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Introduction
Electricity provision is a cornerstone of industrialized societies and a key contributor to
their welfare and almost all economic activities. However, without proper coordination,
overuse of the shared electricity network may occur, resulting in the tragedy of the com-
mons (Gupta et al. 1997; Koolen et al. 2017). Whereas there is a solution to this challenge
(granularly pricing the network within a smart market environment (Bichler et al. 2010))
this solution is often not feasible in real-world applications. Transaction costs, bounded
rationality, and risk aversion are hindering the introduction of actual market environ-
ments. This is particularly true if small-scale end users would have to participate in them
(Parag and Sovacool 2016; Yamamoto et al. 2008). In this work, we focus on an area in
which this is particularly prevalent, the retail electricity sector.

In most liberalized electricity markets end-users subscribe to tariffs instead of partic-
ipating directly in trading, as transaction costs prohibit trading activities for households
or small-scale commercial electricity users (Ketter et al. 2018). Even today most tariffs
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are flat, meaning that users pay a uniform price per unit of energy, e.g., one kilowatt-
hour, regardless of the time of consumption and the price of the upstream market
(Fridgen et al. 2018). Suppliers absorb the price risk of the upstream market and the
quantity risk of the consumption (cf. (Kaufmann et al. 2020)). Given the current smart
meter roll-out in Europe and the increasing availability of home automation, we suppose
that real-time pricing tariffs that are already available for larger customers might also
become more available for residential consumers. Anyway, it is an interesting question for
policy-makers what effect such tariffs might have on residential electricity consumption.

We reckon that end-users (or software agents that act on their behalf, respectively)
are willing to adjust part of their consumption in exchange for monetary incentives,
resulting in usable flexibility (Valogianni and Ketter 2016; Gottwalt et al. 2011; Ketter
et al. 2013). We further assume that while there exists a general willingness to shift
demand, varying prices induce transaction costs and risks for end-users (cf. (Ericson
2011)). Because of this, suppliers have to incentivize them to choose a tariff with vary-
ing prices, referred to as time-dependent pricing (TDP) for the remainder of this work.
An offered discount in (expected) prices for the end-users captures this incentive. While
longer pricing horizons are beneficial for end-users, as they (or their home automation
system) can optimize their future demand accordingly, they expose the supplier to larger
price risks on the procurement side of the electricity market. Shorter pricing horizons,
however, reduce the end-users’ ability to modify their demand to avoid high-cost times,
reducing the impact of TDP. This user-supplier trade-off concerning the optimal pric-
ing horizon is the focus and key contribution of this work. While traditionally many
suppliers secured energy using long-term contracts, there is a significant shift towards
the shorter-term markets against the backdrop of the diffusion of renewable energy
sources. The described model anticipates such developments in wholesale energy markets
(Koolen et al. 2017).

We consider a simplified and stylized electricity market model. We suppose that
end-users buy their electricity from a supplier, who in turn purchases electricity from
generators on a wholesale market. Note that numerous generators are typically present
on electricity wholesale markets and that we do not incorporate idiosyncrasies of actual
market designs in countries with liberalized electricity markets. Instead, we are using a
stylized energy-only market on which the supplier can procure electricity. We assume that
prices on the wholesale markets (the cost for the supplier) can be forecast (Ketter et al.
2009). Assuming that short-term predictions yield more accurate results than longer-term
predictions, the price risk depends on the forecasting horizon (Ketter et al. 2012).

