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Abstract
Unlocking and managing flexibility is an important contribution to the integration of
renewable energy and an efficient and resilient operation of the power system. In this
paper, we discuss how the potential of a fleet of battery-electric transportation vehicles
can be used to provide frequency containment reserve. To this end, we first examine
the use case in detail and then present the system designed to meet this challenge. We
give an overview of the tasks and individual sub-components, consisting of (a) an
artificial neural network to predict the availability of Automated Guided Vehicles (AGVs)
day-ahead, (b) a heuristic approach to compute marketable flexibility, (c) a simulation
to check the plausibility of flexibility schedules, (d) a multi-agent system to
continuously monitor and control the AGVs and (e) the integration of fleet flexibility
into a virtual power plant. We also present our approach to the economic analysis of
this provision of a system-critical service in a logistical context characterised by high
uncertainty and variability.

Keywords: Flexibility management, Control reserve, Electromobility, Logistics,
Demand side management, Autonomous guided vehicles, Virtual power plants,
Multi-agent systems, Deep learning, Neural networks

Introduction
Unlocking and managing demand side flexibility is an important contribution to the
integration of renewable energy and an efficient and resilient operation of the power
system. The German Association of Energy and Water Industries (Bundesverband der
Energie- und Wasserwirtschaft, BDEW) estimates that 2,700 MW of demand in Germany
could be used in a flexible way Bundesverband der Energie- und Wasserwirtschaft
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(BDEW) (2013). This includes different energy intensive industries, such as the produc-
tion of aluminium, steel or paper (Gobmaier et al. 2012) as well as private households
(Zeilinger and Einfalt 2011). Logistics, however, has been mostly ignored so far, although
the ongoing electrification of transportation systems in combination with smart charg-
ing strategies is expected to have great economical and ecological potential (Hacker et al.
2015).

In this research project, “FRESH”,1 we analyze the potential flexibility of a fleet of
battery-electric transportation vehicles at the Hamburg container terminal Altenwerder
and develop and test an agent-based system for optimized flexibility management. The
use case for flexibility is the provision of frequency containment reserve (FCR) via the
container terminal’s automated charging stations. In this context, flexibility refers to the
power and energy that can be dedicated to the provision of additional use cases by
placing a transportation vehicle at a charging station without disturbing the logistical
processes.

With this setup, three layers have to be reflected in the system design presented in the
work, each of which coming with specific challenges:

• Logistics layer: The transportation requirements in the container terminal have to
be fulfilled first. The available flexibility thus changes over time and depends on the
available battery-electric vehicles and charging stations, both of which depend in turn
on the logistical processes of the container terminal. Thus, the transportation power
demand has to be predicted in advance in order to calculate the overall marketable
battery capacity.

• Charging and flexibility management layer: While for each battery-electric
vehicle charging can be optimized depending on the individual logistic process, the
flexibility of this process can be exploited on a higher level using pre-aggregation. In
order to maximize the reliability of the provided flexibility in context of forecast
errors and uncertainties in the logistical processes, a continuous monitoring and
control of the battery-electric fleet is necessary.

• Aggregation and market layer: Providing FCR with time-restricted flexibility from
transportation vehicles requires a pooling strategy, e.g. with a Virtual Power Plant, in
order to be able to compensate for short-time deviations or unexpected logistical
requirements. The pre-aggregated fleet flexibility can be integrated into market
processes using the aggregator role as defined by the Universal Smart Energy
Framework (de Heer 2015). The number of additional charging cycles and
potentially reduced lifespan of the batteries has to be taken into account when
analyzing the economic feasibility of the overall concept.

The rest of this paper is structured as follows: First, information on the container termi-
nal addressed with the work at hand is presented. After that, we show the specific use case
of FCR provision using the AGV fleet’s flexibility. In the next section, the functional core
of the technical system is described: the flexibility management system realized using soft-
ware agents. Here we give a brief insight into the individual system components. Finally,
we take a look at the economic perspective of the presented design, and discuss future
work in the conclusion.

1https://hhla.de/en/company/subsidiaries/container-terminal-altenwerder-cta/fresh-project

https://hhla.de/en/company/subsidiaries/container-terminal-altenwerder-cta/fresh-project
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Setting the scene: the Hamburg container terminal Altenwerder
The Hamburg Container Terminal Altenwerder (CTA) (Fig. 1), operated by Hamburger
Hafen und Logistik AG (HHLA), is a highly automated container handling facility and the
world’s first container terminal certified to be climate-neutral. The terminal was taken
into service in 2002 and has been equipped from the beginning with advanced automa-
tion technology and modern data processing systems. Thus, discharging and loading of
large container ships can be handled with a very high degree of automation and high effi-
ciency. With 1.4 km of quay wall and four berths, CTA combines a compact layout with
short overall transportation distances. 14 container gantry cranes handle loading and dis-
charging of containers in two stages: First, double trolley gantry cranes load and discharge
from/to the vessel. Each single container is then lowered on to a working portal higher up
and prepared and checked for further transportation. Second, an additional trolley crane
then accepts the container automatically and lowers it on to one of currently about 90
Automated Guided Vehicles (AGV) (Fig. 2).

