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Abstract
Electrical networks of transmission system operators are mostly built up as isolated
networks without access to the Internet. With the increasing popularity of smart grids,
securing the communication network has become more important to avoid
cyber-attacks that could result in possible power outages. For misuse detection,
signature-based approaches are already in use and special rules for a wide range of
protocols have been developed. However, one big disadvantage of signature-based
intrusion detection is that zero-day exploits cannot be detected.
Machine-learning-based anomaly detection methods have the potential to achieve
that. In this paper, various such methods for intrusion detection in substations, which
use the asynchronous communication protocol International Electrotechnical
Commission (IEC) 60870-5-104, are tested and compared. The evaluation of the
proposed methods is performed by applying them to a data set which includes normal
operation traffic and four different attacks. While the results of supervised and
semi-supervised machine learning approaches are rather encouraging, the
unsupervised and signature-based methods suffer from general bad performance and
had difficulties to detect some attacks.
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Introduction
Industrial Control System (ICS) that are used to monitor and control infrastructures,
such as electrical power grids, traditionally have mainly consisted of devices specially
developed for this specific purpose. Furthermore, they were only used in isolated net-
works without access to the Internet (Berthier et al. 2010). Since energy supply companies
focused on availability and reliability requirements, cyber security measures were often
classified as insignificant. Incidents such as Stuxnet or the BlackEnergy attacks on power
grids in the Ukraine, strongly increased awareness towards the security of these criti-
cal infrastructures (Ang and Utomo 2017). Particularly with the stronger digitalization
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of substations and the networking of control technology components, the dangers have
become more diverse and complex. It is therefore important that not only known but
also currently unknown attack vectors against critical infrastructures can be recognized
(Butt et al. 2019). In order to meet these challenges, additional concepts for ensuring
network security and maintaining network stability will be necessary (Yan et al. 2012).

This paper studies the detection of various common attacks using packet-based meth-
ods in the context of substations using the asynchronous communication protocol
IEC 60870-5-104. Network traffic used in this paper was captured in a test environ-
ment of the Austrian Power Grid AG (APG), which is highly similar to the real-world
setup. Therefore, the test data can be considered as equivalent to real data from a
substation in which the communication is based on the IEC 60870-5-104 protocol,
see Fig. 2 in the “Experiments” section. In order to enable reproducible research the
full data set, along with the used code, will be made publicly available as stated in
“Availability of data and materials” section.

The following research questions should be answered: While the standard signature-
based approach is expected to lead to only few false-positives, are the existing rules suf-
ficient to reliably detect various common attacks in the context of substations operating
using the asynchronous communication protocol IEC 60870-5-104?

Furthermore, a semi-supervised and an unsupervised approach, which are two anomaly
detection settings with the potential to detect new attacks, are compared. Here both, the
potential to detect an attack and the price of false-positives, are unknown. A supervised
classification approach is also applied for comparison and to answer the next question:
Can the principle potential of machine learning methods be shown to detect attacks with
low false positive rates, based on the extracted features? Since a new attack cannot be
detected in a supervised setting, this should serve as an upper limit against which the two
anomaly detection settings can be compared.

Related work
Several methods to detect attacks on Supervisory Control and Data Acquisition (SCADA)
systems have already been proposed. These methods can mainly be classified into
signature-based and anomaly-based approaches (Phillips et al. 2020). It is these two
classes, which are also compared in our paper.

Signature-based approaches consist of a set of deterministic rules that either describe
the normal system or patterns which arise for already known attacks. Peterson (Peterson
2009) developed Project Quickdraw, which has later been renamed to Snort (see “Snort”
section), and tried to detect anomalies in legacy SCADA systems by using signatures.
Snort got one of the most popular signature based intrusion detection systems nowadays
and is also used for misuse detection in IEC 60970-5-104 SCADA traffic in our paper.

Yang et al. proposed a rule set for IEC 60970-5-104 traffic in Yang et al. (2013), which
could be used in conjunction with signature-based intrusion detection systems like Snort.
This was one of the most important steps in the evolution of signature-based detection
methods for securing critical infrastructures which rely on this communication protocol.
Some of these rules have been added to the rule set used to detect anomalies with Snort
in this paper. The detection of relay and Man-In-The-Middle (MITM) attacks, which was
carried out by Maynard et al. (2014), but is not part of our proposed attack data set, could
be considered in further research on IEC 60870-5-104 SCADA networks with Snort.
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One big problem of signature-based anomaly detection is that encrypted payloads or
unfamiliar protocols cannot be read. In our experiments, this problem prohibited the
detection of one of the proposed attacks (see “Misuse detection with snort” section).
Hoeve proposed methods to detect intrusions in encrypted control traffic in Hoeve
(2013). Patterns in packet series could be found by only looking at the time, size, and
direction of packets. Tests on IEC 60870-5-104 SCADA traffic showed that this imple-
mentation could work out but the quality of the outcomes depends on the choice of
parameters and has to be improved. Therefore, the features which we have selected to
detect anomalies in IEC 60870-5-104 traffic could contribute to the improvement of
intrusion detection in encrypted control traffic.

