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Abstract
Non-urgent high energy-consuming residential appliances, such as pool pumps, may
significantly affect the peak to average ratio (PAR) of energy demand in smart grids.
Effective load monitoring is an important step to provide efficient demand response
(DR) to PAR. In this paper, we focus on pool pump analytics and present a deep
learning framework, PUMPNET, to identify the pool pump operation patterns from
power consumption data. Different from conventional time-series based Non-intrusive
Load Monitoring (NILM) methods, our approach transfers the time-series data into
image-like (date-time matrix) data. Then a U-shaped fully convolutional neural network
is developed to detect and segment the image-like data in pixel level for operation
detection. Our approach identify whether pool pumps operate given thirty-minute
interval aggregated active power consumption data in kilowatt-hours only.
Furthermore, the PUMPNET algorithm could identify pool pump operation status with
high accuracy in the low-frequency sampling scenario for thousands of household,
compared to traditional NILM algorithms which process high sampling rate data and
can only apply to limited number of households. Experiments on real-world data
validate the promising results of the proposed PUMPNET model.

Keywords: Electricity consumption monitoring, Demand side management, Pool
pump, NILM, Deep learning, Convolutional neural network, Power segmentation

Introduction
Smart grids aremodern electrical grids supplying electricity withmonitoring and reacting
to local demands, which result in an intelligent, high-efficient, and sustainable method in
electricity delivery (Siano 2014). Also, smart grids face challenges from supply cost, sus-
tainability, efficiency, availability, and reliability problems. Despite digitalizing the power
generation, transmission and distribution of the current grid, active customer participa-
tion becomes a significant bi-directional communication in dynamic balanced smart grids
(Aboulian et al. 2018).
Typically, there is a high peak to average power ratio (PAR) of energy demand in

grids. Energy providers and operators usually adopt demand response (DR) programs to
feedback the real-time load of customers, including direct load control programs, load
curtailment programs, time of use pricing and real-time pricing (Jordehi 2019). These
programs require centralized load monitoring performed to acquiring load sequence
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(Malik et al. 2019). Hence, it is essential to identify load patterns for reasonable demand
response programs’ design.
The ceiling value of peak loadwould result in remarkable investments on electricity sup-

ply equipment, advanced capacity and quality requirements on grids and serious emission
problems. Also, peak load time only occupies a few hours per day, and it is less efficient
for partially loaded transformers at off-peak time (Zhu et al. 2012). Consequently, it is
important to perform demand-sidemanagement (DSM) along with provider side demand
response for electricity balancing. DSM target to encourage users to shift peak load con-
sumption to off-peak time flattering the demand curve, then time pattern and magnitude
of load could be shaped by customer engagement. Moreover, fuel cost by power gener-
ation fluctuation could be reduced, which contribute to exhaust gas emission reduction
of generators (Ye et al. 2015). DR programs would also benefit from motivating cus-
tomer engagement with rewards and price-based methods. Consequently, the PAR, total
capacity and supply cost would be decreased; the grid efficiency would be increased also.
The pattern of customer-side electricity usage should be identified as prior information

of DR and DSM design and implementation according to their benefits, especially non-
urgent and shiftable appliances consumption pattern. Furthermore, customers would
also be aware of their practical consuming model and restrict their usage behaviours by
revealing facts on electricity usage.
The number of residential swimming pools has been raised to 10.4 million in the United

States. To maintain the water clean and bacteria-free, pool pumps should be operated for
three to eight hours a day. This long-time working duration leads to over 2,000 kilowatt-
hours electricity consumption annually (Lopez et al. 2018). Despite the huge energy
consumption, pool pumps usually start and end based on an electronic or mechanic timer
with customized working intervals. This operation period commonly does not locate in
the grid off-peak time. Hence, pool pumps would bring relatively heavy load at peak
time to the grid. Consequently, it is possible to identify the pool pumps’ working pat-
tern for accurate residential load monitoring and smart grid energy delivery efficiency
optimization with DR and DSM.
Non-intrusive load monitoring (NILM) is an effective method for appliance energy