Historically equipped with diesel-electric systems, CTA’s AGVs are currently being
exchanged with battery-electric systems. By 2022, the AGV fleet in use at CTA will be
completely converted to fast-charging lithium-ion batteries, which is supported finan-
cially by the European Regional Development Fund. With a maximum charging and
discharging rate of 220 kW and the simultaneous use of all 18 automated electricity fill-
ing stations, up to 4 MW load reduction and load increase potential can theoretically be
provided to the energy market.

These vehicles provide transport between the gantry cranes and container storage. They
find their way completely independently, without any instructions from humans. The
AGV searches for the fastest route, with the aid of more than 19,000 transponders set
into the ground. A software calculates and controls the shortest route to the destination
while allowing for other moving vehicles. Fully automated, AGVs will also find their way
to the ACSs and recharge when necessary. The ACSs allow for a fully automated and bi-
directional charging of AGVs and thus offer the possibility to provide flexibility both with
regard to energy markets and power system services.

Fig. 1 Schematic layout of the Container Terminal Altenwerder and location of built / planned Automated
Charging Stations (ACS). Image provided by and copyright with HHLA
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Fig. 2 Battery-electric Automated Guided Vehicles (AGV) and Automated Charging Stations (ACS) are the
backbone of electrified container transportation at CTA. Images provided by and copyright with HHLA

The Terminal System covers all control and optimization systems of the terminal.
It comprises an advanced data processing system and supervises and controls all logisti-
cal processes at CTA. The Terminal System’s optimization functions realize shorter
transportation routes and less empty runs and are continuously monitored and improved.
Additionally, experienced human operators in a control room supervise the system’s per-
formance and are able to manually fine-tune the (semi-) automated decision making. For
the work at hand, the Terminal System serves as interface system for the aggregator
and the container terminal operator. The Terminal System is also the foundation of
the flexibility management system being developed in the FRESH project as presented in
the following sections.

Use case: provision of frequency containment reserve
Frequency containment reserve (FCR) is an instrument for short-term compensation of
an imbalance between generation and consumption in power grids. In order to always
ensure sufficient capacity, FCR is tendered via a procurement platform operated by the
German transmission system operators (TSOs). At present, FCR products have a duration
of one day and are traded two days in advance (D-2) in a daily procedure. In order to
realize FCR provision in a container terminal as depicted above, we have to consider the
energy-economic roles involved in such a setup. Figure 3 gives an overview regarding the
roles as defined in this use case.

The aggregator holds access to the market (de Heer 2015). In order to fulfill the
high reliability requirements for FCR provision, flexibility from the container terminal
is combined with e.g. storage, renewables or conventional (e.g. gas-fired) generators and

Fig. 3 FCR provision in logistics: energy-economic roles and system boundaries
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Table 1 Systems interacting to perform the use case

Actor / Role System Description

aggregator Virtual Power Plant includes the AGV fleet in its pool of assets

(VPP)

Next Box local control unit that connects ACS with

the control system of the VPP

pre-aggregator FlexMan flexibility management system developed

in this project

industrial consumer Terminal System various IT systems of the terminal which

(container terminal FlexMan interacts with

operator) Battery Pool responsible for monitoring the status of the battery

Management System (BPMS) pool and managing the recharging process

Automated Guided Vehicle (AGV) automated guided vehicle

Automated Charging Station (ACS) automated charging station

controllable loads. Therefore, a pre-aggregator is needed to manage the small-scale flexi-
bility provided by the logistics process. The pre-aggregator defines a slight variation of the
aggregator role: It has no direct access to the market, but offers flexibility with a defined
degree of reliability in day-ahead planning. In the provision phase, deviations must be
detected in time, communicated to the aggregator and compensated by other plants in
the pool. Using this distinction, the aggregator does not need information on the details
of the underlying processes connected to delivering flexibility, i.e. the details of the logis-
tics’ processes in the container terminal. The pre-aggregator role can be realized either
by the industrial consumer (i.e. the container terminal operator), or by a third party con-
tracted for this task2. Table 1 presents the technical systems needed to realize the use
case, including the specific actor that is in charge of operating the respective system.

As part of the standardization of balancing service markets at European level, the ten-
dering of FCR is set to undergo some changes starting July 2020. There will be a daily
tendering procedure, which will take place the day before the provision (D-1) and in which
individual 4-hour products will be tendered (TSOs of Austria 2018). This defines the
timeframe for the provision of control reserve with the fleet of battery-electric vehicles:
First, a day-ahead planning phase is necessary to determine the amount of flexibility that
can be provided by the fleet. Second, this approximate planning must be supplemented
by an intraday operational phase in which specific vehicles are selected and prepared in
time for the provision of FCR. Therefore, these two phases have to be modeled separately.