In contrast to signature-based approaches, anomaly detection works without knowl-
edge about the attack. Therefore, it has the potential to detect unknown attacks like
zero-day attacks. Most of the existing methods are semi-supervised: in this setting, nor-
mal data are modeled and big deviations from normal are considered as potential attack.
Besides packet-based approaches, time-series methods are also often proposed to check
for intrusions. Feng et al. introduced a sophisticated model which combined a packet-
based anomaly detection using Bloom filters with a prediction using Long Short Term
Memory (LSTM) network classifiers in Feng et al. (2017). If the next packet’s signature was
not among the top k signatures, the packet was considered as an anomaly. The method
showed good results when applied to a real data set created from a gas pipeline SCADA
system, but in comparison to our paper Modbus was used as transmission protocol
instead of IEC 60870-5-104.

Another method targeting industrial control systems models the command and data
sequences as coupled chains of a dynamic Bayesian network was developed by Yoon and
Ciocarlie (2014). Probabilistic suffix trees are used as a variable-order representation of
each of the two chains that can be learned incrementally. Additionally, false positives are
reduced by introduction of possible missing elements. The method was evaluated for data
from a Modbus network test-bed. Lin et al. proposed a Probabilistic Suffix Tree in Yoon
and Ciocarlie (2014) to model and predict inter-arrival times of IEC 60870-5-104 spon-
taneous events. The authors discovered that events with good predictability might help
developing intrusion detection methods.

In the most difficult, unsupervised variant, an unlabeled mixture of normal and anoma-
lous data is available. Jiang et al. applied a one-class Support Vector Machine (SVM),
which is also used for anomaly detection in our paper, with RBF kernel to a SCADA
communication traffic time-series, where the created feature is the value relative to the
previous one in Jiang and Yasakethu (2013). Experiments were carried out on simulated
data from telecommunication networks, but no further hint to the used protocol was pro-
vided. Therefore, we try to find out, if anomaly detection is also possible, when a one-class
SVM gets applied to IEC 60870-5-104 traffic.

The attack scenarios, used in this paper and which are described in more detail in
“Attacks” section, are also representative for real world attacks on critical infrastructures.
The Triton attack framework, which was built to interact with Triconex Safety Instru-
mented System (SIS) controllers, probes for specific ports using custom tools could be
seen. User Datagram Protocol (UDP) port 1502 was used for sending broadcasts to dis-
cover remote systems (CISA 2019). Furthermore, the sending of unauthorized command
messages, which happens during the Fuzzy Scan, had been observed in states 3 and
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4 by Stuxnet, where two network bursts with instructions for the frequency converter
drives were sent out (Falliere et al. 2011). Also various Denial of Service (DoS) attacks
on SCADA systems happened before. Industroyer, a sophisticated piece of malware used
in the BlackEnergy Attack 2015 in the Ukraine, was designed to cause an impact to the
working processes of ICS used in electrical substations by blocking serial COM channels
temporarily causing a denial of control (Cherepanov 2017).

Background
The rapid technical progress of the past years in information and communication tech-
nologies had a noticeable influence on the control technology components used in
substations. Initially, the operators of the high-voltage networks coordinated necessary
switching operations by telephone to the responsible control rooms in the substations.
In the course of digitalization, data acquisition systems with automatically recorded mea-
surement data, have been installed. Decentralized control technology components, also
called Remote Terminal Units (RTU), are used to record and forward data (Vadari 2020).
The information flow is illustrated in Fig. 2 in “Experiments” section. Operators of the
SCADA System communicate with the RTUs of primary devices like transformers or cir-
cuit breakers. Communication also happens locally in the substation between the RTUs
and those primary devices themselves.

Since 1995, data transmission in European substations has mainly been based on the
asynchronous communication protocol IEC 60870-5-104 (Czechowski et al. 2015). It
shows significant security gaps due to its age and its adaptation to the needs of ICS in the
1990s, such as low bandwidth (Pliatsios et al. 2020). Mostly, control or setting commands
are sent to the primary devices. Measured values, as well as positioning data of circuit
breakers get transmitted from the primary devices to the control system. The main pur-
pose of the RTUs, which are located in so-called control cabinets in the substations, is to
transmit control signals directly to the motors of the primary devices, which can be seen
in Fig. 2 in “Experiments” section.

