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Abstract
This paper introduces a framework for agent based autonomous charging and
discharging of Battery Electric Vehicle (BEV) at local energy communities. Agents are
programmed to control the bidirectional charging according to green energy
utilisation incentives, based on load and generation forecasts. The optimization is
achieved within a group of independent prosumers following a fully distributed
approach using multiple self-organising agents. No central instance is needed for
communication, billing or decision making. To demonstrate the ecological benefits of
the system, simulations for a car pool, with a Photovoltaic (PV) plant, in a residential
neighborhood were performed. The simulations resulted in an increased community
PV self-consumption value of 48% compared to 29% in case of uncontrolled charging
processes.

Keywords: Electric vehicle (EV) charging, Vehicle-2-grid, Multi-agent system (MAS),
Renewable energy communities, Energy management system, Model predictive
control (MPC)

Introduction
In the year 2010, as part of the 2050 carbon reduction goals, Germany pledged to reduce
its greenhouse gas emissions by 40 % below 1990 levels by 2020 and by 80-85 percent by
2050 from 1990 levels. A feasible solution advised includes moving to 100 % renewable
electricity by the year 2050 (Faulstich et al. 2011), with the binding target of at least realis-
ing 80 % (Bundestag 2017)[§1(3)]. In addition to Germany, thanks to the global initiatives,
many countries including India and China have already pledged additional ambitious
goals (Mittal et al. 2016).

At the same time, the numbers of Electric Vehicle (EV) sales are steadily growing. The
estimated worldwide sales of just passenger EVs is prospected to reach 56 million, with
90% being pure BEVs, by 2040 (McKerracher et al. 2019). This integration of an increased
number of EVs is going to have a huge peak load stress on current electricity grids (Engel
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et al. 2018). Hildermeier et al. (2019) provides an up to date review on smart EV charging
practises to solve those issues. However, the application of smart charging is still limited
to a small number of pilot projects (DeBrey and Van Eijsden 2017; Dudek et al.; Andersen
et al. 2019).

To prevent overloading of electricity grids, another valuable solution proposed are self-
sufficient communities. These communities produce and consume the energy within
their geographical borders to prevent unnecessary energy transmission and distribution.
In this context the European commission promoted the self-consumption of onsite pro-
duced renewable energy (Directive 2018) (§67-69) and encouraged member states to
create opportunities for local citizens to participate in renewable energy communities
(Directive 2018) (§70 and §71).

This paper promotes a self-organised multi-agent framework for autonomous charging
and discharging of BEVs to maximize self-consumption within such energy communi-
ties. The system incorporates different ideas from previous research and applies them
with specific modifications on the energy community concept. Diaz et al. (2018) imple-
mented a Model Predictive Control (MPC) approach for smart charging using time
variant prices and a central optimisation. With regard on the community aspect we follow
a decentralised control approach but solve a similar optimisation problem. The decen-
tralisation concept is inspired by Mohsenian-Rad et al. (2010), presenting a demand side
management in a non-cooperative environment.

“System design & implementation” section gives the outline of the proposed system,
giving information on the energy community setup, the pricing mechanism, the basic
agent management and control framework and the algorithmic implementation of the
optimisation. The algorithm is tested in a small micro grid simulation described in “Sim-
ulation setup” section. The performance of this simulation is evaluated in “Simulation
results” section. Finally, in “Conclusion & outlook” section the major benefits and weak-
nesses of the agent based control are highlighted together with the prospected next
project steps.

System design & implementation
An energy community typically consists of multiple independent residents, each trying
to maximise their own benefit. Each resident can own multiple electrical devices, which
build a cooperative team. To reflect such a cooperative environment on the individual
tenant levels and competing interests among those teams, a decentralized approach is
best suited. This way the tenant does not depend on a central player and the decision on
whether the BEV shall be charged directly after arrival or with the generated PV remains
an individual choice. Furthermore, with full decentralization on the communication layer,
the multi agent approach is more resilient and new agents can easily be integrated in the
running system. The 2-level system approach is visualised in Fig. 2b.

