many of
the existing barriers discussed in this work, which prohibit the
utilization of building demand-side flexibility, will be removed.
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Summary: Due to the continuous integration of fluctuating
renewable energy sources in the energy system, the security of
supply is challenged. For stability and security of supply in the future
energy system, it is necessary to integrate consumers through
demand response. Industrial consumers have been identified as a
group of consumers with significant energy flexibility potentials.
However, industries hesitate to adopt energy flexibility measures due
to uncertainties concerning product quality and the overall impact
on production flow. This paper presents the ongoing research in
developing a digital twin framework for risk mitigation in the
production flow by bridging the gap between risk mitigation and
demand response participation. As a result, the research provides a
novel approach for production flow risk assessment and energy-
aware production strategies. Using agent-based modeling as a foun-
dation, a digital twin framework provides a robust industrial produc-
tion solution. The digital twin components have been identified
using agent-based modeling abstractions that govern production
flow, including process, environment, product, batch, planning,
conveyor, and transportation. The framework has successfully been
applied across several industries for evaluating energy flexibility po-
tentials while focusing on production constraints.

Keywords: Industry 4.0, Digital Twin, Energy Flexibility, Production
Process, Agent-based modeling
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Motivation

The increasing renewable energy resources in the energy system
create challenges in the electricity grids, e.g, security of supply and
balancing the production and demand side [1]. An established
method for balancing the electricity grid is consumers' active use of
dispatchable loads through demand response (DR) programs [2]. The
International Energy Agency (IEA) recommendations to increase the
DR utilization prioritize large loads that are easy to manage and
continuously evaluating the potential for new demand-side flexibility
services [3]. A sector with significant loads is the industrial sector ac-
counting for 37 % of the total final energy use in 2018 [4].

Hence, there is an interest in utilizing the industrial loads intelligently
to coincide with the energy system's need for stability [5]. Especially,
many countries, e.g, Denmark, have been promoting DR via
electricity markets [6]. However, compared to the energy flexibility in
buildings, industries have more barriers and constraints to adopt DR
[7, 8. A study by [9] shows that 83 % of the industries have
expressed concerns regarding the interruption of production, 78 %
have been concerned about the impact on product quality, and a
smaller proportion of industries also reported concerns about
comfort and lack of business cases.

A digital twin (DT) is defined as "a digital representation of a real-
world entity or system. The implementation of a digital twin is an en-
capsulated software object or model that mirrors a unique physical
object, process, organization, person or other abstraction” [10]. DTs
allow users to reflect the current system operation and perform sce-
nario testing on production policies to predict future expected sys-
tem states [11]. Therefore, DTs potentially bridge the gap between
industrial hesitance to adopt DR solutions due to the unforeseen im-
pact on the production flow and the need for flexible assets in the
evolving energy system. However, little literature has focused on the
digital twins for the entire production processes.

Furthermore, although some studies have focused on energy
flexibility in the industrial processes, e.g, cement production [12] and
water supply [13], the literature has only focused on the implicit DR
with hourly electricity prices and financial gains or CO2 reduction
[14]. Industrial processes and product quality have not yet been well
investigated.

Research aim

Therefore, this Ph.D. research aims to develop a digital twin
framework for industrial production processes that can accurately
depict the effects of factors influencing the production flows and
quantify the potentials for energy efficiency and demand response
participation. The framework is expected to provide a generic
approach that can be used in varying spatial and temporal
production systems. Through Al and loT, the DT can be fed with
historical and real-time data that allows testing varying production
strategies with minimal risk to the products. Hence, the DT enables
the facility to integrate energy flexibility measures while also ac-
counting for product quality and flow. The DT is created to incorpor-
ate specified external data flows, i.e., electricity prices, CO, emissions,
and weather forecasts. Based on the current findings, several key
framework components have been identified. Using a product-
centric approach ensuring that the quality is not compromised.

The novelty of the presented research is the combination of 14.0 and
Big data analytics for developing a digital twin framework that
includes energy system considerations and reflects the effects of
energy flexibility measures. The framework can be leveraged for
optimizing production flow under energy system constraints that can
enable the facilities to minimize environmental impacts while
maintaining the performance of the productions.

Related literature

A scoping review is conducted in this Ph.D. research to exam the
potential for industrial energy flexibility evaluation reviewed the
current trends in assessing industrial processes' flexibility potentials.
The results show that the majority of existing studies have focused
on a single process and used optimization as a means of matching a
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production strategy with the state of the electricity market [15].
Focusing on a single process is stated to be a concern as decisions
regarding energy flexibility may propagate to other parts of the
system. Hence, the entirety of the production flow needs to be
included. To enable mirroring the actual facility operation, simulation
becomes an increasingly viable solution. A study by [16] compares
optimization and simulation for flexible energy production, and
shows that simulation could provide optimal results 80 % of the time
compared to optimization while having significantly lower
computation time. The acceptance rate of simulation is shown
higher than optimization due to the ability to perform a visual
inspection [16].

To develop a DT framework for production flows that can accurately
predict production time and expected completion, it is essential to
integrate product state and quality with the production process. An
example is shown in the study of [17] that uses a multi-agent-based
simulation to examine implicit DR participation's potentials using in-
dustrial brewery fermentation tanks. The study shows the DR poten-
tials within the brewery process while still adhering to the product-
specific quality restraints. As an initial development of a greenhouse
DT, a data architecture is proposed for collecting critical information
exchange in a Smart Industry Architecture Model [11]. The possibil-
ities of creating a self-configuring DT that enables the solution's
adaptability and versatility [18].

This research project targets the needs of realistic industrial
implementations  supported by increased interdisciplinary
collaboration stated in the scoping review and utilizes the
simulation's benefits stated in [16]. The developed DT follows the
principles outlined in [18] to further contribute to the framework
capabilities and increase the solution's robustness.

Methodology

The DT framework includes the modeling methods of agent-based
modeling, discrete event simulation, and system dynamics. The simu-
lations are developed by using software called AnyLogic which al-
lows multimethod modeling. The main methods applied in the PhD
research are:

Agent-based modeling: The DT framework is built based on a multi-
agent system (MAS) approach. Agent-based modeling (ABM) focuses
on the behaviors of individual agents in a system [19]. An agent re-
fers to an entity that adapts to its internal and external environment
by a given objective [20]. Therefore, the MAS's behavior becomes a
result of the combined individual agent behaviors, which are known
as emergent phenomena [21, 22]. Furthermore, ABM can ease the
manipulation of agent population sizes to fit specific use cases [19].
Discrete event simulation: can represent a discrete sequence of events
in mutually exclusive intervals [23]. Discrete event simulation follows
a stochastic behavior in which randomness is introduced through
statistical distributions; furthermore, state changes occur at irregular
discrete time steps [24]. Discrete event simulation is suitable for
applications that follow a sequence of operations commonly
observed in production facilities and logistics [25]. In this project, the
discrete event simulation is used within specific agents with
deterministic behavior, i.e., production flows.

System dynamics: follow a deterministic behavior in which state
changes occur in continuous equally spaced discrete time steps [24].
System dynamics allows qualitative data to be considered and is
often used to model the internal behavior patterns that arise from
the interaction of subsystems [26]. In this project, system dynamics
are used to represent agents that experience changes observed in
regular time steps, e.g., temperature.

Big data analytics: an essential part of transforming the developed
simulation model into a digital twin is through the use of big data
analytics. Big data analytics stem from the continuous flow of data
found in 14.0 facilities, which provides an opportunity to capture
complex system dynamics and enable data-driven decision-making
[27]. The application of Big data analytics can be classified as descrip-
tive, predictive, and prescriptive depending on the technique used for
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the data analysis [28]. In a true digital twin that mirrors the actual pro-
duction, the simulation model can be used as a testbed for running
what-if scenarios and testing policies. This allows checking specific
modes of operation with minimum risk to the actual production flow.
In this project, the DT framework is developed to integrate
information from other systems and DTs through a horizontal
integration approach. By incorporating multiple DTs into one, the
specific facility's combined operation is represented, and the
potential changes to one part of the system can be reflected in other
parts of the system through the data exchange [11, 29]. Hazelcast
(an in-memory computing platform) has been identified as a viable
solution for DT integration, providing a distributed data structure for
exchanging information across clients. Furthermore, in-memory com-
puting offered by Hazelcast is significantly faster compared to stream
processing [30].