consumption disaggregation. NILM could utilize low-cost sensors integrated into the
smart meter to provide real-time energy management and devices diagnostics for resi-
dential load monitoring (Aboulian et al. 2018). A series of machine learning algorithms
would learn the appliances’ working pattern automatically. NILM can be performed with
neural network (Chang et al. 2013), fuzzy system (Lin and Tsai 2014), support vector
machine (Saitoh et al. 2010), and other new algorithms (Guillén-García et al. 2019).
Deep learning becomes popular in NILM research because of its strong ability in feature
extraction from energy consumption sequential data. Deep learning NILM was realized
via Convolutional Neural Networks (CNN) (Zhang et al. 2018), unsupervised learning
(Gonçalves et al. 2011), denoising auto-encoder (DAE) and long-short-term memory
network (LSTM) (Kelly and Knottenbelt 2015a).
Conventionally, NILM algorithms analyze high-frequency sampling energy con-

sumption time-series data in terms of active power (P), reactive power (Q), cur-
rent (I) and voltage (U). According to popular public NILM datasets summarized in
(Faustine et al. 2017), the main scope of NILM methods are multiple appliances energy
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disaggregation for several households (no more than 10) within (P,Q, I,V ) features sam-
pled at second-level. In such a context, appliances electricity consuming pattern would
keep relatively consistent in fewer households. However, pool pumps’ operation pattern
varies depending on power rating, heating function, mechanic timer shifting, daylight
saving time, temperature, water amount, and usage habits. Pumps among thousand
households may not share solid demand time patterns.
To achieve our goal, we propose a pool pump operation detection network (PUMPNET)

to overcome inconsistent patterns of thousands of device. We perform a data transfor-
mation from time-series to matrix representation to expose pool pump working features
spatially including pre-order and post-order information in the time dimension and the
date dimension. After the realignment, the fixed working period and time intervals of a
pump could be revealed. For example, if a pump works from 10 am to 2 pm on every
day in June as shown in Fig. 1a, there would be a higher electricity consumption on the
data points representing these time and date interval, and a 10-pixel height and 30-pixel
width high electricity consumption rectangle is bounded by the pool pump working pat-
tern. Consequently, the higher energy consumption of pool pumps can be represented
with a fixed rectangle bound, as shown in Fig. 1b. It’s obvious that in the given case, the
pump was set to work from 10 am to 2 pm until the 120th date. After that date, it’s still
running, but the configured time had been changed. Thus, the pump operation could be
recognized as a rectangle segmentation problem in the field of computer vision. Then, we
introduce a U-shaped end-to-end pixel classification model accepting power consump-
tion matrix of each household. The model is trained with 2,988 residential records and
evaluated on 996 residential records, which are ensured with swimming pool possession
for all records. Finally, we can detect pool pump operation periods using our framework
and the trained PUMPNET model with high performance.
The main contributions of this paper are as follows:

• We propose a pool pump operation detection framework PUMPNET in 30-minute
sampling context for thousands of household load monitoring purpose.

• We introduce matrix representation to highlight pool pumps operation feature:
working in the same period for a long time, which could reduce impacts from
inconsistent features among time-series sequences, such as power rating and usage
habit varied in thousands of household.

• We introduce a semantic segmentation model to the energy analysis field, to classify
each power consumption data point with spatial information in the time dimension
and the date dimension, resulting in high performance on the pool pump operation
detection problem.

The paper is structured as follows. “Related works” section discussed the related
works. “Methodology” section describes our model PUMPNET and listed implementa-
tion details. In “Evaluation” section, we evaluated the PUMPNET and discussed case
studies. Finally, “Conclusion” section concludes the whole paper.

Related works
In this section, we mainly focus on previous on-off detection deep learning models to
demonstrate the inappropriateness of previous works to our scenario. Also, we would
review matrix-based approaches in appliance analysis and semantic segmentation. Com-
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Fig. 1 Energy consumption data visualization. a The time-series representation of 10 days in June. b The
matrix representation of the whole year. The data inside the dashed line boundary from (b) is the matrix
representation of the same data in (a). The red rectangle in (b) is the period from 10 am to 2pm on every day
in June

bining matrix-based NILM context with semantic segmentation, we named this problem
as power segmentation, whichmeans to extract target operation pattern from background
appliances consumption with matrix representation.

Time-series based operation detection models

The Neural NILM Rectangle model (Kelly and Knottenbelt 2015a) and Single Load
Extraction model (Barsim and Yang 2018) two deep learning NILM models dealing with
the time sequence of energy consumption for multiple appliances active power disaggre-
gation. They are both build with UK-DALE dataset (Kelly and Knottenbelt 2015b) 1/6 Hz
sampling active power time pattern.