Figure 4 illustrates the sequential process in the day ahead planning phase. Gate closure
for the offer of FCR will be at 8 a.m. on the previous day. Therefore, at 7 a.m. a query of the
current logistics data and the status of the fleet regarding the batteries including the states
of charge is started. This data is used to predict the transport demand over the course of
the planning period. Afterwards, FlexMan requests market signals from the VPP. These
signals indicate which prices are expected for the different 4-hour blocks. This step is
currently considered optional, as it is not yet clear whether there will be significant price
differences within a day. FlexMan uses the predicted transport demand and the market
information to determine the flexibility of the fleet. Information on the available flexibility
is transmitted to the VPP (i.e. the aggregator actor) that then participates with its total

2Depending on the definition of the aggregator role, a pre-aggregator can be classified as aggregator as well. In the
following, we distinguish them by means of market access (VPP level) or direct flexibility access (container terminal
flexibility aggregation level). In other use cases, this setup might be classified as hierarchical aggregation.
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Fig. 4 Sequence diagram of day-ahead planning phase

pool of plants in the tender for FCR. Once the tender results are known, the VPP has to
divide its obligations for the provision of FCR between different facilities in its pool. The
share of the FCR provisioning allocated to the (aggregated) AGV fleet is transmitted back
to FlexMan and serves as the basis for the intraday operational phase.

Figure 5 depicts the overall process in this phase. If the fleet needs to provide FCR,
FlexMan will continuously request updates on the battery data of the fleet. Together
with the FCR requirements from day-ahead planning and the predicted transportation
requirements, this current status data forms the input for operational planning. The aim
of operational planning is to select individual AGVs for FCR in order to ensure that they
are ready for FCR provision in time, without interfering with the logistical processes in
the terminal. Since it is very difficult to reliably predict the future SOC of individual vehi-
cles in the long term, the selection of vehicles both must be made with shorter planning
horizons and must be continuously reassessed. When a specific AGV is selected for FCR
provision, FlexMan sends a charging request to the BPMS, which forwards the request
to the TS. The TS creates a driving order to an available charging station for the vehicle,
which is executed as soon as any existing transport orders are completed. Once the charg-
ing process has started, the BPMS informs FlexMan about the ACS where the vehicle
is located. Additionally, FlexMan receives continuous updates on the SOC. The vehi-
cle is confirmed for FCR provision as soon as it reaches the time when it is scheduled
for FCR and has a valid SOC. Then, the Next Box takes control of the charging pro-
cess and supervises FCR provision, while communicating with the control centre of the
VPP. Afterwards, FlexMan initiates the return of the vehicle to the logistics operation by
revoking the FCR confirmation from the Next Box. The AGV will then charge up to a
pre-defined SOC and reintegrate into the transport operation.
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Fig. 5 Sequence diagram of intraday operational phase

FlexMan: flexibility management with intelligent agents
FlexMan, the Flexibility Management System being developed in this project, is a mod-
ular data processing system. Its modules perform various specialized tasks and exchange
data with each other in order to enable the usage of the flexibility of the AGV fleet.
FlexMan has been implemented using ideas inspired by micro-service architectures.
This refers to the idea that all components of the system should be (a) loosely coupled
and (b) remain (re-)deployable at any time on demand. By design, each component has
to maintain its own internal state (if this is required). The ability to run all components
of the systems in separate containers also allows more flexible deployment of software
updates compared to a monolithic system. For example, the algorithm that performs flex-
ibility calculations could be later on replaced with improved heuristics in order to boost
performance of the overall underlying business process.

Most of the functional modules of FlexMan have been implemented using the Python
programming language. It offers excellent support for data analytics and artificial intelli-
gence as well as still remaining a high-level and general-purpose programming language.
All the modules’ services are provided via Docker containers to ensure the aforemen-
tioned benefits of a micro-services architecture. Using this approach also simplifies the
preparation of the field trial planned for 2021 in the container terminal, as the deployment
of FlexMan into the existing TS will be less risky and more transparent with respect to
already running services within CTA’s IT systems.
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Figure 6 depicts both the internal modules of FlexMan and the external systems and
components that FlexMan interacts with. The internal modules reflect the individual
functionalities that are necessary in both the day-ahead planning and the intraday oper-
ational phase. The Controller is the central component of FlexMan. It encapsulates
the external interfaces and triggers the recurring processes in the system, such as the day-
ahead flexibility determination and the continuous intraday planning. Furthermore, the
Controller queries demanded data such as the actual status of the batteries from the
BPMS or the sailing list from the TS, and either forwards it directly to other components
or saves it in the Data Storage. This approach allows to use various types of data flows
between components – both synchronous and asynchronous. For instance, in case of the
Simulation module, the request to cross-check an operation plan and flexibility usage
could last up to 5 min (see “Simulation: simulating automated logistics in the container
terminal” section for more details on technical requirements).

In summary, the modular architecture of FlexMan enables a flexible design and adap-
tation of the system during the FRESH project and allows implementation of different
use cases, thus simplifying the system’s future evolution. The most important functional
modules for the current use case of FCR provision, namely Prediction, Simulation,
Fleet Flexibility and Planning, will be described in more detail in the following
sections.