To validate and ensure the adaptability of the framework, the
framework will be tested on several distinct types of production
processes including an industrial cooling process, brewery, and several
industrial greenhouses. To validate the framework, the developed
digital twins will be compared with the physical twins to ensure that
this is accurately depicted before performing further testing and
optimization. The verification of the digital twins will furthermore be
evaluated in terms of accurately demonstrating and predicting the
consequences within the model due to changes in the physical twins,
i.e. if a change is performed within the digital twin and subsequently
performed in the real production, are the two outcomes similar.
Expected results

The DT framework developed in this Ph.D. research project includes
the following agents (shown in Table 1), and the agents can be viewed
as abstractions that can be created based on the given input
parameters, e.g, processing time, dimensions, quality requirements,
etc. Meanwhile, agent communications according to the given rules
(shown in Table 2).

The framework with related agents and agent communication is
illustrated in Figure 1. The framework provides standardized building
blocks that may be combined in numerous ways to reflect the
chosen production process. Figure 1 shows that the central core
component within the framework is the product that travels through
the production steps. Multiple individual products can be collected
in a batch that holds logistical information for the products. The
products are placed in processes, conveyors, etc., which are placed
within an environment. The resources are placed on the top level as
the different environments and processes may share the available
resources. The framework should be considered a preliminary setup
as it will possibly change throughout the research described.

The research results are expected to enable industrial production
facilities to transition efficiently into DT wuse for production
optimization through the developed framework. Using the
developed DT framework approach, the DT solution can be easily
adapted to fit the specific facilities' varying layouts and parameters.
The framework has been applied in industrial greenhouse
production, a cooling house facility, and a brewery to validate the
framework's adaptability. An example of the greenhouse production
facility is shown in Fig. and Figure 3.

Summary

This paper presents the ongoing PhD research in developing a
framework for developing industrial production process digital twins.
The PhD research project was initiated during 2020 and will be
conducted until 2023. In the current state of the research, an initial
framework is being built for industrial greenhouse production
facilities. Once the greenhouse production framework has been
completed, the concepts applicable across various types of
production facilities will be collected in a generalized digital twin
framework for industrial production processes. Subsequently, the
framework will be tested on other production facilities, which will
validate the adaptability of the framework. In this stage, the
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framework may be extended to include additional required
functionality found in the other production facilities. Conclusively,
this will result in a framework for developing digital twins in
production facilities.
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Table 1 (Abstract P9). Agent list in the digital twin framework for
industrial production processes

Agent

Process Agent

Environment
Agent

Product Agent

Batch Agent

Conveyor Agent

Transportation
Agent

Ressource
Agent

Planning Agent

Description

is a representation of a generic production process with an

arbitrary production time. The process agent holds a specific
number of product agents, corresponding to the maximum

number of products that the specific process can contain.

contains the environmental production parameters for a given
part of the system. The environment is an essential agent for
assessing the relationships between the production
environment and the product qualities. In a specific production
facility, individual parts of the system can provide various
production parameters to the environment agent through loT
devices. The production environment is typically controlled
through a controller which adheres to specific setpoints. The
environment's behavior can be influenced by processes,
products, and resources which it contains.

is the central object moving through the production facility's
pre-defined production stages. The product is affected by the
production environment and the process agents. The product's
quality is monitored throughout the production flow to ensure
that it is kept within the specified restrictions.

is highly related to the product agents but functions as a
collective reference point for all product agents within the
same batch. A batch may hence be constituted of multiple
product agents that adhere to the same logistical parameters.
Hence, within the batch agent, information such as product
deadline, customer, price, etc, is stored.

moves the agents within the facility. The conveyors are used
within production systems to move the products between
processes. The conveyor works autonomously and requires no
resource to function. The conveyor agent can function either as
an accumulating type or a fixed distance type depending on
the specific conveyor used.

is similar to the conveyor agent but is governed by a resource
need to function. Hence, the transportation agent requires an
available resource to be active, e.g, a forklift needs an operator
to work.

represents the resources required to operate the facility. Parts of
a facility may be automated and operated independently of
available resources, whereas other processes require available
resources to function. Personel is an example of a resource
agent required to operate specific machinery or, e.g, operate a
forklift. Parts of the production flow may hence be limited to
resource availability.

is the central control unit that determines the movement of
products and the facility's operation. In practice, the planning
agent can be integrated with the facility's internal signals and is
thereby a connection placeholder. However, the planning agent
was constructed to allow for scenario testing in which the
operation of the DT is decoupled from the actual operation.
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Table 2 (Abstract P9). Agent communication in the digital twin

Ressource Agent

framework for industrial production processes
Related agents Their primary communication *
Environment Agent 1
Product and process agents  Generally, the framework recognizes that a product AT b N, T

should pass through a number of production d%%
processes to be completed. Once the product has FreductAgeat *@ @ $ -
completed a process, it is transferred. The products o

will transfer to the next production step through a
conveyor or other means of transportation between

S
ROARY;
KOSV

&
=Y

the processes. . [ ion Agent /' Y\
Product and conveyor/ To transfer the products within the production, the Batch Agent t i
transportation agents products will be moved by either conveyor or

transport. The conveyor may hold multiple product @ ProductAgent || Batch Agent e

agents at the same time. Unless otherwise p Agent

specified, the movement will adhere to FIFO. I:l ProcmAgan | Taviase Aren
Product and batch agents Al product agents within the production are Fig. 10 (Abstract P9). Industrial Production Process Digital

assigned a batch. The batch holds logistical Twin Overview.

information that governs the start date, deadline,
etc. The batch can, in some sense, be considered a
parent class from which the products inherit
logistical information. The relationship is a one-to-
many in which a batch can hold multiple product
agents, but a product agent can only respond to
one batch agent.

Process and environment Within the framework, the product, process,

agents transportation, and conveyor agents are all
associated with a local environment. The
relationship follows a one-to-many principle in 5 5
which an environment can hold multiple of the Stocksalés Area
previously mentioned agents. However, each of the E
agents can only respond to one environment. The
features of the environment may vary based on the
case, but examples of environment features include
temperature, light levels, carbon dioxide concentra-
tions etc. Furthermore, the environment agent
holds the possibility for external data integration
through, e.g., loT sensors, which allow real-time
monitoring of the specific environment.

Resource and other agents A resource is considered any entity required to act.
Furthermore, the individual resource units can be
assigned varying parameters related to specific task
availability. This allows differentiating the resource
population and having multiple resource
populations within the DT. E.g. a specific task
within a production facility may require personnel
with specific knowledge, certification, etc, to
perform. This can be captured through the different
populations. Tasks will be assigned based on user
input as the tasks required within specific facilities
can vary greatly. The tasks can be created to use
specific resource units and a specified number of
resource units.

Planning and other agents  The planning agent is the central operational
component from which several decisions are taken.
The planning agent monitors the current state and
number of products staying in the processes,
conveyors, and transportation agents and chooses
when and where to move the product agents. The
planning agent refers to the batches associated
with the products To determine if the products
within the batch are on schedule or delayed. The
planning agent is also the external communication
point from which information within the DT is
communicated to existing control systems, EPR, etc. L Fig. 11 (Abstract P9). 3D greenhouse production flow simulation
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Summary: Faults and anomalies in buildings are among the main
causes of occupant discomforts or energy inefficiencies. Therefore,
early fault and anomaly detection are important for improving
buildings operation. A statistical process monitoring measure for
room-level condition monitoring of the building is proposed in this
paper. The proposed measure uses multivariate statistics to detect
faults and anomalies and therefore helps to improve the perform-
ance of the smart buildings. This method firstly employs principal
component analysis for dimensionality reduction. After the projection
of the observations into a principal component subspace, the
method uses Hotelling’s T squared statistics to detect deviations in
the principal component subspace. The approach has been tested
on the real building which is located in Odense, Denmark and the re-
sults are presented. The results have shown that the method could
detect faults and anomalies successfully without requiring sophisti-
cated and computationally expensive training. The method is scal-
able, adjustable, and implementation-wise simple. Therefore, it is
potentially suitable for wide adoption in practice.

Keywords: Fault detection, anomaly detection, building operation,
PCA, statistical process monitoring

Introduction

The building sector consumes 40 per cent of the total energy
consumption worldwide and contributes to an average of 30 per
cent of global carbon emissions [1]. Energy-related CO2 emissions
from buildings have increased over the last few years after being flat-
tened from 2013 to 2016. In 2019, the emissions have reached a new
record of 10 Gt CO, [2]. Hence, the urgent need to reduce CO2 emis-
sions from buildings is a large market opportunity, but it also pre-
sents many barriers [3].