Neural NILM rectanglemodel

The Neural NILM Rectangle model (Kelly and Knottenbelt 2015a) consists of two con-
volutional layers for feature extraction and five fully connected layers for regression. The
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model could output three values, the start/end time offset and average power consump-
tion, of each operation period for a single appliance. Target appliances of the algorithm are
microwave, kettle, dishwasher, fridge and washing machine. These appliances all appear
in at least three out of five households in the UK-DALE dataset. The training scope of
the model is two houses and the test scope is one house. The ground truth on-off status
was derived by NILMTK package (Batra et al. 2014) using a consecutive threshold power
demand value. A threshold was set to filter short activations for noise reduction. Random
windows (time periods) would be selected as an input sequence for model training. The
target appliance of each window is determined by the first activation inside the interval.
The outputs of the model are three regressed values indicating start time, end time and
average power consumption of the target appliance. The start/end time points are rep-
resented by a proportion of the input window. Hence, the time values are always located
inside [ 0, 1]. The target activation should be complete in each window as well.

Single load extractionmodel

The Single Load Extraction model (Barsim and Yang 2018) is a deep learning model
with fully convolutional neural network predicting the on-off state of a single appliance
for a 3-hour window sequential data. This model upsampled the aggregated 1/6 Hz real
power in UK-DALE dataset to the 1 Hz time series using fill-forward methods. The pre-
processing stage is similar to the Neural NILM Rectangle model: acquiring activations
via NILMTK package with threshold filtering. After that, spikes would be reduced and
generated activation labels are recognized as ground truth values. The model accepts a
one-dimensional 10,800 length (3 hours 1 Hz data) energy consumption sequence as an
input. The model has an asymmetric encoder-decoder structure extracting features by
using dilated convolution (Yu and Koltun 2015). Dilated convolution could extend the
receptive field comparing to original convolution process. Especially in the context of
appliance monitoring, results of the dilated convolution contain the information carried
by the distant data indicating on-off state transitions, because the home appliances on-
off states tend to last greatly longer than the sample rate 1 second. As a result, the model
output a one dimensional 10,800 length sequence containing “1” and “0” referring to on
and off operation status.

Limitations

Above models address the electricity consumption disaggregation problem for 5 appli-
ances in three households with sequential data and deep learning models. However,
the model structure and feature extraction methods cannot be designed for a specific
appliance considering the generalization ability of model structure on multiple devices.
Consequently, only a relatively fixed sequential pattern can be effectively identified by
previous models.
In our pump operation detection scenario, features of pumps vary among households,

but the scope is one appliance only. As a result, we can utilize a novel feature representa-
tion method to highlight important common characters of thousands of pumps.

Matrix based appliance analysis and segmentation methods

Most of NILM analyses are with a high sampling rate, no greater than 1Hz. However, in
this case, we have low-resolution data in 30-minute intervals only.
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A 15-minute sampling rate pool pump analysis was stated in Burkhart et al. (2018).
However, this research only predicts which household has a pool pump instead of detect
operation time accurately. The data was converted into lower resolution (10 days and
half-hour level) for noise reduction using morphological opening (Gonzalez et al. 2018).
The opening processing is appropriate for pool pump ownership detection, but 90% infor-
mation in the date dimension would be lost. Thus, in our 30-minute interval pool pump
analysis, we extend this research with a convolutional neural network (CNN) which can
perform accurate pixel-wise classification on a matrix representation.
This kind of pixel-wise classification problem is known as semantic segmentation task,

which is very common in areas like medical image diagnosed. Semantic segmentation
usually tries to recognise images in pixel level based on their semantic meaning, which is
depending on surrounded pixels. In our case, the semantic is whether a pixel representing
a time that a pool pump is operating. Deep convolutional neural networks (CNN) have
contributed greatly to semantic segmentation tasks in recent years, due to strong spatial
information extraction ability of convolutional computation and the complex architecture
of deep neural networks models.
The very first end-to-end Fully Convolutional Network (FCN) was proposed in 2015