Our work embeds itself in the context of energy systems undergoing a substantial
change as international agreements on climate change prevention accelerate the adop-
tion of renewable energy resources (Ketter et al. 2018). Solar and wind energy as the most
prevalent sources of renewable energy show an intermittent supply, meaning that they
cannot be controlled at will but feed in energy whenever the weather conditions allow
it. This leads to increased volatility on wholesale markets and the necessity to manage
increased risk for suppliers (Boroumand et al. 2015). At the same time, demand must
follow the supply curve closely as the power system has to be in balance at all times. Tra-
ditionally this was achieved by having supply follow the (exogenous) demand; however,
this becomes increasingly difficult as the share of controllable resources such as nuclear
and coal in the energy system decreases (Ketter et al. 2018).
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Changes to the demand-side reinforce the supply-side challenges faced by power
systems. Accelerating penetration of electric vehicles, heat pumps, and general elec-
trification increases the stress on the grid, in particular on distribution networks
(Valogianni et al. 2018). While infrastructure expansion could, to a large degree, con-
tain these challenges, this approach induces significant cost compared to the potentially
cheaper option of leveraging flexibility within the power system (Kondziella and Bruckner
2016). Infrastructure capacity must support peak demand, as electricity networks have to
sustain the highest occurring load flows. This is similar to other networked systems such
as transportation or communication. As infrastructure sizing follows peak demand, peak
shaving is a particularly desirable goal of flexibility utilization (Joe-Wong et al. 2012).

Background and related literature

This work lines up with interdisciplinary research manifesting itself in several streams of
literature. We review the literature on energy informatics (Watson et al. 2010; Goebel et al.
2014) and smart market design (Bichler et al. 2010), as they provide a foundation for infor-
mation systems (IS) research within the field of energy (economics). Further, we review
the literature on demand response (DR) and demand flexibility (Gottwalt et al. 2011) as
they describe the end-user flexibility we are seeking to leverage using a dynamic pricing
approach. Note that we do not discuss research that specifically addresses demand-side
management (DSM). Despite being widespread in the literature, as DSM typically focuses
on centralized control approaches as opposed to the market-based incentives we describe.
Due to the interdisciplinary character of recent energy research, seminal work on DSM
and DR is available in IS literature as well as in engineering and economics. Last, we
review the literature on dynamic pricing in general, as it is not only prevalent in electricity

markets, but also in other fields energy research could draw from.

Energy informatics and smart market design

Beside the notion of smart grids that mostly refers to technical aspects of power system
operation, energy informatics research explores the area of smart markets (Bichler et al.
2010) that can contribute to the economic side of next-generation power markets. The
design of electricity markets, in particular with rapid changes within power systems, is a
highly complex task, rendering it a wicked problem (Ketter et al. 2016a). Computational
research, especially simulation of strategic behavior and policy, contributes to a better
understanding of the necessities of future energy systems (Ketter et al. 2016b). Different
methods to coordinate existing flexibility with economic approaches (Dauer et al. 2015)
have been proposed, as well as approaches to economically value demand flexibility, e.g.,
using methods from mathematical finance (Fridgen et al. 2014). However, most work
within this research stream does not focus on the retail side of the market and thus has a
different perspective on end-user pricing than the approach we propose in this work.

Demand response and demand-side management

There is a close interconnection between research on DR, DSM, and dynamic pricing
(Borenstein et al. 2002). In this subsection, we will review research regarding technical
aspects, i.e., how information systems (IS) can create demand flexibility. In the next sub-
section, we will give an overview of dynamic pricing. On a residential level, most research
focuses on two applications to achieve demand flexibility: Smart home technology
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(in conjunction with smart appliances), and electric vehicles (EVs). A reason for this is
that residential cooling and heating units and EVs show the largest potential for flexi-
bility (D’hulst et al. 2015). Research at the interface of IS and artificial intelligence (AI)
shows how intelligent agents (IAs) within smart homes (Cook 2012) can schedule dif-
ferent appliances and EVs when these experience variable prices (Valogianni et al. 2020).
Similar approaches exist as a decision support system for EV fleet operators (Eisel et al.
2015). IS cannot only leverage flexibility in the form of decision intelligence but also in the
form of analytics to estimate the underlying demand elasticity of EV usage (Koroleva et al.
2014). The utility of IS in estimating flexibility within the energy system to support util-
ities has also been extensively researched (Fridgen et al. 2016; Schmidt and Busse 2013;
Watson et al. 2013).

As this research shows, the availability of flexibility on a residential level can be sub-
stantial in the presence of suitable technology to unleash it. However, the IA approaches
in this section consider households or fleet operators directly facing wholesale electricity
prices, which is (at best) true for very large consumers. Therefore we contribute by includ-
ing the supplier layer between end-users and the electricity market. We are not aware of
demand flexibility literature that models the risk absorption by the intermediary the way

we propose.