Prediction: predicting AGV availability with machine learning

In order to accurately plan the amount of offered flexibility, a prediction of the future
usage of the AGVs is needed. Flexibility for an entire day in fixed 4 hour intervals must

Fig. 6 Components of the FlexMan System Architecture: Core components of FlexMan are depicted inside
the whitebox. Components such as Next Box, TS, BPMS and VPP are external components, that are
connected to FlexMan via the Controller component. The component Simulation consists of -
Simulation Proxy and Plant Simulation
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be offered one day ahead at 08:00 CET (TSOs of Austria 2018). To reliably offer as
much flexibility as possible without impacting logistics operations, the fleet flexibility
and the planning module need a prediction of the unused AGVs throughout the day in a
15-minute resolution.

The handled ships and the amount of containers to load and unload directly influence
the number of AGVs needed. Therefore, sailing list entries of ships arriving, departing or
lying in port on the day on which the use is to be predicted are taken as input for the
prediction. A sailing list entry contains the name of the ship, scheduled arrival, departure
and work start, a unique arrival ID, the planned berthing place, planned position of front
and rear of the ship as well as the number of containers to load and unload.

Table 2 shows an anonymized example of sailing list entries. The arrival ID is not used
as model input, because it changes on every arrival and therefore holds no additional
information that is useful to the models. On the other hand, the time scheduled dates,
berthing position and length of the ship, as well as containers to load and unload influ-
ence the amount and duration of AGVs used, which subsequently influences ACS usage.
The ship name might also contain valuable information, as the same ship could be han-
dled similarly on different occasions. The dates are split into individual integers and ship
names are mapped to integer representations in order to be processable by the prediction
models. Usage profiles that measure the number of unused AGV and ACS throughout a
day serve as labels, which are generated from AGV transport orders and ACS charging
operations. For all 15 min intervals in a day, it is checked how many AGVs and how many
ACSs are in use. This number is subtracted from the total number of AGVs/ACSs to get
the number of unused equipment.

Figure 7 shows an example of the amount of unused AGVs over a day, together with
an example prediction. The offerable amount of flexibility is restricted by the number of
unused AGVs and ACS, as described in the section about the use case. Because of that,
the usage profiles are our prediction target. We will evaluate different Machine learning
methods to reach accurate predictions and gain insight on their respective advantages
and disadvantages on this prediction task. ANNs and Random Forests have proven to be
useful regression tools in the past (Abiodun et al. 2018; Verikas et al. 2011), as well as
in a pre-study carried out in a master thesis. This thesis used the same input data but
aimed to predict the AGV energy demand of handling a ship. (Hammer 2019) Simula-
tion data was used to generate the dataset for the pre-study as it relied on a full fleet of
electric AGVs to predict their energy consumption. At the time of the pre-study, most of
the terminals AGVs were diesel powered, which is why simulation was necessary. Addi-
tionally, the simulation data allowed to implement data preprocessing techniques, before
real data was available. The details of the performed simulation are explained in the next
section.

Table 2 Anonymized example sailing list entry

name scheduled
arrival

scheduled
departure

work start arrival ID berthing
place

pos.
front

pos.
rear

load unload

ship0 01.04.2020 03:00 03.04.2020 14:00 01.04.2020 06:00 9876460 3 650 950 270 2420

ship1 01.04.2020 13:00 02.04.2020 11:00 01.04.2020 14:00 9876461 1 100 370 775 1432

ship2 03.04.2020 08:00 04.04.2020 17:00 03.04.2020 11:00 9876462 4 1000 1200 500 443

ship3 04.04.2020 06:00 05.04.2020 23:00 04.04.2020 08:00 9876463 2 400 600 1330 691

... ... ... ... ... ... ... ... ... ...
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Fig. 7 Example AGV usage prediction on unseen data

Over the course of this project, we could not yet collect sufficient data to create a large
enough training dataset from real data. A first ANN model was therefore trained on the
available AGV usage data which contains 6 months of sailing lists and usage profiles. The
model consists of four feedforward layers with tanh activation reaching from 512 to 92
neurons in each layer. For model training, 80% of the data was used, 20% was used as a
test set to evaluate the performance on unseen data.

The accomplished accuracy is promising. Figure 7 shows a prediction against the cor-
rect values of an unseen day. Although there are intervals in which the error is quite high,
the figure shows that most of the trends throughout the day are predicted correctly. This
indicates that the model is in principle able to learn AGV usage profiles. Overall, the mean
absolute error (MAE) on unseen data is 15 AGVs. This means, that on average, for every
15 minute interval, the prediction is either 15 AGVs too high or too low. In a fleet of 96
AGVs this is still a substantial error that leads to very high security margins in the flexibil-
ity calculation and therefore less offerable flexibility. We subsequently aim to improve the
prediction performance by using more training data, tuning the model further and using
additional input such as weather data. As stated previously, other model types will also be
evaluated.