(Long et al. 2015). The model contains convolutional layers only. The model consists of
eight convolutional layers as forward and inference part to compress the spatial features.
Correspondingly, eight convolutional layers learn features extracted from inference part
with upsampling to reform segmentation from dense featuremaps. Also, skip connections
are added in themodel to combine original spatial features with reformed features. Finally,
the model has been trained using a pixel-wise loss and measured with mean intersection
over union (IOU) criterion.
Then, FCN was extended by U-Net (Ronneberger et al. 2015) for medical images seg-

mentation task. The model could compute features in the contracting side and localize
pattern pixel wisely in the expanding side. Similar to FCN, the contracting part extract
features in different size using convolutional layers and max-pooling layers. The expand-
ing part adopted deconvolutional layers to resize the feature map with trainable variables.
Skip connections are kept from FCN to fuse high-level features with reconstructed
features. Finally, the processed pixels was binary classified.
The U-Net architecture had been adopted and expanded widely then, such as Feature

Pyramid Networks (FPN) (Lin et al. 2017), Pyramid Scene Parsing Network (PSPNet)
(Zhao et al. 2017) and “DeepLabv3” (Chen et al. 2017). Although network structures and
feature extraction methods are evolved for higher accuracy in complex image challenges,
the U-shaped deep CNN architecture is still a classical base model for matrix-based
segmentation problems.
Hence, we adopted the concept of a U-shaped model structure for a power segmenta-

tion problem in this paper. The model would performance binary classifications on each
recorded electricity consumption data point. Finally, the pool pump operation pattern
could be identified for further DR and DSM tasks in smart grids.

Methodology
In this section, the proposed PUMPNET is described in the 30-minute granularity elec-
tricity consumption segmentation context. Also, the classifier would be defined with its
architecture and training hyper-parameters in detail. Beyond classical model structures,
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we would also discuss the performance improvement methods on deep learning CNN
models. Finally, these modifications would be compared in the “Evaluation” section, and
the final PUMPNET would be formulated then.

An overview of the framework

The framework includes the whole processing of electricity consumption data from
obtaining stage to results prediction on unseen data. The proposed framework is com-
posed of the following four steps:

• Data acquisition: loading data and generating sequential data; completing missing
values.

• Feature representation: converting time-series data into matrix representations,
including raw data and ground truth of operation status of pool pumps.

• Classifier modelling: training the U-shaped deep CNN model with matrix
representations and corresponding pool pump operation ground truth.

• Pool pump operation detection: applying the model on unseen data and generating
prediction results; evaluating the identification results.

Data acquisition

The original data were collected by residential smart meters automatically. By recording
the activate power consumption amount in sequential 30-minute intervals, time-series
data can be generated and stored by the energy provider. The unit of electricity consump-
tion data is kilowatt-hour (kWh).
Considering to the practical household energy usage habits, we complete missing val-

ues depending on the possible scenario: continuous missing values lasting for days would
be filled with 0 indicating “away from home” and no energy consumed status; dis-
crete missing values would be interpolated with forward-filling method indicating data
transmission loss or recording loss.
For each household, the average aggregated power consumed when a pool pump is

working is slightly over 0.9 kWh in all residential records. On the contrary, quite low
kWh of electricity was consumed when the pool pump is off, 0.2 approximately. In the
traditional methods, a fixed threshold would be applied based on the large difference
of consumption amount to distinguish the on-off states. However, the accuracy of the
threshold classification method is around 0.5.
The main factors degrading prediction performance are spikes from “background

noise”. In the appliance load monitoring scenario, an aggregated consumption data of
devices 1, 2, . . . ,N at time t can be represented by:

P(t) = Ppool pump(t) +
N−1∑

i=1
Pi(t) + Pnoise(t) (1)

, where Ppool pump is the pool pump power consumption and
∑N−1

i=1 Pi + Pnoise presents
power consumption of other appliances and random noise in the grid. As a result, the
noise from other appliances and the grid would become a strong interference on the
aggregated consumption value. For example, microwaves, clothes dryers, dishwashers,
heaters and air conditioners may have different consumption pattern in high sampling
scenario, but their electricity consumption amounts are similar to pool pumps’ in coarse
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sampling. As a result, noise data are indistinguishable from pool pump operation in the
time-series data in terms of consumption amount of a single data point. Hence, we con-
vert the representation of time-series data to a matrix in the next step revealing distinct
features of pool pump operation rather than noise information.