IEC 60870-5-104

To better understand the extraction process of the different field values for anomaly
detection also covered in “Experiments” section, a brief overview of the IEC 60870-5-104
protocol is covered here. The standard specification for the IEC 60870-5-104 protocol
combines the application layer of its predecessor IEC 60870-5-101 and a selection of the
Transmission Control Protocol (TCP)/Internet Protocol (IP) protocol suite, which can be
seen in Fig. 1.

Fig. 1 Protocol stack with IEC 60870-5-104 according to (Matoušek 2017)
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Table 1 Mapping of Transmission causes to field values

Code Cause of transmission

1-127 standard definitions

128-135 reserved for message routing

136-255 special usage

The basic frame in IEC 60870-5-104 is called Application Protocol Data Unit (APDU)
and occurs in three different formats for data flow and link monitoring, as well as for infor-
mation transmission. Furthermore, an APDU can be split up in two parts, the Application
Protocol Control Information (APCI) and the Application Service Data Unit (ASDU).

The APCI contains basic information like APDU length or sender and receiver
sequence numbers and has a fixed packet length of 4 Bytes. Otherwise the ASDU has a
variable length to describe detailed attributes such as “Type Identification” or the “Cause
of Transmission” (IEC 2006). These field values were also extracted to detect anomalies
in the network traffic and get explained below in the tables. Table 1 shows the mapping of
transmission causes to code values.

The types of IEC 60870-5-104 packets can be structured into 255 different Type Iden-
tification numbers, but like in the case of the cause of transmission field codes, not all
of the available numbers have to be implemented (Skoko et al. 2014). Some of the most
common values for Type IDs are listed in Table 2.

Snort

Snort is an open source, signature-based, Network Intrusion Detection System (NIDS),
capable of performing real-time traffic analysis as well as packet logging on IP-based net-
works. In this paper, its performance in detecting anomalies in IEC 60870-5-104 SCADA
traffic will be compared to machine-learning-based anomaly detection. Signature-based
detection typically follows a blacklist approach. Snort basically acts as a packet sniffer and
does protocol analysis as well as content matching by using rules which watch for specific
fields in a network packet. A variety of attacks can be detected, because known signatures
periodically get transformed into rules and can be downloaded from the developers web-
site. Snorts detection engine processes the rules in order to know what fields to look for
in the raw network packets. By considering the information gathered from the rules, it is
able to detect occurring anomalous values. TCP, UDP, Internet Control Message Proto-
col (ICMP), and IP are the four protocols which are currently supported by Roesch et al.
(2020).

Snort is set up by specifying the detection rules. Snort rules contain a rule header and
the rule options part. The header includes the resulting Snort action, protocol value,
source and destination IP addresses or port numbers (Roesch et al. 2020). Information
about the inspecting part of the packet and alert messages are specified in the rule options

Table 2 Description of common ASDU Types

Type Description

1 Single point informations

3 Double point information

13 Measured value, short floating point value

36 Measured value, short floating point value with time tag CP56Time2a
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section. Snort has a standard basic rule set and additional rule sets which are deactivated
by default and need to be activated selectively. In 2016, Cisco Talos released an additional
rule set consisting of 33 rules, which are able to analyze IEC 60870-5-104 network traffic
(Pacho 2016).

Experiments
The data set used in this paper consists out of five network packet traces in .pcap format,
measured with Wireshark. The recording of the test data was done in a dedicated test
substation operated by APG and a schematic representation can be seen in Fig. 2. As can
be seen in the figure, the test substation contains a 110kV and a 220kV switchgear, each
of which has its own Local Area Network (LAN). The General Functions ring consisted
of several facilities important for real substations, like lock functions for primary devices.

Fig. 2 Network architecture of the test station
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The connection from the control center to the RTUs is also shown schematically in Fig. 2.
With the help of switches, the RTUs are connected to the APG LAN as well as the firewall,
the Network Time Protocol (NTP) server and the SCADA client. Instead of the primary
devices normally used in substations, such as the circuit breaker shown in the figure,
relays were set up to illustrate the correct control behavior. The station and field LAN
areas are based on the IEC 60870-5-104 standard. Furthermore, the LAN itself was also
integrated into the APG Wide Area Network (WAN) via IEC 60870-5-104 using a router.

The Attack Machine was a laptop capable to run Kali Linux as an operating system. All
the different attack described in the Attacks section below were performed from here.
Network traffic was recorded by a Raspberry Pi running Wireshark, which is connected
on a trunk port at the same switch as the Attack Machine.

Attacks

In addition to normal operation, four different common attacks were used to attack the
test substation. Table 3 gives a brief overview over the performed attacks.

According to the Technique Matrix proposed in the MITRE ATT&CK for ICS Frame-
work, the types of attacks performed in this paper can be classified either as Discovery or
as Impair Process Control which makes them representative for real world attack scenarios
(MITRE 2020).