In the community we define three different available electrical energy sources:

• Privately owned PV within a team i.e. Internal Photovoltaic Energy (IPV)
• Public PV or private PV from other teams i.e. External Photovoltaic Energy (EPV)
• Electricity from the Grid i.e. Grid Energy (GE)

IPV is considered to be virtually free and gets the highest priority of consumption, with
EPV coming in second, which has its own cost but is still cheaper than the price for GE.



Surmann et al. Energy Informatics 2020, 3(Suppl 1):19 Page 3 of 12

System state and actions

An agents considers various user inputs such as, departure time, minimum State of Charge
(SOC), which acts as an emergency buffer, and target SOC, representing the user expected
SOC at the set departure time. Additionally, the user can choose from “Operation mode 1:
maximum SOC”, “Operation mode 2: cost optimised” or “Operation mode 3: performance
optimised” sections and a discharge enabled flag. The required user input can be given
using a mobile app or a touch panel in proximity to the charging point. In case some or all
information is missing for the current charging process, historical and default values are
taken.

Apart from the user inputs, all agents communicate their energy forecast/plan for each
timestep within the planning horizon. Furthermore, the state of the BEV and the Electric
vehicle supply equipment (EVSE), containing the information about the current SOC and
the current power flow, is communicated. Initially, the maximum battery capacity and
the maximum charging and discharging power is communicated when ever an electric
vehicle arrives at the charging point. In this context we assume that the EVSE and BEV
can communicate the needed information using ISO15118 protocol.

Based on the given input information the algorithm communicates to the EVSE whether
to charge, discharge or turn off the charging and how high the power flow shall be. The
input state and action space is summarized in Fig. 2a.

Fair energy division

To guarantee a fair division of the available electricity, strict billing rules apply. The billing
algorithm is publicly known and stored in a smart contract in an open distributed ledger.
Every 15 minutes the contract gets executed and distributes the three energy sources in a
fair way (see Fig. 1).

In the first step production and consumption are matched internally. In step two, the
production surplus of teams with an excess production (A & B) are summed up forming
the EPV. The teams with a consumption surplus (C & D) get equal shares of the excess
generation, while the remaining consumption is settled by grid energy (Step 3). Finally,
according to the energy flows, grid and PV tokens are distributed (step 4). If after the
first distribution of EPV (Step 3) a team is fully satisfied, the remaining excess energy is
again distributed between all other non-satisfied teams. This loop continuous until all
EPV is distributed or the demand of all teams is covered, in which case the remaining
PV energy is fed into the grid. Using this billing strategy it is guaranteed that each team
profits equally from the available PV plants.

Fig. 1 Publicly known energy distribution and pricing mechanism
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Since the billing mechanism is publicly known, before going into the decision making,
each agent first analyzes the communicated energy demand and production of the com-
peting teams and the agents within its own team to evaluate its share of IPV, EPV and GE
for each time step in the planning horizon. Due to its complexity, the algorithmic imple-
mentation is not described in here, instead the simple example as visualized in Fig 1 gives
an idea of how the agents energy share calculation works.

Decision making

With the knowledge of the expected future energy shares the utilisation of electricity is
first optimised at the team level following a cooperative approach, i.e agents decide to
change their consumption to accomplish a cheaper overall electricity bill for the team.
After the internal team optimisation, on the second level the teams compete over the
remaining EPV by readjusting their consumption goals to target a global system optimum.
The general control process of a controllable BEV agent is visualised in Fig. 2c.

The decision making algorithm consists of a Moving Horizon Control (MHC) and
MPC based control. Depending on the selected charging modes and the current SOC
the agent chooses the respective charging algorithm. Until the minimum SOC, full power
is utilised to charge with priority. Subsequently the EV is charged according to the
selected mode until the target SOC is reached. After the user target is satisfied the
operation mode switches to a more economical mode, from SOC to performance and
from performance to cost, to only charge with surplus PV energy. These operations
are performed in conjunction to discharging, which is enabled separately by the user.
The controller is designed to discharge energy only to its internal team members pro-
vided that its target SOC can still be met by future PV energy before the departure
time.