Feature representation

The feature representation method is motivated by the nature of pool pump features,
fixed working time interval and periodical operating in days. Pumps work as the core
circulation system of the pool ensuring the water is clean and clear. Thus, this essential
component is mostly controlled by a timer for daily periodic operations during the same
time interval.
To highlight these features, we transformed the time-series data into a matrix represen-

tation visualized as Fig. 1. Ten days (480 30-minute intervals) energy consumption data
in the line graph (a) only contains information in the squared area data of matrix (b). The
fixed working period could be represented as horizontal edges in the figure, indicating
that the on-off state of a high energy-consuming appliance is switched at the same time
in consecutive days. Hence, it could be inferred as a timer controlled appliance. Also, the
pump operation in each day is represented as a vertical line. With consecutive vertical
lines and the same horizontal edges, the timer-controlled pool pumps operation pattern
could be considered as a rectangle in an energy-consuming matrix. Energy-consumption
amount of other appliances are represented as spikes in the matrix without shared state-
shift attributes as pool pumps. Hence, the matrix representation can enrich the feature
rendering of pool pumps rather than noises.
The matrix representation has 48 rows in 30-minute intervals and 365 columns in days.

Each value indicates the power consumption in kilowatt-hour for the corresponding dura-
tion. According to the above discussion on patterns of pool pumps operation, We can
convert the energy disaggregation problem into a “rectangle” power segmentation task
with energy consumption matrix and strong noise. In the next step, we would introduce
the segmentation model to address the load monitoring challenge.

Classifier modelling

According to the matrix representation and pool pump feature, our classifier is built con-
cerning semantic segmentation methods. Comparing to other segmentation tasks, we
have a larger dataset and simpler target pattern. Hence, we only kept the basic U-shaped
structure in this case, and improve the U-Net in terms of the parameter amount, local
feature fusion and avoiding training hamper and degradation problems. The proposed
U-shaped network for pool pump operation detection as shown in Fig. 2.
The model accepts realigned matrix from the feature representation step. Also, model

outputs share the same size as inputs: height 48, width 365 and channel 1, containing
value 1 and 0 as operating status indicators.
The U-shaped model is defined as Algorithm 1. Compare to original U-Net, we reduce

the number of the smallest feature map’s channels from 1024 to 512 and the kernel size
from 3x3 to 2x2. Also, we replace the two consecutive layers by convolution blocks.
We adopt 4 types of CNN backbone networks: consecutive convolutional layers, resid-
ual blocks (He et al. 2016), dense blocks (Huang et al. 2017), and residual-dense blocks.
Through experiments, we do extend the performance further with block replacement
processing. The basic block structures are displayed in Fig. 3.
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Algorithm 1: Algorithm of the U-shaped model
Input : Matrix data in 48(H) * 365(W) * 1(C)
Output: Binary classification mask
input ← matrix;
conv1 ← conv_block_1(input, channels = 64);
mp1 ← MaxPooling(conv1, kernel_size =[ 2, 2] );
conv2 ← conv_block_2(mp1, channels = 128);
mp2 ← MaxPooling(conv2, kernel_size =[ 2, 2] );
conv3 ← conv_block_3(mp2, channels = 256);
mp3 ← MaxPooling(conv3, kernel_size =[ 2, 2] );
conv4 ← conv_block_4(mp3, channels = 512);
mp4 ← MaxPooling(conv4, kernel_size =[ 2, 2] );
conv5 ← conv_block_5(mp4, channels = 512);
up1 ← deconvolution(conv5, kernel_size =[ 2, 2] );
conv6 ← conv_block_6(crop&concat(up1, conv4), channels = 512);
up2 ← deconvolution(conv6, kernel_size =[ 2, 2] );
conv7 ← conv_block_7(crop&concat(up2, conv3), channels = 256);
up3 ← deconvolution(conv7, kernel_size =[ 2, 2] );
conv8 ← conv_block_8(crop&concat(up3, conv2), channels = 128);
up4 ← deconvolution(conv8, kernel_size =[ 2, 2] );
conv9 ← conv_block_9(crop&concat(up4, conv1), channels = 64);
logits ← output_conv_layer(conv9, channels = 1, kernel_size =[ 1, 1] );
prediction ← sigmoid(logits);