Dynamic pricing

Dynamic pricing is an important direction of IS research, as electronic markets (Bichler
et al. 2001) enable both variable pricing and price discrimination through the use of IS.
Research shows how dynamic pricing of electric vehicle (EV) charging can help to adjust
the demand profile to a preferred shape (Valogianni et al. 2018) and how it can manage
demand loads in smart grids (Joe-Wong et al. 2012). A more general view on dynamic
pricing schemes by Borenstein et al. advocates a wider use of continually adjusted prices,
especially for larger customers (Borenstein et al. 2002). Given the time of its writing in the
early 2000s, it could hardly have foreseen the extent of the recent and ongoing develop-
ments in the area of home automation and, consequently, reduced transaction costs for
smaller customers facing dynamic tariffs. Beyond short-term effects, dynamic prices may
also reshape customer behavior in the long run (Borenstein 2005).

Beyond research in the electricity sector, this work also relates to the broader liter-
ature on the economics of data pricing in broadband networks. Dynamic pricing for
data and communication usage has been investigated since the 1990s. Sen et. al. pro-
vide a detailed survey of various time-independent and dynamic pricing schemes in the
existing literature (Sen et al. 2013; 2015). As early as 2001, dynamic pricing experi-
ments for voice calls showed that static prices encouraged users to shift their calls from
peak to off-peak times (Shih et al. 2001), although real-time pricing was not effective
due to users’ uncertainty in the future prices. A series of field experiments in opera-
tional networks has demonstrated the benefits of time-dependent pricing for mobile data
(Haetal. 2012; Sen et al. 2019). Subsequent work has investigated various optimizations of
such pricing schemes and particularly the benefits of TDP compared to fixed-rate pricing
(Zhang et al. 2014; Chang et al. 2015; Joe-Wong et al. 2011).

Dynamic pricing for data networks differs from that of energy markets in several ways.
First, energy providers have a very different supply-side model because they procure
energy from different sources (e.g., coal, water, nuclear) that have different production
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costs and availability constraints for the resource. Second, the reviewed data network
pricing literature does not model the risk absorption by an intermediary because the
network operators themselves typically own bandwidth licenses. Thirdly, prior works in
data networks have focused on the effect of dynamic pricing on end-user behavior, rather
than studying the question of selecting the right pricing horizon, which is the focus of
this work.

Dynamic pricing has also been proposed for cloud markets, where Amazon EC2’s spot
instances are perhaps the most popular form of dynamic pricing: they essentially offer
real-time auctions for computing resources (Zheng et al. 2015). Like data and electric-
ity users, cloud users’ demands for resources can vary over time, and mechanisms like
virtual pricing attempt to incentivize users to spread this demand to avoid congestion
(Jiang et al. 2019). However, most dynamic pricing schemes for cloud computing consider
real-time pricing, with prices not announced in advance (Xu and Li 2013). Since much
cloud usage is machine-driven to some degree (typically, cloud workloads do not require
human intervention while they are running), it is easier for users to automatically adjust
their cloud usage to real-time pricing than it would be for data or electricity usage. Pricing
horizons have not been considered in cloud markets.

Despite the vast body of literature on DR and dynamic pricing, the authors are not aware
of any research that a) considers a variable announcement horizon for the dynamic prices,
and b) incorporates risk into the model. The contribution hence is an adaptable modeling
framework that can be bootstrapped with real-world data for specific application cases.

Demand model

We model end-users’ electricity consumption in presence of tariff pricing. That means
that end-users are not directly subject to wholesale prices. Instead, suppliers offer tariffs
to them. As opposed to flat tariffs, time-dependent-pricing (TDP) tariffs show varying
prices for different times, e.g., hours during one day. Suppliers are passing on the volatility
of the wholesale market to the downstream retail market to set the right incentives for
customer behavior. A novelty to the approach is that pricing horizons do not have a fixed
length, e.g., 24 hours (day-ahead pricing). Instead, we explore different pricing horizons’
effect on resulting prices and suppliers’ profits. Table 1 gives an overview of notation.