Buildings are part of complex ecosystems where the primary uses of
the buildings are more important than their energy use. This is for
instance the case for commercial buildings like retail stores [4] and
hospitals [5]. In the past, commercial and public buildings only had
manual lighting switches in each room and a centralized air
conditioning (HVAC) system operating with fixed schedules.
However, in the last decade, the complexity of buildings has
increased enormously. Modern buildings are becoming smart
buildings with automatically and centrally managed building
management systems (BMS), which controls all building subsystems
such as lighting, heating, ventilation, and air conditioning (HVAC).
The current state of the building is recorded through a complex
network of sensors and meters, which measure indoor conditions
such as temperature and air quality, and operating quantities such as
ventilation rate, light intensity level, heating, and cooling signals.
Managing building energy consumption and sustaining an ideal
indoor climate for occupants require extensive monitoring and
sensing mechanisms within the building compound and outdoor [6].
This is to ensure that accurate information can be obtained on the
overall energy consumption and its indoor climate.

Every single component of every building subsystem is subject to
wearing, misconfiguration, and, in general, faults. A fault is any
instance of a component that does not perform its task as expected.
Isermann defines a fault as ‘an unpermitted deviation of at least one
characteristic property of a variable from acceptable behavior.
Therefore, the fault is a state that may lead to a malfunction or
failure of the system’ [7]. Examples of faults are a stuck sensor that
returns constant readings regardless of the actual measurement or a
noisy sensor that returns inaccurate readings.

Faults impact building operations in two different, but not
necessarily distinct, ways. They may cause occupants discomfort or
energy waste. Occupancy discomfort happens when the building’s
operation is degraded such that the indoor conditions are no longer
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within the acceptable range for human's comfortable conditions. A
broken heating system during winter, for example, could cause the
indoor temperature to fall below 15 ‘C. Energy waste, on the other
hand, happens when the system consumes more energy than it
should according to its design. An example is the simultaneous
heating and cooling of space. The two aspects often oppose each
other, i.e. a fault causes either occupant discomfort or energy waste,
but sometimes a fault results in both. E.g. broken lights, while
causing discomfort, actually result in energy savings. Similarly,
insufficient insulation does not affect occupants, if the increased
heating results in appropriate indoor temperature.

On the other hand, a setpoint wrongly set to 10 'C during the
summer has the double effect of making a room extremely
uncomfortable, and of unnecessarily increasing cooling. Faults
causing occupants' discomfort are usually easily detectable, at least
because occupants would complain to the building management.
Faults causing energy waste, on the other hand, are more subtle and
difficult to detect. If no system is set up to monitor a building and
no maintenance operation is scheduled, faults can go unnoticed for
a very long time. For this reason, most research about faults is done
in the context of energy waste [89]. To reduce the occupants'
discomfort and complaints, as well as to save energy and to prevent
total system failure, it is important to detect faults and anomalies as
early as possible.

The so-called fault detection and diagnosis (FDD) methods for build-
ings have been reviewed in [10, 11,12,13]. In general, the methods
are divided into process-history-based, quantitative-model-based,
and qualitative-model-based methods, and are further divided ac-
cording to the specific technique. Each of these families of methods
has different advantages, disadvantages, and trade-offs, as well as
implementation constraints and caveats. The performance of the
model-based methods relies on the accuracy of the model. However,
accurate building modelling is laborious. Therefore, model-based
FDD methods such as [14,15,16] are hardly scalable. The process-
history-based or data-driven FDD methods have shown great poten-
tials [17]. However, they rely on data and their performance is com-
promised if the training data set is not of sufficient quality [18]. It is
therefore important that the data which is used in the FDD design
process of such methods being validated [19].

A data-driven measure for room-level condition monitoring of the
building is proposed in this paper. The proposed measure uses multi-
variate statistics to detect faults and anomalies at room level in smart
buildings. This method firstly employs principal component analysis
to project the observations into a principal component subspace and
uses Hotelling's T? statistics to detect deviations in principal compo-
nent subspace. The approach has been tested on a real building in
Denmark. The results have shown that the method could detect
faults and anomalies successfully. The method is scalable, adjustable,
and, implementation-wise, simple. Therefore, it is potentially suitable
for wide adoption in practice.

In the remainder of the paper, we first review T°> multivariate
statistics which is used in this paper. Then a PCA-based condition in-
dicator is proposed along with appropriate thresholds for the 7 sta-
tistics in terms of the level of significance. Afterwards, the case study
building is described and the results of anomaly and fault detection
are presented and discussed. The last section concludes the paper.
Hotelling’s 7> multivariate statistics

As opposed to univariate statistics, Hotelling’s T° multivariate
statistics take into account the correlations between the variables.
This feature makes it suitable in applications within fault detection
and diagnosis [20,21]. In the following, we briefly describe Hotelling's
T2 multivariate statistics.

Let the data be presented in a matrix ¥ e R"*™ with the following
structure:

Vi Y2 o Vi
v — ‘//:21 ‘//:22 W?m (1)
Yo Vw2 o Yum
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where ¢; is associated with the i'th observation of the j'th
observation variable.

The sample covariance matrix of the given data set (1) is obtained
as:

1
Seor = —=¥TY¥ 2
cov ﬂ—1 ( )
Eigenvalue decomposition of the sample covariance matrix Sco,
results in:

Seov = WAWT (3)

This divulges the correlation structure for the covariance matrix,
where A is a diagonal matrix and W is orthogonal.
The Hotelling’s T> multivariate statistics is defined as:

72 =(T¢ (4)
where
(: A_1/2WT(// (5)

and ¢ is an observation vector.

In this section, a condition indicator is presented which uses PCA for
condition monitoring. PCA projects the data into lower-dimensional
space and produces representations of the data which better
generalize to data independent of the training set compared with
using the total dimensionality of the observation space. This inspires
the use of PCA in this method.

Let our training data be presented in a matrix form described in (1).
The so-called loading vectors we R” are needed to be obtained by
solving the stationary points of the following optimization:

wi vy
wlw

(6)

This optimization can be solved by Singular Value Decomposition
(SVD):

maxywz:o

1
vn—=1

The loading vectors w are the orthonormal column vectors of W. The
loading matrix P is constructed by stacking the first r columns of W.
The loading matrix enables to project the observation vectors ¢y € R™
into lower dimensional space of the so-called scores te R":

v =usw’ (7)

t=Ply (8)

The condition indicator k, therefore, can be defined as T? statistic for
the lower-dimensional space:

k =y PP Ty = 732 9)

where %, is the leading rx r sub-matrix of X , i. e,, it composed of the
first r rows and columns .

Appropriate thresholds for the condition indicator k based on the
significance level, g, can be obtained from:

r(n=1)(n+1

Ko = % Fy(r,n-r) (10)
where Fy(r,n—r) is the upper 100a % critical points of the F-
distribution with r and n —r degrees of freedom.

The value of the threshold is used to detect faults and anomalies. For
an observation vector from the testing data set, if the value of the
condition indicator is less than the threshold, the data is related to in
control (normal) situation otherwise the observation is associated
with out of control (faulty or abnormal) situation.

ROOM-LEVEL FAULT AND ANOMALY DETECTION

This section is divided into two parts. In the first part, the case study
and the available data are introduced. In the second part, the
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implementation of the method is described and the results are
presented and discussed.

Description of the Case Study and Data

The case study in this work is a room in OU44 building at the
University of Southern Denmark. OU44 building (Figure 1) is a four-
story building which is located on the Odense campus. The floor area
of the building is 8500 m? and is one of the most energy-efficient
buildings in Denmark [22].

The test room which has been selected for this work is a study zone
located on the second floor. We used 30240 samples of minutely
measured data for this study (21 days during the spring period). The
first half of the measured data is used for training and the second
half for testing. The data includes outdoor temperature, global
horizontal solar radiation, indoor temperatures, VAV damper
positions, radiator valve positions, and occupancy counts obtained
by stereo vision cameras. The study zone is 125 m? and is usually
open day and night for student use.

Implementation, Results, and Discussion

To design the PCA-based condition indicator, we first normalize the
training data set which is composed of 15120 samples, and then by
following the method described in the last section, we find the ap-
propriate projection matrix to reduce the dimension to two i. e. r=2
and calculate k. For each observation vector, the value of « indicates
the condition of the room. If the condition indicator k is less than
the threshold, the situation is identified as normal, otherwise, the ab-
normal/faulty situation is detected. The threshold k,=5.9934 which
is obtained according to (10) with r=2, n=15120 and a =0.05.