Feature extraction

Currently there are no best practice guidelines for feature extraction of the IEC 60870-5-
104 protocol available. The implementation of this protocol is very application-specific,
because the users can adjust which values they want to parameterize and some of the
fields are only for special use. We extracted features that were considered as potentially
discriminating attacks from normal traffic out of the Open Systems Interconnection (OSI)
Layers 1 – 4 and the Application Layer 7. Features from Layers 1, 2 and 3 are described
below in Table 4.

With Wireshark more features could be measured from Layer 4 and they are described
in Table 5.

Features that are specific for the IEC 60870-5-104 protocol are shown in Table 6.

Table 3 Description of the performed attacks

Attack name Description

Portscan The aim of this scan, performed by the network reconnaissance tool “nmap”, was
to figure out which services were available by the network devices in the scanned
network area. The used command was nmap -sV -r 192.168.0.0-15. By
the parameter -sV it was possible to draw conclusions about open ports and
ongoing services.

Vulnerability scan A vulnerability scan against the top ten vulnerabilities in websites was done over
the graphical interface of the vulnerability scanning tool “Nessus”, targeting the
web interfaces of the RTUs.

Protocol vulnerability scan So-called Fuzz-testing is a popular security evaluation technique, in which hostile
inputs are crafted and passed to the target system in order to reveal failures and
security bugs. These hostile inputs could also be created by attackers to cause
potentially unwanted behavior, like opening circuit breakers, in a SCADA system
and so the IEC 60870-5-104 protocol fuzzer Aegis Studio has been applied.

Denial of service To simulate a denial of service attack against the test substation, the application
“hping” was used with the commandhping3 -flood -S192.168.0/24.
The parameter -flood lead the program to send packets as fast as possible
while -S symbolized the SYN Flood attack.
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Table 4 Extracted field values from Layers 1 - 3

Field Description OSI Layer

frame_len Represents the Ethernet frame length. Minimum size is 64 byte L1

vlan_id The VLAN ID field marks which VLAN the frame belongs to. L2

ip_len Total Length of the IP packet that includes the IP header and the user data.

ip_flags_df The Don’t Fragment flag bit signals that fragmentation of this packet is not
permitted.

ip_ttl Time-to-live tells a network router the time after which a packet should be
discarded. Can be set to any value between 1 and 255.

Finally, these features are enriched by a feature from Wireshark in Table 7.

Feature selection and creation for learning approaches

The whole data set consists of 288277 normal examples and 10000 attack samples (2500
per attack type). The input variables of the data set are a mixture of numerical and
categorical ones.

In the first step, several variables are omitted from further analysis: There is a near
perfect correlation between the frame-length and the ip_length and the tcp_length (R=
0.9983 and 0.9965), so only the frame length was retained. Similarly, x104_apdu_len was
omitted, because it perfectly correlated with tcp_pdu_size. Finally, expert-severity was
discarded since it had 97.8% missing values for the normal data.

Initial analyses showed that a very high number of values are missing. The reasons for
missing values are likely systematic, because nearly all IP-variables, all TCP-variables and
all IEC104-variables had the same number of missing values, respectively (see Table 8).

Since removing missing data would result in no samples left, the frame len was treated
by introducing 4 new binary features describing, if Virtual Local Area Network (VLAN),
IP-data, TCP-data and the tcp_pdu_size is missing, respectively. For numerical variables
missing values were then replaced by the median values. Then they were standardized to
the unit interval using the minimum and maximum values. Categorical variables with a
small number of occurring attributes were generally coded as dummy variables: VLAN
was coded into 4 variables according to the information, if VLAN had one of the values
20, 30, 40 or 50 (or missing, as already described above). In an analogous way this was

Table 5 Extracted field values from layer 4

Field Description OSI Layer

tcp_srcport TCP Source Port is the port number used by the client sending
the TCP segment. It is usually a number below 1024. IEC 60870-
5-104 messages are sent over Port 2404.

tcp_dstport TCP Destination Port is the port number used by the client
receiving the TCP packet. It is usually a number below 1024.
The IEC 60870-5-104 default port is set to 2404.