H time-slots of equal length constitute a pricing horizon. The supplier maintains a
rolling pricing horizon of length H, i.e., after every time-slot, she announces a new price.
The supplier optimizes the risk-adjusted profit for a specific period of consideration, e.g.,
one day. We denote it as 7. Other periods of consideration are equally possible, suppliers
could optimize profits for a month or a year.

End-users in the model have a known time-dependent baseline demand x; p,5. under
flat pricing p4. If end-users have advanced metering infrastructure (AMI), the supplier
can estimate the baseline demand from historical data, otherwise, she may use standard
load profiles. Users might be able and willing to shift some demand from a time-slot to
another. This shifting does not necessarily require actual interventions by the users. Much
rather software agents such as home energy management systems (HEMSs) would act
on their behalf. In the past, residential electricity consumption has mostly been assumed
to be inelastic as the inconvenience of behavioral change outweighs potential savings
for most conceivable pricing regimes. However, with the growing availability of techno-
logical flexibility, e.g., battery storage or electric vehicles, combined with the increasing
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Table 1 Notation

Symbol Description

H Horizon length, i.e., time between price announcement and corresponding period.

Dfiat Constant price of a flat tariff.

Dt Price at time t.

Xt base Baseline demand at time t.

Xt Actual demand at time t.

T Supplier's periods of consideration.

w(d,s) Waiting function. Denotes the share of demand shifted s periods when there is a relative
price difference of d.

G Random procurement cost at time t.

Ct Unbiased estimator for C;.

8 Discount parameter. Denotes the average price reduction that has to be offered for TDP
to be competitive.

A Risk aversion parameter.

01 Forecasting quality coefficient. Dropped in augmented model.

0 Forecasting quality decay rate.

@ Equals ¢, in augmented model.

I, Supplier's revenue at time t.

zc(9) Supplier's risk-adjusted profit.

Zfiq (+) Supplier's risk-adjusted profit under flat pricing.

availability of HEMSs, it is conceivable that demand elasticity will grow. Given these tech-
nologies, the potential to shift demand can be substantial. Note, however, that we are not
assuming that consumers at any point would shift all of their demand. Partial inflexibility
of demand is within the scope of our model.

Baseline demand

Xt base denotes the baseline demand of a population of end-users for electricity at any given
time t = 1,2,..., T. The baseline is the demand of the users at time ¢ under flat pricing
Pfiar- While x; p4s. would be a random variable with substantial variance for single users, it
can be treated as a deterministic variable for a sufficiently large population of customers.
As most tariffs for residential or small-scale industrial and commercial customers in the
electricity sector still follow a flat pricing scheme, it can be precisely estimated based on
historical data, e.g., through the use of standard load profiles for residential customers
(Meier et al. 1999) or using statistical learning methods. For the remainder of the work,
we will assume that a sufficiently large population of customers has subscribed to the
proposed TDP tariff, and treat x; 5,5, deterministically. This is a reasonable assumption
as suppliers in tariff markets typically serve a vast number customers.

Demand shifting
Users can shift demand through technological flexibility. This flexibility may be due to
actual storage technology such as batteries, as well as abstract storage technologies such
as electric vehicles or thermal storage. Previous work in the field of smart grids lays the
foundation for the model of demand shifting (Joe-Wong et al. 2012). The model can eas-
ily be adapted to incorporate a larger group of heterogeneous users by aggregating the
demand of individual users or user groups.

The waiting function w(d,s) denotes the share of consumption the user population
shifts by an amount of time s, given a relative amount of money saved d. Even with 100%
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of payments saved, it does not necessarily have to equal 1, as some share of the baseline
demand might be inflexible. Thus, w (%, |s — t|> denotes the shifted share of demand
from time ¢ to time s, where |s — | is the amount of time between periods s and ¢, and
% is the amount of money saved, relative to the known flat pricing scheme from before
(Pias serves as a baseline for shifting decisions). Note that this shifting can be bidirec-
tional; users can shift their normal electricity usage to a later time, or they can use more
electricity at the current time and less at a later time. Again, the model can be extended
to a heterogeneous group of users by defining different waiting functions, or different
parameters for individual users or user groups. Users are less likely to shift their usage
from a time-slot to another as more time elapses between the two. We can mathemati-
cally capture this behavior by imposing %‘:’S) < 0; we also impose % > 0, since users
would shift more usage if they can save more money by doing so. To incorporate these

requirements, we choose

max(d, 0)