The results of the implementation of the method are shown in
Figure 2. As it is clear in Figure 2, three main anomalies are identified
successfully. The most significant anomaly is detected for sample
intervals (8900,9950). The main cause for this anomaly is a significant
drop in temperature due to all windows being left open. This is clear
from Figure 3. In addition, within this interval, the radiator was fully
open while the room was unoccupied for almost the whole interval.
The same heating issue exists for the second most significant
anomaly. However, in the last part of the period, the room is quickly
over-occupied with the number of students which are more than the
usual capacity of the room. The third most significant anomaly is due
to the opening of the window. The main reason that it does show as
significant as others are that the room has not been unoccupied and
the room occupancy and the outdoor temperature have increased.
The proposed method has identified the main anomalies and is sim-
ple to implement as it does not require developing building models.
The approach is adjustable to different types of sensors and build-
ings. The method will be improved if it is empowered by an ap-
proach for quantifying the degree of importance and significance of
anomalies. In this case, the facility managers can better prioritize the
anomalies to be addressed for improving the operations and main-
tenance. This is in particular helpful when a building has many rooms
to monitor.

Conclusions

In order to improve the buildings' operation, it is important to detect
faults and anomalies as early as possible. To this end, process
monitoring measures play a key role. A data-driven room-level condi-
tion monitoring measure has been proposed in this paper. The pro-
posed measure only needs reading from sensors to detect faults and
anomalies in smart buildings. This method finds the optimal project
matrix for the projection of the observations to the lower dimension
and uses Hotelling’s T2 statistics to detect deviations in the lower di-
mension subspace. The method has been tested on the real teaching
facility in Denmark and the results have been promising. The method
has shown that it could detect faults and anomalies successfully
without the need for complex and computationally expensive train-
ing. The method is scalable, adjustable, and is easy to deploy. For fu-
ture work, the natural next step would be to improve the method by
integrating an approach for quantifying the degree of importance
and significance of the anomalies.
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Fig. 1 (Abstract P10). Southwest view of the OU44 building located
at the University of Southern Denmark Campus Odense.
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Summary: To achieve national and international climate goals, huge
investments are expected in the transition to a low carbon society.
Due to large investments and high failure rates, avoiding risks
(especially the value chain risk) evaluating the energy flexibility
solutions and their impact on the energy ecosystem is essential. This
PhD research project aims to develop an agent-based simulation
framework for evaluating energy flexibility solutions and adoption
strategies in a given energy ecosystem. The simulation framework
consists of two sub-frameworks. One identifying and implementing
energy flexibility solutions to the agent-based simulation. Another
for identifying and implementing adoption strategies to the agent-
based simulation. To show proof-of-concept of the developed frame-
work, agent-based simulations of a case study are developed based
on the model framework. The case study is an investigation of elec-
tric vehicle charging in a Danish electricity distribution grid. The re-
search project’s outcomes of evaluations and recommendations of
energy flexibility solutions will contribute to the climate goals.
Keywords: energy flexibility solutions, agent-based simulation,
innovation adoption, generic framework

Motivation

Grid balancing becomes more and more challenging due to the
increasing share of non-dispatchable energy production from renew-
able energy resources, e.g., wind and solar [1]. One of the solutions is
to utilize the energy flexibility on the consumption side [2]. New en-
ergy flexibility solutions are introduced to the market to activate the
flexibility potentials, e.g., virtual power plants and distributed energy
resources [3]. However, there are many kinds of solutions, and some
are more efficient but also more complex than others [4]. The failure
rate to launch new products/solutions to the market is still high, and
the energy flexibility solutions usually require large investments [5,
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6]. The market adoption rate is also usually slow and depends on dif-
ferent market segments and business models that companies apply
[6, 71.

Therefore, to avoid the risk (especially the value chain risk) and to
evaluate the impacts of energy flexibility solutions on the energy
ecosystem, this research project aims to develop an agent-based
simulation framework for evaluating energy flexibility solutions and
adoption strategies in a given energy ecosystem.

This research applies agent-based simulation to evaluate energy flexi-
bility solutions, adoption strategies, adoption rate, and business op-
portunities in a given energy ecosystem. The research project
outcomes will support the ambitious climate goals for Denmark [8]
and the Paris Agreement [9] [10]. The developed agent-based simula-
tion framework will also assist the understanding of what-if scenarios,
e.g., how to positively affect the adoption of smart energy solutions
by overcoming the adoption barriers and turning their solutions/in-
novations into adoption triggers [7]. Consumers’ behaviors, including
the adoption rates and adoption speeds and their differences and
similarities in the different energy ecosystems (e.g. USA and
Denmark), are also investigated in the project.

Research Objectives

With a case study of the Danish electricity ecosystem, the research
objectives are:

1. Develop a generic agent-based simulation framework for en-
ergy flexibility solutions in a targeted energy ecosystem

2. Design a generic agent-based simulation framework for adop-
tion strategies of energy flexibility solutions.

3. Evaluate the adoption of energy flexibility solutions’ impacts
on the energy ecosystem

The planned research process to achieve the above research
objectives is illustrated in Fig. . The first objective requires
methodologies for energy flexibility selection and implementation in
agent-based simulation. The development of a methodology for
selecting relevant solutions starts by identifying the energy ecosys-
tem and its CSTEP ecosystem factors [11, 12]. CSTEP factors cover Cli-
mate & environment, Social culture, Technology, Economy & finance,
and Policy & regulation. The next step is to investigate the State-of-
the-Art (SoA) solutions. Last, the SoA solutions are evaluated and se-
lected. The development of a methodology for implementing the so-
lutions into an agent-based simulation starts by selecting the energy
ecosystem and implementing it to the simulation model. Next, the
agent-based model is designed and solutions are implemented. Last,
a generic agent-based simulation framework for algorithm imple-
mentation is developed.

To achieve the second objective, methodologies for adoption
strategy selection and implementation in the agent-based simulation
are required. The methodology of adoption strategy selection is de-
veloped starting by conducting a SoA analysis of adoption strategies
for energy-related solutions. Last, the adoption strategies are evalu-
ated and selected for implementation. The adoption strategy imple-
mentation is developed by designing an agent-based model for
implementing the strategies. Last, a generic agent-based simulation
framework for adoption strategy implementation is developed.

The third and last objective is achieved by identifying the ecosystem
impacts based on simulation results. This is done through the
implementation of energy flexibility solutions and adoption
strategies in the agent-based ecosystem model. The ecosystem for
simulation is represented by a case study providing proof-of-concept
of the developed frameworks. Next, an ecosystem impact indicator
application is developed. Next, hypotheses and scenarios are de-
signed to evaluate the ecosystem impacts. Next, the hypotheses are
tested through scenarios. The results are generated for all scenarios
and the raw results are interpreted through visualization in form of
graphs and relevant figures. Last, the results are analyzed and CSTEP
factor analysis is conducted based on the analyzed results.
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The right-hand side of Fig. represents the three objectives. Their rela-
tions are shown with the arrows that the two first objectives can be
made separately but are both implemented and tested to achieve
the last objective. The same approach is used to describe the rela-
tionship of the small blocks on the left-hand side. The evaluation and
selection of SoA solutions and adoption strategies are related to the
development of the ecosystem impact indicator application. The
same applies to the energy flexibility and adoption strategies imple-
mentation in the agent-based ecosystem model. This block is
dependent on the agent-based modeling design and implementa-
tion of the solutions and adoption strategies.

Related Literature and Theories

The main literature and theories identified to be related to this
research are described in this section. The literature and theories are
mainly in the subjects of energy ecosystem, energy flexibility, energy
flexibility solutions, and innovation adoption.

Energy ecosystem

In this research project, the concept of energy ecosystem is used to
investigate the complex social energy system [12]. The research in
the energy ecosystem has been mainly discussed by the SDU Center
for Energy Informatics, and applied in the fields of energy in
buildings and microgrids, e.g., [1, 13, 14].

According to [15], ‘a targeted ecosystem is a completed business
ecosystem within a defined boundary, with elements of actors, roles,
and interactions, and actors create values and interact with others to
complete value flows'. Therefore, the energy ecosystem in this Ph.D.
research project refers to distribution grid ecosystem including
actors of the Transmission System Operator, Distribution System
Operator (DSO), electricity supplier, and domestic consumers; objects
of the electricity grid, DataHub, EVs, and EV charging boxes; and
including all five interactions of monetary, data, information, and
good/product flows, and intangible interactions between actors and
objects.

Energy flexibility

Energy flexibility is a key element in this research. Energy flexibility
on the demand side means that the energy consumers shift their
consumption from one period to another period that has more
electricity production by renewable energy sources [16]. These
periods are related to the periods where the price is the cheapest
[17]. The prices give the consumers incentives to move its load to
periods with lower prices, hence, helping the grid and achieve an
economic benefit. This is called Demand Response (DR) which is
defined by the European Commission as “voluntary changes in
consumers’ electricity usage patterns - in response to market
signals”.