L4

tcp_len Total length of the TCP Segment, includes header and data.

tcp_hdr_len SLength of the TCP header can range from 20 bytes to 60 byte.

tcp_window _size_value The TCP window size, is an indication of how much bytes the
receiving device is willing to receive at any point in time. In
situations when the receiver is overwhelmed, it will advertise a
zero window size.

tcp_pdu_size Equals tcp-len, but the value can only be dissected when it is a
IEC 60870-5-104 packet.
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Table 6 Extracted features specific for x104 from Layer 7

Field Description OSI Layer

x104apci_apdulen According to above there are packets with fixed length and
with variable length containing ASDU. Fixed length packets
contain control information and have the size of 4 Bytes.

x104apci_rx Number of the last packet the sender received. L7

x104apci_tx Send Sequence number of the transmitted frame. This value
gets increased by one for every frame which gets sent to a
specific IP address.

x104asdu _typeid Type IDs are described in Table 2.

x104asdu _causetx Cause of Transmission values are described in Table 1

done for the other categorical variables IP-flag (0 or 1), asduTypeid (13 or 36) and asd-
uCause (1 or 3). The numerical variable tcp_hdr_len was treated as being either 20 or
not. Source and destination ports needed a special coding that involves both variables at
a time. First, descriptive analysis showed that port 2404 is occurring in 53.9% of cases
with other port Identification numbers being comparably rare. Additionally source and
destination port are not the same. This information was coded as two binary variables
portFeatureSrc2404 (source-port is 2404 and destination-port is not 2404) and port-
FeatureDst2404 (destination-port is 2404 and source-port is not 2404). The third case
occurring (TCP-information is missing) was already coded above.

The resulting 21 features are like follows: 4 numerical variables (frame length, IP Ttl,
TCP winSize and TCP pdu size); 5 binary missing-value variables (VLAN, IP, TCP,
TCP pdu size, x104); 10 dummy variables for VLAN (4), IP-flag (1), xTcpTdrLen (1),
asduTypeID (2) and asduCause (2); the 2 special variables for the ports.

Note that this way of coding was done based on descriptive analysis of only normal data.
Therefore, this removes a possible advantage of the supervised approach where single
variables could be turned into features additionally based on their class-separating ability.
While this was also tried, in this case it resulted in nearly the same variables with very
similar classification results. Therefore, this part is omitted. Finally, it is important to
mention that feature generation was done in a blinded way by a person not familiar with
the system or any Snort rules.

Detection of attacks
Four types of methodologies will be compared: supervised classification, semi-supervised
anomaly detection, unsupervised anomaly detection and signature-based anomaly detec-
tion using Snort. The signature-based approach is expected to have a small or zero
false positive rate, but the ability to detect the attacks is unknown. For the methods of
semi-supervised and unsupervised anomaly detection, the attacks are unknown during
learning so they have the potential to detect zero-day attacks. The question is, how close
these methods can get to the signature-based and the classification based method. Since

Table 7 Extracted feature from Wireshark

Field Description Wireshark

x_ws_expert _severity Expert information value from Wireshark. The application keeps
track of problems like malformed packets.
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Table 8 NAN-statistics

Variable vlan-id IP TCP x104 rest TCP-pdu-size expert-severity

% missing 1.5% 3.7% 18.6% 71.3% 56.7% 97.8%

anomaly-based methods typically suffer from detecting too many false attacks (false pos-
itives), which limits their practical usability, the focus is especially laid on decreasing the
false positive rates.

Misuse detection with snort

For misuse detection five packet capture files were extracted from the whole data set to be
analyzed by Snort. The first file contained 50,000 normal examples and the attacks were
split up into four files with equal size of 500 packets.

In order to use Snort, the rules must be specified. The NIDS only looks at the field values
of network packets which are defined in the rules, if the fields do not contain the exact
value defined in one of the rules, the rule will not trigger, but if a match is detected, an
alarm will be raised either in the command line or in a separate log file. In addition to the
default rule sets, the additional IEC 60870-5-104 rules were activated. In the course of this
work, some rules were modified as follows: The rule to detect the port scan was modified
from a default Snort rule and controlled if TCP traffic with set SYN, ACK or RESET flags
entered the network. Additionally, the port scan rule was configured to only trigger if the
packet had a Time To Live (TTL) of 64. This modification enables to distinguish the port
scan from a denial of service attack, which showed different, lower TTLs. This explicit
setting has the consequence that the rules would also trigger if a legitimate connection
attempt, which includes a TCP handshake, to some network gear would happen. Such
a connection attempt could occur, for example, in case of configuration changes. While
this process was not part of the data set, this change could result in false positives in a
productive environment.

The application of Snort on the five packet capture files with the rules as specified above
leads to the following confusion matrix (Table 9). The result shows that no rule triggered
when Snort analyzed the normal traffic which resulted in zero false positives.

Furthermore, the detection of the port scan done with nmap and the DoS Attack done
with Syn Flood delivered very good results and nearly all packets were classified cor-
rectly. In the beginning five false negatives were found in the data of the Syn Flood attack,
but after a further examination of the data set it turned out, that two of these packets
were actually Domain Name System (DNS) requests from the attackers laptop. Since DNS

Table 9 Statistics for Misuse Detection with Snort

Predicted class

Normal Attack

True class

normal 50000 0

Nmap 0 500

Syn Flood 3 497

Nessus 354 146

Fuzzy 466 34
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requests should not appear in the normal traffic, the rule for detecting them was deacti-
vated and the false positives could be eliminated. The remaining three packets contained
Transport Layer Security (TLS) encrypted traffic and did not match any of the rules, so it
was classified as normal.