The consecutive convolutional layers block is as same as architecture proposed in the
U-net. This kind of block has a simpler structure and fewer parameters than other blocks.
Based on the U-shaped model shown in Fig. 2, the model has 9 blocks, 18 convolutional
layers in total for feature extraction and reform. However, the model may be simplified
by reducing the number of layers for efficient convergence. Consequently, we intro-
duce other three types of block structure with inside skip connections to keep high-level
features without loss of low-level features.
The residual block structure could add the convolution results with original input of

the block pixel-wise. Residual learning would lead to network structure simplification and
avoid training hamper and degradation problem (He et al. 2016). A residual block can be
represented as:

yi = H(xi) + F(xi) (2)

where xi is the input of the i-th residual block, F() is the residual function learned by
consecutive convolutional layers, andH() is a mapping function. Here we chooseH(xi) =
xi, the identity function. The pixel-wise addition calculation is labelled as a circle with
symbol “+” in Fig. 3.
Based on the residual learning theory, densely connected convolutional layers block

(Huang et al. 2017) has proposed with more complex structure leading to a trainable
architecture. One layer inside the block would receive all information from its previous
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Fig. 2 A U-shaped deep convolutional neural network for appliance detection. The input energy
consumption matrix is represented by a green layer on the upper left corner and the data flow inside the
model is indicated by arrows. Then, the input data would be processed by successive convolution blocks
(yellow blocks) for feature extraction. Red layers transit and downscale the output of the previous
convolution block with a convolutional layer and a MaxPooling layer reducing data amount; deconvolutional
layers (blue layers) reconstruct the feature map using the previous convolution block output. Also, the model
concatenates the down-sampled feature maps and up-sampled feature maps upgrading the reconstruction
performance, indicated by ball symbols in the graph. After that, the processed feature map would be
reformed with the same size as the input matrix, and every data point would be predicted by the sigmoid
classifier (magenta layer). Finally, the output matrix at the upper right corner of the plot would present the
binary prediction of each data point by using “0” (state “off”) and “1” (state “on”)

layers. Also, the output of the block consists of all levels of features from previous con-
volution computation. The output of the block would be passed directly to MaxPooling
layers for downsizing and further inputs. The input of the dense block is:

xi = H([ x0, x1, . . . , xi−1] ) (3)

Fig. 3 Convolution block structure, with batch normalization and activation function ReLU: (a) consecutive
convolutional layers; (b) a residual block; (c) a dense block; (d) a residual-dense block
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where [ x0, x1, . . . , xi−1] means the concatenation of all previous layers’ input. The con-
catenation processing is labelled as a circle with character “c”.
Due to the sophisticated output structure of (c) dense block, which has three times of

layer channel comparing to the input matrix, computation of the whole U-shaped net-
work would be too complex. Hence, we combine the structure (b) and (c) by replacing
the concatenation processing with pixel-wise addition, and reform a residual block with
densely connected convolutional layers. The output of a residual-dense block could be
represented as:

x1 = x0 (4)

x2 =[F1(x1), x0] (5)

y = H(x0) + F2(x2) (6)

where x0, x1, x2 refers to the input of block, and two convolutional layers correspondingly;
F1 and F2 represent convolution computation, and these two nested functions form the
residual learning function; [F1(x1), x0] means concatenation of variables; functionH() is
the identity mapping function here.
Besides convolutional blocks, max-pooling layers and deconvolutional layers are added

in the contracting part and expanding part for feature compression and size restore. Skip
connections also pass high-level features to restore feature maps. Different size of feature
maps are cropped to the smaller size between them and be concatenated together for
richer information for training. Finally, the last convolution block output (logits) would
be processed by the sigmoid function for classification. The sigmoid is defined as:

ŷ = σ(logits + b) = 1
1 + e−(logits+b) (7)

where y is the output of sigmoid function; logits is the variable input; b refers to bias.
For the implementation, we used TensorFlow 1.15 to implement ourmodel. In the train-

ing stage, we split the 75% dataset as training data (2,988 households) and the remaining
25% as validation data (996 households). Each record was realigned as a 48 × 365 × 1
matrix, and labels are transformed to matrices with value 0 and 1 in the same size. For
the optimization, we used Adam optimizer. The training batch is 20. The learning rate is
0.0001 with a decay rate of 0.96 for 1000 training steps. Since we used a smaller kernel and
channel size, the training time spends around 30-40 minutes, and the inference can be
done within 1 second by a GTX 1080 Ti graphic card. A train step vs loss plot is displayed
in Fig. 4.
The loss function we utilize in the training is cross entropy with logits defined as:

CrossEntropyLoss = −
N∑

k=1

(
yk ∗ log ŷk

)
(8)

where N refers to the number of classes in the prediction. In this case, we only have two
classes, then N equals to 2.