Energy flexibility solutions

Energy flexibility solutions are in this research considered as
solutions that activate potential flexibility at the consumers. This
could be smart meters together with an hourly price scheme
allowing the consumer to do DR or an algorithm that automatically
utilizes the flexibility to benefit consumers. The term “solution”
covers algorithms/software/service, regulations, and business models.
Innovation adoption

Several innovation diffusion/adoption theories exist, such as
“Diffusion of Innovation Theory” by Rogers 1960, “Inter-
organizational relationship theory” by Clark 1965, “Theory of
Reasoned Action” by Fishbein and Ajzen 1975, etc. This research
currently uses Rogers' innovation diffusion theory [18] to identify
consumers' adoption behaviors and to find the adoption rate of
new energy flexibility solutions, e.g. [19, 20]. According to [18],
the adoption rate is defined as: “the relative speed with which
an innovation is adopted by members of a social system. It is
generally measured as the number of individuals who adopt a
new idea in a specific period, such as a year. So, the rate of
adoption is a numerical indicator of the steepness of the
adoption curve for an innovation.” The adoption curves can be
seen in Fig. . There are many factors have been shown that
influence consumers to adopt energy flexibility [21].
Methodologies

The methodologies used in this research project can be divided into
sub-sections: Scoping review, Agent-based simulation, and case
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studies. The methodologies are what are used to conduct the re-
search and to achieve the expected results.

Scoping review

The scoping review methodology is used to identify the SoA
solutions both in energy flexibility solutions and adoption strategies.
Based on the scoping review result and CSTEP ecosystem factor
analysis, this project also develops a methodology to evaluate and
select the SoA solutions and adoption strategies that match the
needs and criteria of a targeted energy ecosystem, e.g., [22].
Agent-based simulation and modeling

This research uses agent-based simulation as the main method for
developing, testing, and validating the model framework. Agent-
based simulation is a relatively new method to simulate real-life sys-
tems compared to system dynamics and discrete event modeling.
The increased use of agent-based simulation happens due to the de-
sire to get deeper insights into simulated systems. Furthermore, the
growth in CPU power has influenced the increase as agent-based
models demand high CPU power capacity. Agents can represent
many different things in an agent-based model such as energy mar-
ket stakeholders which represents agents in this research [23].

An agent-based simulation is an artificial intelligence method that al-
lows software agents to behave close to real-life entities. Agents op-
erate in an environment and behave and react to different external
events. This behavioral knowledge is fed into the agent logic through
data (e.g. historical data for how an agent reacts to specific changes
in the environment) [24]. The software used for the agent-based
simulation is called AnylLogic and is a unique simulation software
tool that supports system dynamics, discrete event, and agent-based
modeling as simulation modeling methods [23].

In this research project, agents represent actors in an energy
ecosystem such as a DSO [15]. The agent-based simulation method
makes it possible to study the collective behaviors of agents [25].
Hence, identifying emergent behavior and interference. Emergent
behavior is behavior that arises out of the interactions between parts
of a system. This behavior cannot easily be predicted or extrapolated
from the behavior of those individual parts. Emergent interference is
an undesirable behavior that arises out of the interactions. Emergent
interference is important to identify as this can lead to dysfunctional
system behavior and in the worst case cause a severe system failure.
Case study

To show proof-of-concept of the developed frameworks a radial dis-
tribution grid below a 10 kV transformer of 137 domestic consumers
in Denmark is chosen as the case study EVs are chosen in the case
study due to the DSOs’ concern regarding the impacts of EVs on the
distribution grid stability. Therefore, this research aims to investigate
how the adoption of EVs affects the grid.

In this research project, Electric Vehicles (EVs) are considered as a
flexible demand. The EV is considered as having high potential as a
flexible load due to its high consumption [26]. EVs are flexible as
they do not need to charge immediately when the owners arrive
home, and the EVs' charging can be shifted to times when the
electricity price is low [27]. It is expected that the number of EVs will
increase over time due to the goal of having one million EVs in
Denmark by 2030 [28]. This calls for a solution that can utilize the
EVs' flexibility to balance the power grid. Furthermore, flexibility
should be utilized to avoid overload in the grid.

The EV types are represented by the top five EVs sold in Denmark in
2019. The types are important as they vary in battery capacity,
mileage, and charging rate. The energy flexibility solutions are
represented by smart charging algorithms. The evaluation is made
from the DSO’s point of view, hence keeping grid stability instead of
minimizing consumer cost is prioritized. To evaluate energy flexibility
solutions and adoption strategies several hypotheses are designed.
Two hypotheses are tested through scenarios designed to answer
the hypotheses.

Data for the research is mainly obtained from the Danish DSO -
TREFOR [29]. Household consumption data including grid constraints
are given from their distribution grid. Data for EVs and consumers’
driving patterns are obtained from the literature. Furthermore, data
is going to be obtained using qualitative and quantitative interviews
used to identify consumer adoption behavior.
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Results

Accomplished results

The energy ecosystem built up around EV home charging is created.
The stakeholders’ logic, communication flows, and the environment
are identified and implemented into a model in AnyLogic. The model
comprises the fundamental agent-based model that is going to
evaluate the energy flexibility solutions. The adoption rate in the fun-
damental model is based on historical data for EV adoption in
Denmark. The results generated by the model so far are the times
when the EVs are expected to overload the transformer with and
without the use of smart charging. The smart charging in the funda-
mental model makes sure the EVs are charging when the electricity
price is lowest within the time it is connected to the charger. When
using simple charging, the charging starts when the EV arrives home
which is based on the domestic consumption pattern. A large in-
crease in consumption after 12 noon is indicating that the EV has ar-
rived home. Furthermore, the results show how many EVs the
current grid can handle with simple and smart charging. The result
can be seen in Table . The results show that smart charging can have
more EV charges simultaneously. However, the overload occurs much
faster and more frequently as the EV consumption is placed in the
same period. Hence, this strategy is not durable in the long term.
Suitable smart charging strategies are identified and several are im-
plemented in a newer version of the fundamental model.

Future works

The future work consists of developing frameworks for implementing
energy flexibility solutions in the model and for identifying and
implementing adoption strategies. The framework is designed to
develop a generic model that can be adjusted for a given energy
flexibility solution in a targeted energy ecosystem. The framework
includes methodologies for adjusting the model for different energy
flexibility solutions and adoption strategies in a defined ecosystem.
This is done by use of a modular setup approach. Each module
represents a part of the ecosystem e.g. an electricity consumer. The
modules have some defined inputs and outputs making it possible
to add and remove modules relatively easy to reflect a specific
ecosystem, solution and adoption strategy. The methodologies
should be the fundamental parts for developing the frameworks in
objectives 1 and 2. The model is going to be modified to enable
consumers to choose between available energy flexibility solutions in
the same simulation. This should reflect a future in which the
consumers can choose between more than one solution and how
this is going to impact the grid.

The results from the case study simulations are expected to be a
variety of dates when the first overload is expected. With the current
grid, it is not expected to be able to handle 100% EV adoption
without a compromise of the consumers' convenience. The results
will show the best charging strategy to prolong the period it takes
before overloading the grid. Meanwhile, the charging algorithms’
performance will be evaluated, such as the computation cost and
number of EVs to support, etc. The adoption strategies are evaluated
based on how the adoption rate impacts the ecosystem. The results
can help the DSO choose its strategy to how and when to improve
the grid. Furthermore, it is expected that the results will suggest
possible regulation changes to improve strategies.

The developed agent-based simulation framework can be modified
to apply to different energy ecosystems, e.g., district heating or sec-
tor coupling, for different solutions and business models, e.g., photo-
voltaic and heat pumps. Meanwhile, the developed framework can
be applied to other geographic-different energy ecosystems, and
also be possible to support the cross-national comparisons.
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Table 1 (Abstract P11). Generated results from the current agent-
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Results of the first Simple Smart Difference

overload occurrence charging charging

Time October 12,  February 04, 1 year, 8 months,
2031 2030 and 8 days

Total EVs 70 45 25

Simultaneously charging 37 45 -8

EVs

Size of overload 18.07 kW 7 kW 11.07 kW

(the grid capacity is 474 kW)

Days with overload after 11 235 224

the first year
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Summary: In this study, the business revenue of bidding to Japanese
intraday-wholesale-market by a battery-assisted photovoltaic (PV)
power generation system was evaluated. Long short-term memory
(LSTM) method, one of the advanced methodologies of deep learn-
ing, was employed for a forecast of PV generation while the persist-
ence method, using the previous values for prediction, was adopted
for electricity prices in the intraday-wholesale-market. There are two
different factors for the battery operation strategy; assistance to PV
planned generation to minimize the imbalance and charge / dis-
charge according to the market price prediction to enlarge the sales.
We propose a dispatch control method of the battery-assisted PV
system and compare the five different scenarios by annual numerical
simulations evaluating the net sales in the market per unit capacity
of battery.