The packets of the Nessus attack remained largely undetected. An investigation of pos-
sible reasons revealed a high amount of TLS encrypted packets. This seems legitimate
because Nessus tested the web interfaces of the RTUs against several vulnerabilities. Since
Snort is not able to decrypt these packets, most of the traffic was not classified as an
attack. The detection rate of the fuzzy attack was also low. This can be assigned to the
anatomy of the attack itself. During the Fuzzy Scan mixed packets from normal condi-
tion to malformed are sent into the network to find vulnerabilities in the protocol. In
first tests, only 11 packets were classified as attacks. By adding additional custom rules as
stated above the accuracy could only be improved by a small amount.

Considering the short time range of only 500 packets, the detection of some attacks was
good, but the classification of the attack against the IEC 60870-5-104 protocol itself was
significantly worse than expected.

Supervised intrusion detection: classification

For training of the classifiers 50,000 normal and 1,750 attack samples were randomly
chosen using the features described above. Classification was performed with Matlab’s
tool Classification Learner app. As for anomaly detection the primary goal is to sepa-
rate attacks from the normal cases, the outcome is binary: either normal or attack. The
remaining samples comprise the test set which was used only for evaluation purposes.
Several classifiers were tried: classification trees of various sizes, linear discriminant anal-
ysis, SVM (with linear and Gaussian kernels), k-nearest neighbor classifiers and tree
ensembles trying both bagging and boosting. Since the goal was a principle assessment of
the classification ability, no extensive fine tuning and parameter optimization was done
(mainly the default settings were used) and the best model was chosen using standard
5-fold cross-validation.

For the two-class classification setting, a medium sized tree (maximum 20 splits
allowed, using the Gini index as splitting criterion) showed the best performance
(Table 10).

Without any normal case treated as an attack, all but 31 of the 8251 attack samples were
detected. Thus, a precision of 100% and a recall of 99.62% was reached. The 31 undetected
attack samples consist of 2 Syn Flood, 2 port scan, 7 vulnerability scan and 20 fuzzy sam-
ples. Note that several classifiers (for example a k-nearest neighbor classifier with k=5 for
data re-standardized to standard normal distribution) reached a similar performance.

If the goal is to additionally distinguish between the different attacks, one needs to
consider the multi-class-setting. Also there, the medium tree had slightly the best result

Table 10 Results of the classification approach: confusion matrix for a medium tree applied to test
data for the twoclass-case

Predicted class

Normal Attack

True Normal 238277 0

Attack 31 8220
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Table 11 Results of the classification approach: confusion matrix for a medium tree applied to test
data for the multi-class case, where the goal is to distinguish the attacks, too

Predicted class

Normal Nmap Syn Flood Nessus Fuzzy

True class

Normal 238277 0 0 0 0

Nmap 4 2046 0 21 0

Syn Flood 2 0 2053 12 4

Nessus 7 7 455 1597 1

Fuzzy 40 6 1 1 1994

(Table 11). Note that in contrast to the two-class case now 53 instead of 31 attacks are
not detected, because the tree must also reach distinguishability between the attacks. Dis-
tinguishability is quite good, just Nessus and SynFlood are difficult to distinguish. This
pattern can also be seen for other classification models. Note that in a real application
one could use the two-class-classifier to find anomalies and then, in a subsequent step,
try to identify the attack using the multi-class-classifier. In practice this differentiation
could increase the resilience by decreasing the time until proper countermeasures can be
employed.

Although the groups are highly unbalanced (attacks are rare), classification results are
quite satisfying even without special treatment. That is the reason why no methods like
under- or oversampling have been applied.

Semi-Supervised anomaly detection

For training of the anomaly detection the same 50,000 normal samples as in the classi-
fication approach with the same features were used. The commonly employed one-class
SVM (Schölkopf et al. 2000) was chosen for modeling the normal data. A Gaussian ker-
nel was chosen, because the data are a mixture of numerical and categorical data. Since
the data was normalized to a [0,1] interval, a kernel scale of 0.1 was tried out first. Due to
the semi-supervised setting where only normal data are analyzed the outlier-fraction was
set to zero. For evaluation, the model was applied to all the remaining data including the
unused training attack data of the classification setting.

The result is quite encouraging, still nearly all attacks are detected (Table 12). However,
in contrast to the classification setting now some false positives exist.