Simulation: simulating automated logistics in the container terminal

Simulating the logistic network of AGVs in a container terminal is a complex and highly
specialised task. Nevertheless it has been reported in literature (Vavrík et al. 2017).
Similarly, we employ the discrete event simulation tool Tecnomatrix Plant Simulation
(Siemens Digital Industries Software) by Siemens to represent AGV activity and ACS

usage in high temporal resolution. Within the whole system, this plant model serves two
roles. First, it acts as the data generator for providing training data to the near-term
AGV availability prediction. Second, it is used to check the plausibility of the determined
day-ahead flexibility and the ad-hoc planning.

This project’s model is based on the knowledge, processes and software artefacts devel-
oped during prior research project BESIC (Ihle et al. 2016). The BESIC simulation model
was used to simulate the energy demand of the CTA. It was also able to simulate the
logistics with different ratios of diesel-electric and battery-electric AGVs to show the
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difference in energy demand. In order to fit the necessary requirements stated in the intro-
duction, the simulation model had to be substantially adjusted. An early version of the
adjusted simulation model was then used to generate the data needed for the prediction
pre-study mentioned in the previous section.

Figure 8 shows a part of the simulation model. In comparison to Fig. 1 it only shows the
unloading of one berthed ship. At the top of Fig. 8 five gantry cranes are shown. The grid
simulates the transponders in the ground to let the AGVs, which are shown as rectangles,
only drive along a specific path. The bottom of the figure shows an ACS and five container
storages. The AGVs park in front of the gantry cranes which are processing the ship. As
soon as an AGV is successfully loaded it starts driving to an assigned container yard.
Another AGV, which is already parking in a waiting area in order to take its place, to be
then loaded by the gantry crane.

Besides the data generation task, the simulation is going to be used within the project
to verify the feasibility of the determined day-ahead flexibility and the intraday short-
term scheduling. Therewith, the risks of mismanaging the infrastructure of the container
terminal can be minimized. An important part of the mentioned day-ahead planning
is to determine how many AGVs and ACS can be taken out of the logistic processes
without impacting the business as usual process of the container terminal under any cir-
cumstances. The quality of the simulation model was validated using historical data on
ship handling times. For large ships (unload time greater 12 hours), the mean deviation
between simulated and measured duration is 9%, for all ships it rises to 26%. This is mainly

Fig. 8 Segment of the simulated container terminal while onloading a ship: 5 (of 16) gantry cranes (top) with
3 rows of AGVs (blue rectangles) in loading position, the grid of possible driving lanes (middle) with more
AGVs queuing (vertically oriented) and in transit (horizontically oriented). Bottom row shows 5 (of over 30)
container storage areas. The bottom left symbol indicates a charging stations with 7 ACSs
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caused by underestimating the unload time for small ships. The simulation runs on a vir-
tual machine with 8 × 2.40GHz cores and 16GB RAM. It takes about five to six minutes
to simulate three days of the logistical process depending on how many ships are being
processed within those days.

To enable the planning validation, the simulation was further extended by three areas
of charging platforms with a total of 18 ACS. Figure 9 shows one of these platforms. The
AGVs are parking next to an ACS and are charged or used to provide flexibility. These
platforms are used to predict how many ACSs are needed for the logistical processes of
the container terminal.

Fleet flexibility: estimating flexibility and handling uncertainty of transport order

allocation

The purpose of the flexibility module is to estimate the flexibility the whole fleet can
provide without compromising logistic requirements. In other words, it is a matter of
determining how many ACS with connected AGV may be taken out of the logistics oper-
ation. Thus, we must first estimate the number of ACS and AGV needed to meet the
transport requirements. The number of AGV needed for logistics is obtained in the trans-
port demand prediction. The number of ACS must be derived from this prediction and
the information on the SOC of the fleet. The occupancy rate of ACS depends on how
many AGVs have to reload at a time, which in turn depends on how many trips an AGV
has to make. The same transport requirement, i.e. the number of transport orders, can
therefore lead to very different utilisation profiles of the ACS depending on the allocation
of orders.

As FlexMan is designed to have minimal impact on the terminal’s logistics systems, it
cannot interfere with the allocation of transport orders. The creation and assignment of
transport orders is the sole responsibility of the TS. When assigning a task to a vehicle,
the TS selects an AGV that can fulfill the order in time and has the lowest possible driving
effort. As long as the SOC of a vehicle is above the minimum value, it has no influence on
the allocation of transport orders. Since it is not possible to predict the positions of the
vehicles, it is also difficult to predict to which vehicle a transport order will be assigned.
The challenge for FlexMan is to determine the use of the ACSwithout influencing the allo-
cation of transport orders and without being able to accurately predict the allocation and
thus the occupation of ACS. So instead of trying to predict ACS usage for transport and

Fig. 9 Representation of an ACS within the simulation. This figure shows 3 ACSs (out of 18). The left part of
the figure depicts the entry part of the charging area with a routing routine. The middle part of the figure
depicts the charging areas (3 in total). The right part of the figure is responsible for taking a charged AGV
back into the logistic process
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using the remaining ACS for FCR, we select a certain number of ACS for FCR provision
and check whether the logistics processes can still run smoothly. We use a heuristic to
find a solution that does not interfere with the logistics process and provides the greatest
possible benefit.