Keywords: photovoltaic power generation, battery energy storage,
wholesale market, forecast of generation, planned power generation,
optimization, business profitability

Introduction

In Japan, photovoltaic power (PV) generation has been boosted by
feed-in-tariff (FIT) introduced in 2012, and its installed capacity has
exceeded 50GW which is almost one-third of the country’s peak de-
mand. The Japanese Government had decided to change the system
to feed-in-premium (FIP) for the new installation after 2022, in which
PV systems will be treated as ordinary power generators and sub-
jected to the requirement that the generated kWh should be equal
to the planned value in average over 30 min. If the actual kWh is
smaller than the planned one, PV owner has to pay the penalty de-
termined by the total demand-supply balance of the power system.
If the actual value is larger, excess electricity is purchased at some-
what low price determined by the wholesale price in the same time
slot. Under the rule of FIP, because of the imbalance compensation
mechanism mentioned above, there is a strong incentive for PV
owners to have a battery energy storage (BES) to minimize the im-
balance. On the other hand, if the PV owner possesses BES, it can
also be used to charge or discharge according to the market price to
improve the profit while contributing to the planned power gener-
ation. Thus, the strategy how to operate the BES is crucially import-
ant from the viewpoint of PV generation business assisted by BES. In
this study, we considered an operation of a battery-assisted PV sys-
tem (BAPV) and examined the five BES operation strategies to com-
pare the expected business profitability based on the actual market
price and PV generation considering the bidding process with the
forecasted values.

Numerical Simulation Model

Operation flow to participate in the wholesale energy market with
BAPV is described below. The first step is to forecast intra-day market
price by means of the persistence model which utilizes the past ac-
tual values a week ago. At next, on the day of the event, PV power
generation forecasting was conducted by the deadline for the bid-
ding (gate closure), which is 60 minutes before the delivery time,
and bid to the intra-day market!". Finally, at the actual delivery, the
BES will be controlled so as to compensate the difference between
the bidding value and actual PV generation. It is also assumed that
all of the bids will be executed and that the PV power generation will
not be subject to output curtailment.

Forecasting of PV power generation

It is generally known that as the forecast lead time of PV power
generation becomes shorter, the forecast accuracy becomes higher.
Therefore, the intra-day market which has a short time span (60 mi-
nutes) between the trading gate closure and actual delivery, was
studied in this paper. The LSTM model was adopted to forecast 60
minutes ahead of actual solar irradiance using the actual log data as
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input data and convert it into the PV power generation. The LSTM
model is a kind of deep learning algorithms dealing with a time
series analysis and reported to provide good performance for renew-
able energy power generation forecasting "),

Forecasting of wholesale electricity market price

It is necessary to forecast the intra-day wholesale market price to de-
termine the optimal operation scheduling of BES. Therefore, the per-
sistence model, which uses the past values as the forecasted values,
was adopted to forecast the day ahead of market price. In this paper,
the past values from seven days ago is used as the forecasted values.
Optimal bidding scheduling of BES

The daily optimal operation scheduling method of BAPV was
proposed in previous studies ©'* In this paper, the optimal
bidding scheduling was determined by solving a mixed integer
linear programming problem formulated as follows. The optimization
variables are the BES charge and discharge power output and the
flag variable, and the time slots are 48 frames per day in 30-minute
time increments. Equation (1) indicates the objective function. Equa-
tion (2) indicates the equation for the amount of power transmitted
to the grid. Equation (3) indicates the maximum and minimum limit
constraints of the power transmitted to the grid. Equation (4) indi-
cates the maximum and minimum limit constraints of the flag vari-
able. Equation (5) and (6) indicate the maximum and minimum limit
constraints for the BES charge and discharge power output, respect-
ively. Equation (7) indicates the equation for the state of charge
(SOC) of BES. Equation (8) indicates the maximum and minimum
limit constraints for the SOC of BES. Equation (9) indicates the begin-
ning and end matching constraints (=50%) for the SOC of BES at
00:00 and 24:00.

i m
Minimize Rev = — ;(CWW x ESADY

ErGR/D — (PfV—P?AT'CHA _P?AT,D/S> < At (2)
_pMAX < vaf P[BAT,CHA7 PfAT.D/s < pMAx 3)
0< UFA,'(HA + UrBA/.D/S <1 (4)
0< PrBAl'CHA SPBAT' MAX x UfA,'CHA (5)
7PBAT, MAX x UfA/ ,DIS < PrBA/‘D/S <0 (6)
SOC[Bﬂ _ SOCFA’ 1100 x Arx(ﬁ{?“"”"“xfrr:;"’JrPi (7)
SOCBATA MIN < SOCIBAT < SOCBAT. MAX (8)
SOCAT = socBAT ©)

Where, Rev: daily total sales (positive means profit, negative means
cost), CMARKET . market price, EMP :transmission electricity energy
to the grid, P’V: PV power output, PEAT-CHA pBATDIS . pattery
energy storage charge and discharge power output, T: total time
slot,At: time step, PYX. maximum transmission power output to the
grid, UPATCHA [BATDIS . flag variable for battery charge and
discharge power output, PPA" MAXpattery rated power output,
SOCfAT . battery state of charge, EFF*": battery charge and
discharge efficiency, E*": battery rated capacity, SOC*™ "N soc®T
AX. battery maximum and minimum state of charge
Operation of BES
The surplus and deficiency imbalances are calculated from the
difference between the actual PV generation values and schedule
values submitted to the market in each time frame, and the BES are
controlled to compensate for the surplus and deficiency imbalance
within the maximum and minimum limit constraints of the rated
output and SOC. The BES is assumed to be able to control charge
and discharge power output in a time cycle on the order of
milliseconds, and there is no control delay at the one-minute time
granularity handled in this study. In addition, SOC adjustment is not
performed.
Numerical simulation conditions
The equipment configuration includes one each of PV and BES. Table
1 summarizes the study cases covered in this paper. The PV rated
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output is 1,000 kW. The PV power generation data was converted
from the solar irradiance data measured by an irradiator installed at
the EMS Demonstration Center of Waseda University in Tokyo, Japan.
The LSTM model was used to forecast PV power generation. The BES
was examined for each case where the rated output was changed
from 0 to 1,000 kW in 100 kW increments and the rated capacity was
changed from 0 to 1,000 kWh in 100 kWh increments. The one-way
charge/discharge efficiency was set to 90%, and the SOC utilization
range was set to 20-80%. The initial SOC was set at 50%. For cases 2
and 3, where no imbalance compensation is performed, the BES is
controlled according to the contents of the sell/buy bids for the
BAPV, while for cases 4 and 5, where imbalance compensation is per-
formed, the BES is controlled so that the imbalance is compensated
sequentially, as described above. The evaluation period is one year
(from January 1, 2019 to December 31, 2019). The time granularity is
1 minute. As for the market price, we used the average price of the
Japan JEPX intra-day market. Two cases of market price forecast for
the intra-day market were considered: Persistence model and true
value (no prediction error). Annual electricity sales revenue was
adopted as the evaluation index and calculated using equation (10).
MATLAB was used as the programming language, YALMIP as the
optimization modeling tool, and CPLEX as the optimization solver.
Where, Rev:yearly total income (YEN/year), Rev:yearly regular income
(YEN/year), Rev®yearly surplus imbalance income, Rev“iyearly
sufficient imbalance penalty (YEN/year).

Numerical simulation results

Table 2 shows the accuracy of the 60-minute ahead of solar ir-
radiance forecasts based on the LSTM model. By coarsening the
time granularity at which the forecast accuracy is evaluated from
1 minute to 30 minutes, we confirmed that the forecast accuracy
is improved by about 18% in MAE due to the offsetting effect of
forecast outliers in the vertical direction. The forecasting accuracy
of the day ahead of intra-day market price based on the persist-
ence model is shown in Table 3. It is confirmed that the MAE is
about 2.1 YEN/kWh.