Fig. 2 Agent system design
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Mathematical model BEV

The electrical model of the electric vehicle is determined as per equation.

xt+1 ≡ xt + �t · Pt · η

Etot
∀t ∈ T (1)

with xt being the battery SOC of the BEV at timestep t of the overall forecast horizon T.
Etot is the maximum capacity of the battery, Pt is the current power and η represents the
charging efficiency.

Et+1
dem = Et

dem − Pt · �t (2)

where Et
dem represent the amount of energy still required to achieve the next SOC mile-

stone (Minimum, target or full SOC). The BEV mathematical model is subjected to the
hard constraints for power limits of the EVSE and the battery capacity as mentioned in
(3):

Pmin ≤ |Pt| ≤ Pmax ∧ 0 ≤ xt ≤ 1 ∀t ∈ T (3)

Operation mode 1: maximum SOC

The SOC optimised mode can be imagined to be close to uncontrolled charging i.e. the
EV charges with maximum power. This mode is used when the user does not want to
participate in the program and when the EV battery SOC is below the minimum SOC

The objective function in SOC optimised mode is given by:

minimize{xt ,Pt}t∈T

∑

t
−xt ∈ T

subject to: x0 = xinit (1), (2), (3)

(4)

For the maximum SOC control (1) and (2) are repeated in a loop until the energy demand
is zero or the target SOC is reached.

(
Et

dem �= 0 ∨ xt �= X
) → Pt = Pmax (5)

where Pmax is the maximum power limit of the EVSE and X is the next milestone SOC.
The objective of max SOC is only fulfilled if there is no discharging and hence no
discharging takes place in this mode.

Operation mode 2: cost optimised

Cost optimised mode uses IPV as much as possible and only moves to other sources if
IPV is not sufficient. Since this mode differentiates between IPV and EPV, it is relevant
for users with personal PV rooftop solar plants. The objective function in this mode is
given by:

minimize{xt ,Pt}t∈T

∑

t,Q
Et

Q · costt
Q ∈ T

subject to: x0 = xinit (1), (2), (3)

(6)

Q in (6) represents the forecast data of each electrical power source which in this case
is given by (7). The cost factor in (6) represents the priority of energy source in terms of
their cost.

Q = {Internal PV , External PV , Grid Power} (7)
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The BEV agent is designed to only utilise the power according to the fixed cost opti-
mal priority. Hence the controller first distributes the Internal PV throughout the control
horizon according to the availability in corresponding time-steps. Equations 1 and (2) are
repeated in a loop until Et

dem is fulfilled.
(
Et

dem �= 0 ∨ xt �= X
) → Pt = Pt

IPV (8)

If Et
dem is not fulfilled by just Internal PV, the controller distributes the External PV energy

on top of the already distributed IPV to fulfil the remaining demand.
(
Et

dem �= 0 ∨ xt �= X
) → Pt = Pt

IPV + Pt
EPV (9)

If even after (9) the Et
dem is still not met, then the grid energy distribution is calculated

using (10) and (11).

Et,left
dem = Et

dem − Et,in
dem − Et,ex

dem (10)

Et,left
dem is the total energy that the controller still needs to fulfil the total demand of energy

from BEV. Since a BEV can be parked way longer than the control horizon, the controller
delays the grid energy utilisation towards the end of BEV departure. Therefore it uses (11)
to calculate the grid energy it needs to utilise in the current control step.

Et
grid = Et,left

dem −
(

Tdepart − Tcontrol
last

)
· Pmax (11)

where Tcontrol
last is the last timestamp of the control horizon. Grid energy, being an expen-

sive but unlimited resource, is distributed from the other end of the control horizon.
Eq. 12 is repeated in a reverse loop until the overall demand is met.