Pool pump operation detection

In this step, the trained model would be finally applied to other data. The measurement
of model performance is the mean intersection over union (mIOU). The mIOU indicates
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Fig. 4 Train step vs train loss. With learning rate 0.0001, decay rate 0.96, batch size 20, total steps 1000

the proportion of overlap area prediction and the ground truth based on their union area.
It can be defined as:

mIOU = 1
n

n∑

i=1

|ŷ⋂
y|

|ŷ⋃
y| (9)

The mIOU value locates between 0 and 1, and a larger value indicates a higher degree
of coincidence of the predicted pattern and the ground truth pattern.
The final output matrix of pool pump operation on-off state could be analyzed further

combined with energy consumption time pattern to investigate whether the pool pump
can be shifted for demand-side management. Also, the load shape after shifting pool
pump consumption could be estimated to decrease the peak-to-average ratio effectively.

Evaluation
In this section, we would focus on the prediction results and evaluation of our model.
A comparison would be raised among baseline models (Neural NILM Rectangle model
and Single Load Extraction Model) and our base PUMPNET. Baseline models are one-
dimensional deep learningmethods and are designed for a very small range of households.
Comparing to baseline models, PUMPNET indeed has better performance in thousands
of household context. And it is shows that our feature representation method is quite
suitable for pool pump working patterns.
The second comparison is the convolution block backbone performance comparison.

We implement 4 U-shaped networks with different blocks on the same training data and
random seeds, but the performance of models varies slightly. We would compare the
mIOU value of eachmodel and point out which one is the best architecture for pool pump
operation detection.
The dataset we used for evaluation consists of 3984 households’ energy consumption in

2013. For each household, the energy consumption has been recorded as positive num-
bers referring to the kilowatts of power consumed by all appliances in the house by every
day in a year with 30-minutes time intervals. Thus, each record includes 17,520 data
points in time sequence. It has been split into 75% as training data (2,988 households) and
25% as validation data (996 households).
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Comparing with baseline models

In this section, we compare our base PUMPNET (with consecutive convolutional layers)
with baseline model. The baseline models that we selected is Neural NILM Rectan-
gle (Kelly and Knottenbelt 2015a) and Single Load Extraction (Barsim and Yang 2018) .
Details about baseline models have been discussed in 2.1 and the result is as follows:
As the baseline models in the original papers have adopted precision, recall, accuracy

and F1 score measurements, we calculated these values for the base PUMPNET also for a
complete comparison. These measurements are defined as:

Precision = TP
TP + FP

(10)

Recall = TP
TP + FN

(11)

Accuracy = TP + TN
P + N

(12)

F1 = 2 ∗ precision ∗ recall
precision + recall

= 2 ∗ TP
2 ∗ TP + FN + FP

(13)

, the P,N indicates counts of positive results and negative results correspondingly; the
TP, FP, FN ,TN mean counts of true positive, false positive, false negative and true
negative predictions.
According to the comparison in Table 1, the base PUMPNET has the highest values

in all measurements. The baseline 1D models both have precision values around 0.4. As
the definition, precision refers to TP over all classified positive values. A lower precision
indicates there is a large amount of false positive predictions.
High FP may result in the wrong classification depending on energy consumption val-

ues. 1D methods only can deal with close data points in the time dimension, which could
result that a spike would be classified as positive status because of its high power con-
sumption as real pool pump operation pattern. If the pool working period is very short,
the feature would not clear after pooling layers. Then the high-level feature would be
dismissed.
In conclusion, the performance of base PUMPNET proves the effectiveness of feature

selection and transformation processing of matrix representation for pool pumps. Also,
matrix representation combined with deep learning segmentation model would achieve
better performance than 1D NILMmodels.

Comparing among convolution blocks

We train the U-shaped model with four convolution blocks and our energy consumption
dataset. Four models all can converge with the given pool pump identification scenario.
Finally, a comparison of models performance in mIOUmeasurement is shown in Table 2.