Figure 10 shows the procedure of this heuristic. First a solution candidate is created.
A solution candidate is a time series that specifies the number of ACS reserved for FCR
provision for each 15 minute interval of the planning horizon. The first candidate is the 0-
candidate, which serves as a baseline. This means that no ACS are selected and therefore
no FCR is offered. To determine the quality of the solution, we have to assess the expected
profit and the feasibility of the candidate. The expected profit can be easily calculated by
multiplying the power provided by the candidate by the expected price. The feasibility
measure is a metric that indicates how well the logistics process can run if the number of
ACS specified by the candidate and an equal number of connected AGVs is not available.
To determine this metric, a logistic model is parameterized with the predicted transport
demand and the solution candidate. This logistics model can be the simulation described
in the previous section, as well as a simplified model. It is crucial that the model can be
executed quickly and provides information about the feasibility with sufficient reliabil-
ity. Afterwards the expected profit and the feasibility measure are combined to form the
solution quality of the candidate. The candidate is then modified, for example by muta-
tion, and the solution quality for this new candidate is evaluated. This iterative process is
continued either until a candidate with sufficient solution quality has been found or until
a certain period of time has elapsed.

This approach is presented here as an abstract process model and is concretized by the
design of the individual steps, e.g. the adaptation of the candidate, the logistics model and
the exact determination of the feasibility measure. But even on that abstract level some
advantages can be noted. The weighting of expected profit and feasibility measure in the
calculation of the solution quality allows a trade-off between risk and profit. In addition,
each solution candidate can be compared to the 0-candidate thus avoiding the offer of
FCR if the risk for logistics is too high. This approach also offers the anytime condition,
since there is a feasible solution from the first iteration with the 0-candidate, which is
improved over time.

Planning: continuously supervising and scheduling AGV for FCR provision

As described in earlier sections, the goal of intraday operational planning is to select
specific AGVs for FCR provision. Since they are equipped with identical battery systems,

Fig. 10 Heuristic for flexibility determination
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each AGV can contribute in principle the same amount of power to the FCR provision
once it is prepared. However, the AGVs differ in the amount of time they need to be ready
for FCR provision, as they may need to finish transportation tasks and/or have to drive to
the ACS from different positions. Additionally, depending on their current SOC they may
or may not need to recharge before they can contribute to FCR provision. Thus, for each
AGV feasible FCR schedules have to be determined. Here, a schedule indicates how much
power an AGV contributes in every 15-minute interval of the FCR product. In addition,
a schedule includes the preparatory steps and thus indicates whether the AGV and the
ACS it occupies will be available for transportation tasks. Thus, in this context a schedule
represents a single possible usage of an AGV for FCR provision over time.

Figure 11 depicts the general setup of the multi-agent system (MAS) used for opera-
tional planning. In this system, each AGV is represented by an AGV-Agent. These agents
are responsible for calculating a set of feasible schedules for their AGV, including both
schedules with start times deferred due to preparatory steps as well as schedules without
any involvement in FCR provision. The AGV-Agents forward the set of schedules to the
Optimizer-Agent. The Optimizer-Agent then integrates the received information into an
integer linear optimization problem in order to select exactly one schedule for each AGV.
The objective function of the optimization is defined such that for each 15-minute inter-
val of FCR provision the provided power summed up over all selected schedules will be as
close as possible to, but not less than the marketed flexibility. At the same time, the con-
straints from logistics must be met. This means that at most as many ACSs and AGVs may
be withdrawn from the logistics process as is permitted on the basis of the transportation
demand forecast.

Regarding MAS in general, solving an optimization problem in a centralized way may
seem counterintuitive, as distributed systems are often used in conjunction with heuristic
optimization approaches (Sonnenschein et al. 2015). This is especially true in large-
scale energy systems, as MAS-based optimization approaches typically scale up very well
(Nieße et al. 2012) and are therefore often employed in complex and very dynamic sys-
tems such as Smart Grids (Merabet et al. 2014). However, in context of the FRESH project,
this project, we are faced with a set of conflicting requirements:

Fig. 11 Multi-agent system (MAS) for scheduling of AGV



Holly et al. Energy Informatics 2020, 3(Suppl 1):26 Page 15 of 20

• Modularity of FlexMan: The FlexMan system has been designed with modularity
in mind. Therefore, the Planning module too has to be designed in such a way that
exchanging it with a different module (that implements the same functionality, of
course) is possible. Thus, a fully distributed optimization solution is not feasible here.

• Continuous integration of new AGVs: As the exchange of diesel-electric with
battery-electric AGVs is currently still in progress, over time more and more AGV
will become available for FCR provision. Here, an agent-based representation of AGV
allows for a simple plug-and-play integration of AGV into the overall optimization
process.