(
Et

dem �= 0 ∨ xt �= X ∨ |Et
grid| �= 0

)
→ Pt = Pmax (12)

Operation mode 3: performance optimised

In the performance optimised mode the agent tries to keep the battery SOC at maximum
level at all times while keeping the cost to the minimum. Therefore it operates in between
the Cost and SOC optimised modes. The objective function in this mode is the same as
given in (6) for the Cost optimised mode but the controller achieves better performance
by strategically modifying the input values. It uses the Total Photovoltaic Energy (TPV)
instead of differentiating between IPV and EPV. Since equations and the decision mak-
ing procedure for the performance optimised mode are almost the same as in the cost
optimised version, they are not repeated in this section, but instead the modifications are
mentioned in brief. Replacing Internal PV and External PV by Total PV in (7) the forecast
data is modified. Eq. 8 is not needed anymore, instead in Eq. 9 Pt

IPV + Pt
EPV is replaced by

Pt
TPV . In Eq. 10 Et,in

dem - Et,ex
dem are replaced by Et,total

dem while Eqs. 11 und 12 remain unchanged.

Simulation setup
To show the benefits of the previously described agent based control algorithms, a simu-
lation is done for a multi family house with a PV plant and various BEVs. The simulation
setup is shown in Table 1. The vehicle usage and uncontrolled charging profiles are gen-
erated using a BEV simulation tool described in Fischer et al. (2019). Electric profiles
for different user groups on an aggregated apartment level are created using a stochastic
bottom up simulation (Fischer et al. 2015). After the simulation, the household appli-
ance profiles are re-scaled to have an overall (apartments + BEV) annual consumption
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Table 1 Simulation setup

Type Subtype Team Peak power
(kW)

Minimum
Power (kW)

Annual energy
(kWh)

Battery Size
(kWh)

PV - 0 15.84** - 20000 -

Apartment Family (1 child) 1 7.22* - 3501* -

Family (2 childs) 2 7.72* - 4764* -

1 Full time worker 3 5.07* - 1751* -

1 Full time worker 4 6.86* - 2047* -

2 Pensioners 5 5.86* - 2823* -

EV Tesla Model X P100D 1 22 1 2397 85

Opel Ampera 2 11 0.4 1353 51

Renault Twizy 3 3.7 0.4 479 6.8

Opel Ampera 5 11 0.4 882 51
*Values based on simulation output multiplied by 1.18 to match 20 MWh of aggregated load
**Installed capacity to yield an annual production of 20 MWh

of 20 MWh. PV electricity generation is obtained using a PV model based on Huld et al.
(2010), King et al. (2004). PV modules are southwards oriented and optimally inclined
as suggested in Calabrò (2009). We use measured weather and solar irradiation data for
the city of Freiburg im Breigau (Germany). An in depth description of the decentralized
bottom-up simulation framework is given in Surmann et al. (2019).

The PV plant is dimensioned to meet the combined annual energy demand of all apart-
ments and BEVs (20 MWh). We chose different charging infrastructure and various types
of BEVs together with different user groups to show a variety of factors involved in the
flexibility potential. The applicable charging/ discharging minimum and maximum power
limitations are listed in Table 1. The simulation is done with discharging enabled, the
mode is set to cost optimal and the target SOC for all departure times is 80%, except for
the Renault which always targets for 100% or unless a trip requires more energy, where the
SOC target is also raised to 100%. The results are compared to a previously done uncon-
trolled simulation, in which the EV is always charged with full power upon arrival until
100%.

Simulation results
The simulation results for the previously described setup are presented in the follow-
ing subsections. First, the overall performance of the controlled scenario is compared to
the baseline. Afterwards, the different socio-economic factors, battery sizes and charging
powers on the performance of the algorithm is analyzed. Finally, a section on the influence
of discharging is provided.

Performance evaluation

The main target of the distributed control algorithms is to maximize PV self consump-
tion of an overall energy community. Therefore this is the major performance indicator
to analyze in the given simulation. Table 2 shows the self consumption shares for the non
controllable loads, the EVs and the resulting overall performance. It can be observed,
that for all teams with an electric vehicle the overall PV utilisation is significantly
enhanced. For team 1 and team 5 the self consumption share was more than doubled.
The lowest gain is noted for team 3. All efforts of the individual teams combined result
in an increased community PV share from former 28.81% to 47.87% with the multi agent
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Table 2 PV Self Consumption* in percentage (%)

Non controllable loads
EV Overall

Baseline Controlled Baseline Controlled

Team 1 24.60 2.81 22.15 26.63 41.31

Team 2 33.21 3.46 25.59 35.58 51.32

Team 3 12.88 1.56 5.36 14.24 17.15

Team 4 14.05 - - 14.05 14.05

Team 5 18.11 3.40 20.85 21.02 34.42

Community 23.40 6.89 26.97 28.81 47.87
*PV self consumption on a team level uses an equal share of the overall PV for the calculation

energy management system in place. This increased PV utilization can significantly
lower the electricity bill of the community members and can encourage people to invest
in additional PV plants.