To confirm the typical behavior of the BES control, the dispatch control
of BES on a typical day for Cases 2, 4, and 5 are shown in Figures 1, 2,
and 3. These are the results when the persistence model is used and
BES rated output is 1,000 kW and rated capacity is 1,000 kWh. As can
be seen from Fig 1, BES are charged and bid for buy during times
when market prices are low, while they are discharged and bid for sale
during times when market prices are high, and the difference in market
prices is used to maximize business revenue. In addition, as can be
seen from Fig 2, the BES do not participate in the bidding process, but
are controlled to sequentially compensate for the surplus and
deficiency imbalance, which is the difference between the actual and
planned values of PV generation. It can be confirmed that the
imbalance is compensated within the range that does not deviate from
the rated output and SOC maximum and minimum limit constraints of
the BES. As can be seen from Fig 3, the BES is controlled to participate
in the bidding process and to sequentially compensate for the
imbalance, which is the difference between the actual and planned
values seen in the combined PV and BES.

The business profitability of the PV power generation alone in Case 1 is
shown in Table 4, which confirms that the annual electricity sales revenue
in 1TkW units is 6,270 yen. If we can improve the accuracy of the forecast,
it is conceivable that we can further improve the annual electricity sales
revenue by reducing the deficiency imbalance settlement.

Next, Table 5 shows the business profitability in each case
entered with PV and BES. The figures are listed as the range of
values when the cost effectiveness is highest and lowest when
the rated output and rated capacity of the BES are changed. In
the case of the dataset used in this study, the BES was found to
be most cost-effective in Case 4 when they did not participate in
the bidding process and maximally perform planned power gen-
eration that was devoted solely to imbalance compensation. From
now on, VRE penetrates more to power system and possibly lead
to higher volatility. In the market price as well as elevated imbal-
ance penalty as considered in Japan. Including these circum-
stances, our proposed study framework is applicable to evaluate
various cases.
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Table 1 (Abstract P12). Study Cases

Case PV BES
yes/no yes/no bidding imbalance compensation
1 X X X X
2 X X X X
3 X X X X
4 X X X X
5 X x4 X ¥
Rev = Rev" + ReV’ — Cost® 10)
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Table 2 (Abstract P12). 60-Minute Ahead Solar Irradiance Forecast
Accuracy based on LSTM Forecast Model

Time inclement RMSE (W/m?) MAE (W/m?) MAPE (%)
1 155 95 47
30 124 78 37

Table 3 (Abstract P12). Day-Ahead Market Price Forecast Accuracy
based on Persistence Forecast Model

RMSE (YEN/kWh) MAE (YEN/KWh)
4.2 2.1 26

MAPE (%)
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Table 4 (Abstract P12). Business Revenue Results for PV (YEN/year/kW)

Case Income from Electricity Regular  Surplus Deficiency
Sales Imbalance Imbalance
1 6,270 7,690 1,520 2,940

Table 5 (Abstract P12). Business Revenue Results for BES (YEN/year/
kwh)

Market Price Forecast Model ~ Case 2 Case 3 Case 4 Case 5
Persistence Model 308 254~306 848~1933  -39~1,178
Correct Value 1,394 1,303~1,357 760~1,738
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Summary: This PhD research project aims to develop a digital twin
framework to simulate and evaluate industrial consumers’ demand
response participation in the Danish and Chinese electricity markets.
The research mainly focuses on industrial consumers with a large
diversity in processes and consumption profiles allowing for different
flexibility implementations. The project develops a digital twin
framework based on agent-based modelling to understand and
simulate the industrial consumers’ market participation. The frame-
work is developed and tested using case studies from the Danish
and Chinese electricity markets. This framework includes demand re-
sponse strategies based on market properties, consumer flexibility
properties and consumer preferences. The simulation results from
the case studies allow to establish general recommendations for de-
mand response strategies within different market contexts. Therefore,
the framework can facilitate industrial consumers’ evaluation of their
strategies for demand response participation.

Keywords: agent-based model; demand response; market participa-
tion strategy; industrial consumer, digital twin

Motivation

Demand response, defined as “a shift of electricity usage in response
to market price signals or certain requests’[1], is considered a
promising solution to improve the integration of variable renewable
energies (VRE) in the energy system [2]. Industrial consumers have
the potential to provide market-based demand response due to their
characteristic electricity consumption features. In many countries, in-
dustrial consumers with large energy consumption are allowed to
participate directly in wholesale markets without passing through
intermediary market actors such as aggregators or retailers [3]. This
allows industrial consumers to keep control over their process sched-
uling and simplifies regulatory requirements. Additionally, many in-
dustrial consumers have been monitoring their production processes
in real-time at a fine time resolution [4], which is a key requirement
for successful demand response implementation. The profit-driven
mindset of industrial consumers also gives a more rational reaction
to price variations compared to residential consumers [5], which cre-
ates less uncertainty in modelled results.

However, power consumption adjustments of industrial processes
require deep domain knowledge, due to process requirements such
as high timing precision or temporal interdependencies [3]. Industrial
consumers can quickly consider the uncertain impact of such
consumption adjustments as unwelcome operational risks [6].
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Additionally, the lack of clear financial returns from short-term mar-
ket participation increases consumers’ reluctance towards market
participation [7]. In [8], a survey on industrial demand response po-
tential underlines the need for tools to demonstrate to all involved
actors the economic benefits of implementing the identified flexibil-
ity in electricity markets.

Many market bidding optimisation strategies are proposed in the
literature to prove and improve the financial viability of demand
response market participation, such as [9-11] . In these studies, which
often use mathematical programming, the main objective is to
maximise savings or revenues from market participation. The
consumers then adapt their consumption based on the optimised
schedules.

Yet the following work argues that this optimisation approach is not
representative of industrial consumers’ operational constraints.
Indeed, electricity market participation is not the main source of
revenue for industrial consumers, and therefore cannot be the main
driver of their load schedule. In [12], Lund et al. put optimisation
approaches, based on one or few success criteria, in contrast with
simulation approaches, which allow to compare scenarios according
to several criteria. Lund et al. refer to simulations as being
descriptive, or analytical, processes, as opposed to prescriptive
optimisation processes [12]. A simulation-based approach varies key
parameters in the model and assesses the impacts of these decisions
through scenario comparison. To make such simulations as realistic
as possible, large amounts of data can be fed into the simulation, in
which case it can be referred to as a digital twin.

In this context, this work proposes to develop a digital twin
framework to simulate the participation of industrial consumers in
electricity markets. The simulation outputs will allow to evaluate the
benefits and constraints for industrial consumers to offer flexibility in
a given electricity market. Meanwhile, demand response strategies
can be recommended to industrial consumers based on their
preferences and market specific requirements, which allows more
stakeholder-targeted business development, as suggested in [13].
There are many external factors that influence industrial consumers’
participation in the demand response, especially market conditions.
To investigate how industrial consumers’ preferences, benefits and
barriers are influenced by the market conditions, this PhD research
project selects two electricity markets for testing and comparison:
Denmark and China. The Danish and Chinese electricity markets
present the typical unbundling and bundling electricity markets.
Denmark has been part of the pioneering Nordic electricity market
deregulation since the 1990s, which has brought many different
submarket participation options to consumers [14]. In Denmark,
energy flexibility solutions are promoted due to the large share of
VREs in the country’s electricity production and due to the
decommissioning of traditional fossil-fuel based dispatchable genera-
tors [15]. The combination of high VRE share and high market liberal-
isation therefore provides a strong base for market-based demand
response initiatives.

In China, the electricity markets are still with centralised price setting and
monopolised by state owned utilities [16]. Meanwhile, industrial consumers
represent 60% of the country’s electricity consumption [17], yet their
electricity costs are 50% higher than for US industries [18]. Therefore,
industrial consumers could have motivations to participate in demand
response to reduce their operation costs.

Industrial consumers’ market participation in the Danish and Chinese
electricity markets is quite different due to the different market rules and
their corresponding market participation strategies [14]. For this reason, a
digital twin framework that supports the digital representation of electricity
markets is beneficial for industrial consumers to understand different
electricity market conditions, investigate participation strategies and
optimize their benefits based on preferences and production constraints.
However, no literature has focused on a digital twin framework for
electricity markets, especially not for the investigation of industrial
consumers’ participation in different electricity markets.

Research question and objectives

This PhD research project aims to contribute to a digital twin
platform development of the smart energy ecosystem by the SDU
Center for Energy Informatics, specifically developing a digital twin


mailto:nifa@mmmi.sdu.dk

Energy Informatics 2021, 4(Suppl 1):30

framework for the energy markets, to facilitate industrial consumers’
participation in electricity markets with their energy flexibilities. To
fulfil this aim, three research objectives are designed in this PhD
research project:

The first objective is to investigate industrial consumers’ flexibility
properties for participation in a selected electricity market. From the
consumers’ side, different electricity consumption profiles imply that
different flexibility properties are investigated. From the electricity
market side, market liberalisation has caused several submarkets to
emerge [19]. Depending on the services provided to the grid, these
submarkets have different participation requirements and price
dynamics which are categorized in this research project.