• Handling of short-term deviations: Due to the uncertainty in both the
transportation demand prediction and the logistical processes, the Planning
module has to deal with short-term deviations from the day-ahead planning in order
to reliably provide FCR. Here, the AGV-Agents play a key role again, as they
continuously supervise and control their according AGV and are able to reschedule
their usage in a concurrent and reactive way.

We will systematically analyze the performance of the MAS in the field trial that is
scheduled for 2021, and critically reflect the design choices with respect to the above
listed requirements in order to further improve our system in the future.

Integration of time-restricted and variable flexibility into a virtual power plant
The idea of using Virtual Power Plants (VPP) as a market aggregator for small and dis-
tributed energy resources (DER) has been introduced almost 20 years ago (Hendschin
et al. 2001). Today, most wind power plants and bio-fuel plants in Germany have been
integrated into commercially operated VPP that predict and market their plants’ power
generation (Klobasa et al. 2018). For this, DER have to be connected to a VPP by some
means of (bi-directional) communication. Typically, vendor specific and thus proprietary
hardware and software is employed; there have been, however, substantial efforts in the
last years to develop and establish standards for information exchange between DER and
VPP, such as the IEC 61850-based “VHPready” (Industry Alliance VHPready e V 2017).

In contrast to wind power plants and bio-fuel plants (or stationary battery systems),
battery-electric vehicles are non-stationary DER. From a VPP’s point of view, they may
connect at some (potentially not exactly known) time to a charging station, charge and/or
provide flexibility while being connected, and then disconnect again. Thus, both the
general availability of flexible mobile battery systems and their concrete, time-restricted
flexibility are subject to uncertainty. However, providing a system-critical service such as
frequency containment reserve (FCR) requires a very high reliability of flexibility. In this
project we therefore employ a three step approach to provide FCR with time-restricted,
variable flexibility:

1 The day-ahead marketing of the expected flexibility of the AGV fleet has to rely on
predictions with high quality and information about the uncertainty of predictions.
This will allow the VPP to make use of a more or less conservative amount of
flexibility, depending on the confidence of the prediction.

2 During the intraday operational phase of FCR provision (and possibly activation),
the FlexMan agents supervise and control the AGV fleet with regard to both the
logistical requirements and the flexibility promised day-ahead. In case of (usually
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unavoidable) actual or (short-term) predicted deviations from the promised
flexibility, FlexMan will try to reschedule AGVs and send them to the charging
stations in order to compensate for any shortcomings.

3 Most importantly, the AGV fleet’s flexibility is not marketed on its own. In order to
minimize the risk of failing to provide FCR as promised, we integrate the AGV
fleet’s flexibility into a large pool of DER. Next Kraftwerke operates one of the
largest VPPs in Europe, comprising more than 7.5 Gigawatt of combined
generation and consumption capacity, with more than 1 Gigawatt of balancing
service capacity. Thus, we are able to compensate any short-term deviations that
couldn’t be handled in steps 1 and 2 and reliably provide FCR.

However, while this approach will work from a technical perspective, providing and
integrating time-restricted and uncertain flexibility into the VPP at great expense may
not be economically feasible in the long run. Thus, we have to revisit the use case of FCR
provision from an economic perspective.

Use case revisited: the economic perspective
In order to make economically beneficial decisions, the operator has to gain insight over
total costs that arise in the context of implementation, usage and deconstructions that
have to be weighed against the benefits and revenues. Therefore, firstly the relevant cost
drivers are identified and scenarios for the evaluation of the cost drivers are determined.
The analysis is build upon the total cost of ownership method. Lastly, the transferability
and usability of the results is discussed.

Cost driver determination

Building on the use case of FCR provision, it is necessary to determine the cost drivers
arising when an electrified container terminal is transferred into an agent-based system
for optimised flexibility management. To approach this issue, we first analyze existing
work on cost analysis in electrified systems to find a systemized scheme for the cost analy-
sis and to identify relevant costs that were addressed in similar settings. Secondly, experts
from different relevant fields evaluate the cost drivers of the described project setting.
For this evaluation, we perform expert-interviews with project partners that are experi-
enced experts in the port and electric industry. Finally, we aggregate the gathered results
to identify a cost model that is based on a systemized scheme and holds for this specific
use case.