Another benefit, that was not directly targeted for, but can still be observed is the annual
peak load reduction of the community grid. The load smoothing effect can also be seen
in the communities mean day plot Fig. 3f. This trend can further be enhanced by imple-
menting grid limitations in the agents (see “Conclusion & outlook” section). It is a crucial
factor for grid planning and also can influence the price of the community energy bill.

The influence of socio-economic status

As shown in Table 2 the agents performance highly depends on its environment. The
largest impact can be traced back to the individual electricity consumption and EV usage
pattern of the users. These patterns are highly individual but can also be clustered based
on the socio-economic status of a user group. Though there could be multiple factors in
socio-economics, this discussion is limited to the type of employment and driving pat-
terns of the user. To elaborate the effect further, the mean day power curves of tenants 2

Fig. 3 Mean day PV utilisation for the different teams and the overall community
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and 5 are presented in Fig. 3b and e. Both tenants have the same EV and charging infras-
tructure. The only difference is in the occupation with team 2 being a half time worker and
team 5 consisting of two pensioners. This difference in employment status is expected to
influence the general EV parking times. While a halftime worker has to leave for office at
some point in time on workdays, a pensioner is assumed to stay at home more often. This
means that the EV of the halftime worker is expected to be parked in office for a major
part during the critical PV generation hours (7 a.m. to 8 p.m.) leading to some lost PV
energy utilisation potential. It is witnessed that the morning peak is completely absent in
the pensioner EV’s charging curve, in fact some discharging is observed during the early
hours of the day (5 to 7 a.m.). This is because the car stays parked during the PV genera-
tion time and thus can decide to discharge during the morning time to eventually recover
the energy from PV.

Impact of charger power limits

While running the simulation with different EV and apartment profiles, a strong correla-
tion between the self-consumption ratio and the minimum power limit of the EV charger
was observed. It is noticed that the self-consumption is inversely proportional to the min-
imum power limits of the charger. This can be explained by the fact that with a lower
minimum limit the controller is able to cater to a larger number of discharge requests.
To further investigate this correlation, loads from tenant 2 are simulated separately using
2 different chargers with all other parameters remaining constant. Table 3 compares the
different energy usage of the two different chargers.

It can be observed that by reducing the minimum power limits from 1.1 to 0.4 kW the
discharged energy from the EV into the apartment has increased by a factor of more than
3. In addition, the PV self-consumption ratio of the tenant also increases by ≈ 11% from
40 to 51 percent. We conclude that a 0.4 KW charger, in this simulation setup, is able to
better utilise the PV energy solely fuelled by more efficient discharge.

The minimum discharging power limits are only of relevance in cases where the energy
demand of households is low. This is the case for the chosen simulation setup since dis-
charging is only allowed into the loads of the corresponding team. If energy could be
discharged into other teams as well, the power limitations are of less concern. Neverthe-
less, this large impact of the minimum discharging power limitations is of high interest for
all single family houses with a PV - EV setup and a home energy management in place. In
future such combinations shall be more common with increased EV shares and PV energy
being a compatible cheap energy resource. Chargers that offer bidirectional charging are
expected to be of high interest. Additionally, depending on the economical incentives for a
high individual self consumption, chargers that can efficiently operate low powers further
enhance the management possibilities for home charging infrastructure.