The confusion matrix is shown merely to compare the result with the classification
result. The fact that now false positives exist, is of course a big disadvantage. However,
it should be stated that the semi-supervised setting, where only the normal cases are
presented to the model is by nature much harder. This has two consequences: (i) it can-
not really expected that anomaly detection reaches similar result; (ii) anomaly detection
results are typically not presented as a confusion matrix but by ROC-plots where the true

Table 12 Results of the semi-supervised anomaly detection approach: confusion matrix resulting
when applying the model to test data

Predicted class

Normal Attack

True Normal 238141 136

Attack 56 9945
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Fig. 3 ROC-plot for semi-supervised anomaly detection (left) and unsupervised anomaly detection (right)

positive rate is plotted against the false positive rate. As a measure for the performance
the Area Under Curve (AUC) is usually given. Here, the AUC is 0.9990, which is very near
to the optimal value of 1.

Unsupervised anomaly detection

The hardest but maybe most realistic intrusion detection setting is the unsupervised one,
where the Intrusion Detection System (IDS) analyzes an unknown mixture of normal
and contaminated traffic. For training all samples are unlabeled, and intrusion detection
relies on the assumption that contaminated data shows up as anomalies. Since the relative
amount of contaminated traffic is not known, for evaluation this information is treated as
a parameter that is varied.

In the present case the same one-class SVM model as above is used as an anomaly detec-
tor, because it already showed good results for the semi-supervised setting. Therefore, a
bad result due to model restrictions is ruled out and a worse choice of parameters can
be attributed to the unsupervised setting. As a training set, a random sample of 50,000
samples of all data (both normal traffic and attacks) was randomly chosen. For the exper-
iments the parameter outlier-fraction was varied from 0.01 to 0.3. The arising Receiver
Operating Curve (ROC)-plot (Fig. 3, right panel) shows the True Positive Rate (TPR)
(TPR=TP/P) dependent on the False Positive Rate (FPR) (FPR=FP/N) depending on the
outlier- fraction (with P and N denoting all attack and normal samples, respectively). The
ROC-plot and the AUC of 0.944 stated that the model seemed to be good.

While an AUC of 0.944 looks good at first glance, a detailed analysis shows that this
is not sufficient for practical purposes. The results of the unsupervised approach are far
inferior to the ones of the semi-supervised approach in terms of classification success:
Table 13 shows the result of the model when the outlier-fraction is set near the right value
of 3.5%.

Table 13 Results of the unsupervised anomaly detection approach: confusion matrix resulting when
applying the model to test data

Predicted class

Normal Attack

True Normal 233724 6211

Attack 5463 2880
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While the FPR of 2.6% seems to be good, due to high proportion of normal samples,
this results in 6211 false positive samples which is too much for a practical IDS. Note this
high number of false positives already occurs when still about two third of attacks are
undetected.

Discussion of results

This study has several limits and should be considered as doing a first, static step towards
intrusion detection. First, the duration where data were gathered, is rather short so time
series analysis methods were excluded as detection methods. Additionally, due to the
short duration, not all normal situations may be included and therefore generalization
may be worse than estimated from the available data. For example, during the normal
operation captured in this study only measurements or settings of switches are requested
in single cases with the Cause of Transmission value of 3 or cyclically with a Cause of
Transmission value of 1. However, situations exist that should also be considered as nor-
mal have not been seen. One such example would be an outage of a component where
many more requests arise with the Cause of Transmission value of 20 which would be
classified as an intrusion based on the existing data. However, while it is not an intrusion
it is an anomaly whose detection would be valuable.

The present data set has a huge number of missing values which had to be accounted for
by extracting corresponding features. A first analysis of the cause for missing data showed
that during the port scan or during the Syn Flood attack, no transmission of measured
values took place, so the fields here are not filled. The RTUs in the test facility crashed
about two minutes after the start of the test because they could not withstand the number
of queries. In a follow-up study, the unknown mechanisms leading to missing values espe-
cially for normal operation should be studied in detail before data are gathered. Labeling
packets with many missing values as an intrusion would lead to an unacceptable number
of false positives, since 821 normal packets had all values missing except the frame length.
Therefore, many missing values are considered as normal. This has in turn the disadvan-
tage that faking normal operation by setting values simply to missing could be a way to
disguise an attack.

While accuracy of predictions is important, understanding the detection mechanisms
is also crucial for further improvements of detection methods and the choice of possible
countermeasures. In the raw packet data, we found that nmap sends SYN requests with
tcp_window_size 1024 and gets ACK responses from the RTU with tcp_window_size 0
because it is overwhelmed. Due to the large number of inquiries and impending overload
similar behaviour could be seen in the vulnerability scan data. Thus the tcp_win_size
feature seems to be well suited to detect the port and Nessus vulnerability scan because
they lead to situations when the receiver is overwhelmed. Then it will advertise a zero
window size, which enables detection of these two attacks.