The second research objective is to create a model framework to
represent the selected electricity market ecosystem for testing
different combinations of market participation strategies under
various industrial consumers’ operational conditions, without
redefining the problem every time.

The third objective is to develop a general demand response
strategy framework. This framework is expected to be adaptable to
different industrial consumer types in different market contexts. In
particular, the influence of two different electricity market structures
on various demand response strategies are investigated: the Danish
and the Chinese electricity market.

Related literature and theories

Agent-based modelling (ABM) is a simulation approach in which
independent agents are assigned their own logic and interact in an
evolving environment [20]. It is particularly suitable to study the
impacts of interaction structures and agents’ individual behaviour on
market results [21]. ABM, used in this work to set up the simulation,
has been extensively used in the literature to study consumer
participation in electricity markets [22]. ABM models for electricity
markets, such as MASCEM [23], model the impacts of sellers and
buyers on the overall market dynamics, and therefore have a market-
centric perspective. Others, such as [24] and [25], take a more
consumer-centric approach, and develop market bidding strategies
based on the consumer agents’ constraints. In [26], the differences in
optimisation results between aggregator-side fleet management and
individual consumer management in an ABM are shown. The bidding
strategies suggested in the ABM models in [24-26] still implement
the logic of their agent using optimisation programming methods.
More heuristic demand response strategies in ABM are implemented
in [20, 27, 28], which model different industrial processes such as
water reservoir pumping, greenhouse lighting and fermentation
cooling. In these cases, the agent actions are based on received price
forecasts and current state of operation, which allows to model
decision processes closer to real-time operations.

This research aims to contribute to the literature by providing a
digital twin framework for evaluating the industrial consumers’
demand response participation. The framework takes into account
the flexibility properties and behaviour of the consumer, as well as
the properties of the specific electricity market analysed, to provide a
successful market participation strategy.

Methodology

The development of the industrial consumers’ demand response
strategy framework is based on a digital twin framework that
consists of three parts (shown in Fig. ):

Part 1- process-to-market mapping

Firstly, a market screening process is done before simulating
consumers’ participation in a selected electricity market. This requires
firstly to map the given industrial consumer’s flexibility properties on
one side, and the market participation possibilities on the other side.
The parameters describing consumer flexibility are obtained by
analysing and categorising different industrial processes. In the
meantime, the submarkets’ properties are identified, both in terms of
participation requirements and price dynamics. Data analysis of
market prices allows to identify price signals which have the most
impact on demand response savings, such as, for example, the price
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variability within a day. More insights on relevant market signals are
given from the simulation results in Part 2. This interdependence
between Part 1 and Part 2 presents the importance of the iterative
procedure in this market evaluation framework. Once the process-to-
market mapping is done, the analysed industrial process is matched
with the most relevant submarkets for market participation based on
a decision tree selection process.

Part 2- market participation simulation framework

Based on the selected markets’ properties, the market ecosystem
with all relevant actors and their interactions is identified, following
the business ecosystem modelling framework outlined in [29]. This
ecosystem mapping defines the structure of the agent-based model
(ABM) used in this research to simulate industrial consumers’ market
participation with their flexibility. To develop the model framework,
the business ecosystem architecture development presented in [30]
is followed, which provides a methodology to configure roles, actors,
and interactions in a given business ecosystem. Different submarkets
are configured as agents with their own roles that separate the mar-
ket operators’ logic from the bidders’ logic. This role-based approach
provides more flexibility in the agent-based models for testing differ-
ent market participation strategies.

The market participation strategies are strongly influenced by the
submarket’s rules and price dynamics, but also by the consumers’
operational requirements and preferences. The implemented and
evaluated strategies should therefore be adaptive, based on
consumers’ real-time operational conditions. Examples of consumer
preferences can be risk willingness, expectations on savings, or focus
on carbon emissions reduction. A more detailed list of influential fac-
tors for market participation is given in [31], which will be used for
defining agents’ behaviour and bidding logic.

To reflect current market conditions, cleared market prices are based
on historical data. This implies that industrial consumers in the
model make rational decisions, based on the discussion with some
companies in the project. Therefore, the PhD research focus differs
from other researches by emphasizing on the industrial consumers’
benefits from market participation, instead of focusing on the
system'’s benefits from demand response participation.

Part 3- demand response strategy framework

In part 3, the model framework is further developed, tested, and
validated by iterating over different industrial processes (thermal,
mechanical, electromagnetic, etc.), different operational requirements
(batch, continuous, nightshifts, single process, chain process, etc.)
and different market contexts.

The first two parts are initially developed in a Danish market context
which represents unbundled and internationally interconnected
electricity markets. In this part, market participation of these different
industrial processes is also tested in the Chinese context. Due to the
Chinese government’s regional approach to market liberalisation
[32], a specific province is selected as a case study. The case study
selection is based on several factors, such as the province's
demography, geography, economic activity, electricity market
liberalisation stage, and data availability.

As shown in Figure 1, the research elements of electricity market
categorisation (in Part 1), market properties (in Part 2), and market
structure comparison (in Part 3) will be adjusted based on the
Danish and Chinese electricity market conditions. Furthermore, the
correlated elements, e.g., ecosystem mapping will be adjusted
accordingly [30]. Meanwhile, industrial consumers’ preferences and
potential biding strategies in the literature, e.g., [9, 33], will be tested
in the simulations for both Danish and Chinese electricity markets.
The comparison of the simulation results will explain how these
factors influence industrial consumers’ participation in demand
response and financial gains.

The developed digital twin framework for the energy markets allows to
adjust the agent logic and communications according to the digital
twin design. Therefore, the two digital twins of the Danish and Chinese
electricity markets will be implemented according to the framework
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design with specifications adapted to each market. This approach not
only ensures the harmonisation of the digital twin design and
development, but also comparability between two digital twins.
Preliminary results

The preliminary findings of the PhD research project can be
summarised as:

Part 1- process-to-market mapping

The main result from the first part of the proposed framework is a
categorisation process that matches industrial consumers’ flexibility
potentials in their production processes with the most suitable
submarkets for demand response participation. More specifically, on
one side, it provides a method for categorising industrial processes
based on their flexibility potentials. On the other side, it provides a
method for categorising electricity submarkets which shows the
participation  options for industrial consumers. These two
classification methods allow to standardise inputs for a market
selection framework, which is the output of Part 1.

A preliminary analysis of Danish industrial processes’ suitability for
market participation underlines that the energy-restricted flexibility
of consumers creates different barriers compared to the capacity-
restricted flexibility of generators. In many cases, time-shift capability
and response duration can reduce the number of submarket options
for industrial consumer participation. From the market side, submar-
ket price variability, activation frequency and liquidity also have a
large influence on submarket suitability, but no submarket is consist-
ently better over all these parameters. The choice of relevant sub-
market therefore also depends on the industrial consumer’s bidding
preferences.

Part 2- market participation simulation framework

The main result from the second part of the framework is a systematic
approach for simulating and evaluating industrial consumers’ market
participation. This approach includes 1) a framework composed of five
elements: ecosystem mapping, consumer flexibility —properties
assignment, consumer preferences assignment, market properties
assignment and participation strategy selection; 2) multi-agent-based
simulations to test and validate the framework. The validated model
framework for industrial consumers’ market participation evaluation is
the output of Part 2.

Preliminary results on energy-based markets in the Danish context
show that, based on historical market data, significant savings from
demand response would only be obtained when bidding in multiple
submarkets. For rational agents with a risk-neutral behaviour and no
forecast uncertainty, the potential benefits of participation in mul-
tiple markets are considerable. In reality, market clearings can deviate
from forecasts and participation in more submarkets puts more con-
straints on the industrial process schedules, which significantly in-
creases the financial and operational risk for industrial consumers.
Agents with different risk willingness could be attracted to different
participation options. Preliminary results in parts 1 and 2 show that
the behavioural aspect of the consumer plays a large role in the mar-
ket bidding strategy and must be explicitly included in simulations.
Future works

The model obtained so far will be generalised to develop the
demand response strategy framework in part 3. From the industrial
process perspective, more processes are first tested in the Danish
context, showing the impact of different flexibility types on market
participation. Then, from a market perspective, the agent-based-
model is adapted to the Chinese market to evaluate the impact of
market structure on market participation. The comparison of results
will then identify the main drivers which influence a demand re-
sponse market participation strategy.
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