Table 1 Performance comparison between baseline models and PUMPNET

Model mIOU Precision Recall Accuracy F1 score

Neural NILM rectangle 0.550 0.378 0.828 0.780 0.519

Single load extraction 0.568 0.403 0.738 0.806 0.521

PUMPNET 0.926 0.979 0.963 0.992 0.971
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Table 2mIOU of the U-shape models with different convolution block structure

Convolution block backbone mIOU

Consecutive convolutional layers 0.9259

Residual block 0.9412

Dense block 0.9390

Residual-dense block 0.9437

Models are all with mIOU value over 90%, and the U-shaped network with residual-
dense blocks has the highest mIOU, 94.37%. This result indicates that the periodical
appliance operation detection problem can be solved by image semantic segmenta-
tion methods. With a single end-to-end model, a group of universal parameters could
be trained with well generalization ability. Hence, this method would lead to high
improvement in load monitoring methodology for energy providers.

Case study

Sample of prediction results is compared in Fig. 5, with original input and correspond-
ing ground truth. These results are all output by the model with residual-dense blocks.
All images are visualizations of the numerical data matrix inputs, ground truth and
predictions.
The model can directly extract rectangles which are clearly with higher power con-

sumption value in the two results on the left side in Fig. 4. Areas we are interested in have
an obvious boundary in the input matrix. However, as the prediction is pixel-wise, values
on the state switch boundary are not exactly corresponding to the ground truth. This may
be caused by that the output sigmoid classifier is relatively simple with one value input
instead of the spatial information of neighbours’. Also, the start working time of a pool
would not at the beginning of the 30-minute interval, resulting in the lower consumption
amount comparing to normal on states. Thus, the aggregated data may not reflect the real
working initialization, and a positive spot would be classified as negative. This is a type II
error leading to false negative classification.
Similarly, the last two results indicate that pool pump working period classification

are also influenced by the strong noise from other high power consumption devices,
especially at the peak load time. This results in type I error, leading to false positive pre-
dictions. Although convolution has a strong ability in noise reduction, the input of our

Fig. 5 Comparing the input matrix, ground truth and label matrix with their visualization, by the
residual-dense block PUMPNET
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model contains less information with its single channel. Type I errors are caused by the
high similarity between closed pixels. Such as the third results in Fig. 4, the bottom tri-
angle is a type I error. It is far from the pattern of this household. It may result from
parameters trained with other households. An improvement can be performed by using
the Bayesian method, combining the prediction with a prior data distribution probability
derived from training data.
Overall, the model could identify pool pumps with a high mIOU. According to the

analysis on type I error and type II error, the model can be extended with sophisti-
cated classifier adopting spatial information from neighbourhoods and be combined with
a prior probability of pool pump operating time distribution to enlarge the prediction
accuracy on boundaries.

Performance interpretation

The PUMPNET model introduces medical image classification architecture to energy
analysis field. Surprisingly, the semantic segmentation mole could perform well in the
“energy segmentation” task. Here, we try to deliver some interpretation of the model
performance.

Shallow information Shallow information is high-resolution information directly
passed from the encoder to the same height decoder via a concatenate operation. High-
level information can provide more detailed features such as gradients for segmentation.

Deep information Deep information is low-resolution information after multiple down-
sampling. The ability to provide contextual semantic information for the segmentation
target throughout the image can be understood as a feature of the relationship between
the response target and its environment. This feature helps the category judgment of
objects (so classification problems usually only require low resolution/deep information,
not involving multi-scale fusion).

Characteristics of the task Because boundaries in energy consumption matrices are
blurred as medical images and more high-resolution information is needed for pre-
cise segmentation. As well, patterns of pool pump are relatively fixed as the internal
structure of the human body in medical images. The distribution of the segmenta-
tion target is very regular, the semantics are simple and clear, and the low-resolution
information can provide this information for the recognition of the target object. PUMP-
NET could combine low-resolution information (providing object-based recognition) and
high-resolution information (providing accurate segmentation and positioning), leading
to high performance in energy analysis task.

Conclusion
In this paper, we discussed the potential to use CNN for operation detection and proposed
a pool pump operation detection network (PUMPNET) with a U-shaped convolutional
neural network with residual-dense blocks. By converting time-series data into a date-
time two-dimension matrix, we highlight pool pumps periodical operation features with
low-frequency sampling data, instead of analyzing load activations using time-series
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features only. The PUMPNET model could outperform time-series based deep learn-
ing NILM models, and achieve 94.37% mIOU in predictions. Overall, this model could
address timer-based pool pump hidden patterns across thousands of households with
a strong noise from other appliances. This power segmentation method offers a high-
performance solution for centralized load monitoring instead of time-series based NILM
methods. Also, PUMPNETwould contribute to demand-sidemanagement and offer prior
information for demand response programs.
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