The missing of data can also be caused by attacks: during the Syn Flood attack hping
tried to send as many SYN requests to a device in the test station as possible which
caused them to crash. There the data mainly showed the SYN requests, which announced
a tcp_window_size of 1024 bytes. Due to the overwhelming count of requests, no answers
from the RTU were received which resulted in missing x104apci and x104asdu val-
ues. These fields were also missing in the Nessus packets because there could only be
two IEC 60870-5-104 APCI packets be found in the data. During the attack Nessus
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also overwhelmed the network with encrypted traffic and HyperText Transfer Protocol
(HTTP) requests.

The x104rx and x104tx counters could be used to detect the fuzzy attack: the x104rx
and x104tx counter start at zero and increase with each packet sent or received. They only
get reset when a new connection is established. During the fuzzy test, a new connection
attempt happens from the attackers laptop to the RTU. Therefore the x104rx and x104tx
counter values at the Fuzzy test are very low, in contrast to normal operation mode where
connections usually exist for a long time.

Conclusion and future work
In order to facilitate a comparison of the different approaches, Table 14 shows an overview
of the results for the two-class setting. As expected Snort had no false positives but
misses some attacks. The fact that the supervised approach also showed zero false pos-
itives with fewer undetected attacks proved that one can get excellent results using
machine learning based on the generated features. However, as a matter of principle the
supervised approach was not able to detect new, unknown attacks. The more suitable
semi-supervised approach was promising as it is better in detecting attacks than Snort
at the cost of some false positives. Although the supervised and the semi-supervised
approach showed that the features would suffice to yield good results, the unsupervised
approach was clearly the worst solution both in terms of false positives and detection
capability.

The application of machine learning methods to IEC 60870-5-104 network traffic
demonstrates their promise in addressing security concerns in the ICS domain. With
the chosen set of features, and treating missing values as additional binary variables, the
results of the evaluation demonstrated the power of machine learning at detecting the
considered attacks. The supervised method, with a medium sized decision tree by using
the Gini-index as splitting criterion, as well as the semi-supervised approach, based on
a one-class SVM with a Gaussian kernel, could reach 100% precision and also extraordi-
nary high recall and a nearly perfect AUC for classifiers, respectively. The results are good
enough to be further analyzed in future intrusion detection approaches for ICS.

However, the unsupervised anomaly detection, which can be considered as the most
realistic intrusion detection setting and was trained with completely unlabeled data on
the proven one-class SVM from the semi-supervised approach, showed a false positive
rate of 2.6% by an AUC of 0.944. This seems good, but in a productive environment, the
number of generated false positives would definitely be too high.

Despite the overall good performance of the various learners, with the signature-based
approach, using Snort as an IDS, the results were much worse than the ones from the
unsupervised method. Only the DoS and the portscan attack could be clearly identified
by Snort because the signatures for them are very obvious. The NIDS detects an anomaly,

Table 14 Summary of detection results of the four different approaches for the two-class setting

Detection method False positive packets Undetected attack packets

Snort 0 823

Supervised 0 31

Semi-supervised 136 56

Unsupervised 6211 2880
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if a network packet exactly matches the pattern of one of the activated rules but does not
consider other deviations of the normal system, which occur in the cause of the attack,
as unusual. To improve the detection rate of the signature-based method in the SCADA
data set used in this paper, it would also be necessary to develop additional rules to better
meet the requirements of the test system but this requires a tremendous amount of work
and extensive knowledge of the network.

As the proposed attacks involve timing, format, and protocol violations, we intend to
extend this work to explore additional features that consider these elements in making
the intrusion detection decision. Improved performance, especially considering the unsu-
pervised approach, will be necessary in order to maintain the same accuracy in a more
complex environment comprised of multiple RTUs and SCADA systems. The data sets
only covered short time ranges, therefore more data will be needed to achieve this. In a
next step, it will be necessary to also catch traffic during re-configuration or outage of
network devices. Furthermore the reasons for missing data points have to be investigated.

The consideration of other protocols than IEC 60870-5-104 was basically out of scope of
this paper but because of the promising results that the attack detection showed it could
be considered in further researches. Especially an extension to IEC 61850 would be inter-
esting because this specific protocol is widely used for automation tasks by distribution
system operators (Khodabakhsh et al. 2020).

The novelty is in the comparison of intrusion detection capabilities between machine
learning approaches and a signature based NIDS by applying them to network traffic,
which resembles the behaviour of a real substation. This work can be seen as a foundation,
and encourage the future exploration of more complex SCADA systems, more difficult
attack vectors, and more advanced machine learning methods to discriminate attacks on
critical infrastructures based on the IEC 60870-5-104 protocol.
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