Scenarios and specific cost driver evaluations

Scenario analysis has been applied for forecasting trends in various domains as a tool
for improving decision making in the context of multiple possible future environments
(Daum 2001; Elkington and Trisoglio 1996; Mietzner and Reger 2005). The primary aim
of the scenario development is the creation of holistic, consistent perspectives on rele-
vant environmental factors and assist in strategic decision making (Mietzner and Reger
2005). This research method is often applied in innovation settings such as this one, as
it allows including a multitude of different influencing factors and can be applied in a
straightforward manner.
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The evaluation of the degradation of the battery in the use case of FCR provision poses
an additional challenge. As the use of vehicle batteries for frequency regulation will lead
to additional charging and discharging cycles, this will most likely lead to a faster degra-
dation of the battery (Guo et al. 2019) and thus not only resolve the advantage of the long
battery lifecycle, but also lead to additional costs due to a more frequent battery replace-
ment (Bishop et al. 2013). Especially since the battery itself represents up to 50 percent of
the purchase value of the AGV, the additional wear and tear has a significant impact on
the profitability of providing FCR (Zhou et al. 2011). Different degradation mechanisms
can be used to estimate battery degradation, “cycle ageing” and “calender ageing” (Barré
et al. 2013). As the focus of the research project is on the additional use of the battery dur-
ing the AGV rest periods, it can be assumed that the main part of wear and tear is caused
by battery use, making it sensible to focus on cycle ageing. In order to quantify battery
degradation for the specific use case, in the first step a drive model simulates the SOC
progression of the AGV without V2G service based on AGV tour plans. In the subse-
quent step, the SOC progression resulting from the tours and the additional V2G service
based on grid frequency data is simulated. Battery performance data and the FCR volume
are relevant as input data for this combined model. In addition, the consumption from
the drive model serves as an indicator to decide whether FCR can be provided. The drive
model can therefore also be described as a tour forecast, making it possible to comply
with the restrictions to prefer the logistic obligations of the AGV to the provision of FCR.
From the generated SOC curves, the relevant wear factors for the respective degradation
models can then be determined in the fourth step. Finally, by combining the extracted
wear factors with the respective models, the degradation can be determined. By compar-
ing the resulting degradation in the drive model with the results for the drive V2G model,
the changes in degradation can finally be determined and thus the adjusted life cycle of
the batteries.

Total cost of ownership analysis

In the IT industry the specific Life-Cycle Cost Analysis approach of the Total Cost of
Ownership (TCO) method is used as a suitable tool for this purpose (Ferrin and Plank
2002). It is defined as “a purchasing tool and philosophy which is aimed at understand-
ing the true cost of buying a particular good or service from a particular supplier” (Ellram
1993). In order to make economically beneficial decisions, the operator has to gain insight
into all costs that arise in association with the project and over the entire project duration.
We assess the TCO of the project based on the previously determined cost drivers. Com-
bining the results of the previous steps in a calculation model which is able to calculate
the economic efficiency of different possible development scenarios. In this calculation,
the battery degradation model along with the various influencing factors are combined in
order to be able to provide accurate information on costs and revenues.

Transferability and usability

As the project serves as a prototypical implementation case for developing an electri-
fied container terminal into an agent-based system for optimised flexibility management,
the subsequent transferability of the project insights is one of the main goals. While the
central role of sustainable logistics operations is undisputed in theory, in practice, the
electrification of industrial firms’ transportation systems is barely progressing. Therefore,
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our research aims to identify what factors influence the adoption of electrified transporta-
tion systems. We conduct a qualitative empirical study to identify the characteristics of
organizations and electric mobility technology that require adaptation in the context of
closed fleet systems (Döring and Bortz 2016; Myers 2013). For the survey, we interview
experts from organizations with closed fleet logistics systems, who also deal with cur-
rent topics of possible alternative propulsion systems for their vehicles. The factors that
influence the adoption of any innovation can be wide-ranging and emerge from various
sides (Rogers 1983). Based on the theory of innovation diffusion, the innovation-decision
process that leads to the adoption of an innovation can depend on the characteristics of
the innovation, as well as the characteristics of the organizations and the stages of the
innovation-decision process itself (Rogers 1983). Through our analysis, we identify par-
ticular organizational and technology-related characteristics based on the steps of the
innovation diffusion process. Thus, transfer concepts are being developed to make the
knowledge gathered in this project applicable for decision-making in other industries
and applications and subsequently state the respective potentials and challenges based on
collected experiences.

Conclusion and outlook
In this paper, we presented ongoing work on flexibility management and frequency con-
tainment reserve provision with a battery-electric fleet of automated guided vehicles in a
container terminal. The major challenge here is to provide flexibility for a system-critical
service with high reliability in a logistical context that is characterized by high uncertainty
and variability. In order to tackle this challenge, we (a) use artificial neural networks to
predict the availability of AGVs day-ahead, (b) compute the marketable flexibility with a
heuristic approach, (c) rely on simulation for checking the plausibility of flexibility sched-
ules, (d) continuously supervise and control the AGVs with a multi-agent system and (e)
integrate the fleet’s flexibility into a larger pool of distributed energy resources within a
virtual power plant.

As the work in this project is still ongoing, we are looking forward to evaluating our
approach in a field trial that is planned for 2021. This will give us the opportunity to
critically analyze the performance of the FlexMan system and to further improve on the
quality of prediction, simulation and optimization. An important question throughout
the project is the economic perspective of flexibility provision – here, we will reflect not
only on the total cost of ownership of a flexibility management system, but also develop
concepts to transfer the knowledge gained in this project to other industries.
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