Table 3 Charging power settings and resulting energies for different chargers for EV2

Baseline Charger 1 Charger 2

Charging range kW [1.1 ... 11] [1.1 ... 11] [0.4 ... 11]

Discharging range kW [-1.1 ... -11] [-1.1 ... -11] [-0.4 ... -11]

Charged kWh 1354 1671 2376

Discharged kWh 0 -239 -882

Tenant Self-Consumption (%) 36 40 51
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Impact of discharging

As explained in “The influence of socio-economic status” and “Impact of charger power
limits” sections, the output numbers in Table 4 follow the presented argument. Highest
discharging is observed for a halftime worker with the EV charger capable of catering to
charge/ discharge demand from 0.4 KW i.e EV2. On the other end, smallest discharge
numbers are obtained for EV3 which belongs to a fulltime worker and has the smallest
battery size.

To quantify the gains from an enabled discharging, another simulation was executed
with exactly the same setup but discharging disabled. The self-consumption share of the
community was lowered from 48% to 40%. Compared to the baseline (29%) a ≈11% gain is
due to a shift in charging only and additional ≈8% are enabled with the bidirectional capa-
bility. Nevertheless, discharging comes with additional conversion losses. In the chosen
setup the efficiency was set to be 93% for charging and discharging resulting in additional
two-way energy losses of 14%. In case of EV2 the additional losses due to discharging
accumulate to 135 kWh. From an economic perspective, this means that the saved money
due to an increased PV consumption, should at least compensate for the lost energy.
Without taking the qualitative battery degradation into consideration, the users still need
to be incentivised with at least 15% monetary gains to make EV discharging economically
feasible. From a broader energy system view, using already existing EVs as energy storages
instead of installing new stationary batteries is beneficial. Nevertheless, before utilising
discharging other means of demand side management should be exploited.

Conclusion & outlook
The multi agent energy management system was able to increase the PV self consumption
share significantly while still meeting the energy demands of the car users. In a simulation
of a small multi family house, the PV self consumption was increased by 19% to 48%
compared to 29% in an uncontrolled state. 11% additional PV were harvested by only
shifting charging processes while 8% can be traced back to bidirectional charging.

The executed work presents that battery electric vehicles offer a huge potential to shift
electrical energy. However, the duration of BEV’s connection to the home charging station
highly influence this potential. As a 9 to 5 full time worker, using the vehicle for the daily
trip to work, even the most advanced PV optimisation is of limited use. It is expected that
application of the developed multi agent framework in a mixed residential and commer-
cial simulation should further enhance the overall PV integration and, therefore, should
be followed up with further research.

Table 4 Energy balances using discharging

Charged kWh Discharged kWh Lost* kWh

EV 1
Baseline 2397 0 118

Controlled 2765 -273 192

EV 2
Baseline 1354 0 66

Controlled 2376 -882 201

EV 3
Baseline 479 0 24

Controlled 556 -66 32

EV 5
Baseline 882 0 43

Controlled 1654 -651 154
*Losses only include charging/discharging efficiency. Self discharging of the battery is not included in these numbers, but
benefits the controlled case due to a lower average SOC (1-2% gains)
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An extension to the algorithm was developed to take into consideration the grid limi-
tations following the approach in Mierau et al. (2017) but was not utilised for the current
results. It is to be incorporated for the upcoming simulations. As each agent makes self-
determined decisions, the communities can easily be scaled and new types of controllable
devices like battery storage systems, heat pumps, μ-combined heat and power plants
and other flexible electrical devices are to be added in future without any modification
to the existing system. Further, incorporating SOC dependent charging power (satura-
tion charging) in the agent’s decision making will be done in the next project steps. As a
decentralised communication tool for agent to agent communication we used a bit tor-
rent protocol called ZeroNet which, while performing good in the real time application,
was found to be slow when used in simulations. We tried a more direct approach which
did not speed up the communication, yet. This is still a matter of further investigation.
Also, a test of different control algorithms (e.g. a central controller) against the same sim-
ulation setup shall further be done to quantify the system performance in relation to the
presented algorithm. Finally, a real world implementation, test, monitoring and evalua-
tion of the tenant electricity concept is scheduled to start in 2021 within the EnStadt:Pfaff
project (Stadt Kaiserslautern 2020).
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