W) = B P

1

where 8 > 0 parameterizes users’ willingness to shift. A large B, for instance,
would indicate that the users’ probability of shifting decays rapidly as s increases,
indicating impatience. Here C,(B) is a parameter-specific normalization constant.
Note that the waiting functions may also be time-dependent without changing the

basic structure of the model. If the end-user price has significant fixed compo-
bt—Ps
Pflat
under more flexible pricing schemes. As the resulting lower amount of shifting can

nents (such as grid fees), the relative savings will be substantially smaller than
also be modeled with C,(B). For brevity, we are assuming a fully flexible end-user

price.

Pricing horizon
The supplier maintains a window of H future prices by posting one new price after each
time-slot; we denote this a continuous pricing horizon. Figure 1 shows an explanatory case
with H = 8. The end-user makes a demand decision at ¢ = 11. Cells colored light blue
are time-slots to which or from which users can shift energy demand, cells colored light
red are time-slots to which or from which they could have shifted. Besides the continuous
pricing horizon, there are other possibilities for variable price announcements, e.g., blocks
of fixed length (simultaneous announcement of all prices for a certain time frame). How-
ever, we do not model such pricing schemes, as we assume the case of a rolling window
to be the most realistic and most applicable.

Since the provider announces prices so that she maintains a continuous price horizon
of H time-slots, users can always shift their demand to the full extent of H. We find the
end-user demand at time ¢ is

t|1123456 789 10 11 12 13 14 15 16|17 18 19 20 21 22 23 24

Fig. 1 Continuous Pricing Horizon
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t+H-1 ) P
t — FPs
Xt = Xt,base — E Xt,baseW ( yls — t|> (2)

s#Ls=t—H+1 Pfiat

t+H—-1 P P)

s — Pt

+ E Xs,baseW ( ’ |t - S|> .

st s=t—H+1 Pflat

Note that shifting from or to periods outside the period of consideration is possible, i.e.,
even when we are maximizing daily profits, we have to account for the fact that shifting
can occur across days given sufficiently large pricing horizons. We ignore the potential
start and end effects, as we can safely assume that tariff contracts persist substantially
longer than both the periods and horizons we explore.

Objective

The supplier’s objective is to find the prices p; and time horizon H that optimize the (risk-
adjusted) profit in the period of consideration, e.g., one day. For a continuous pricing
horizon, the profit I, for the period of consideration is

T T
e = Z I, = Z Wexe — Cexy) 3)
t=1 =1
where C; is a random variable that represents the per-unit cost at time £. It could represent
the supplier’s production or her purchases on the wholesale market. Even if C; denotes
the cost of the supplier’s production, it is a random variable, as generation quantity (for
variable renewable energy) and operational disruptions can occur randomly, resulting in
the necessity to procure electricity on the wholesale market. Note that 7 = 24 in this
work, however, other periods of consideration are equally possible. Since we choose a
short period of consideration, we do not discount future profits.

Under monopoly assumption, the supplier could charge infinitely high prices as the
short-term price elasticity of consumers is zero; users might shift their demand, but do
not reduce their total demand in the short run. However, the supplier cannot charge
prices that will increase total costs for the end-users, as suppliers in electricity (and
other liberalized) markets face competition. We assume that users would only sub-
scribe to TDP if their daily cost would not increase (even without shifting). Under this
assumption, subscribing to TDP is a no-regret measure for users. Additionally, suppli-
ers might have to offer a horizon-specific discount to incentivize users to subscribe to
TDP. As TDP increases inconvenience and transaction costs, this discount is positive and
decreasing in H.

Z (Pexepase) < (XT: (Pﬂatxt,base)) <1 - Ii) (4)

t=1 t=1

We assume a mean-variance (aka u — o) utility function of the supplier (cf.
(Oum et al. 2006)). While such a utility function is not the only option to model risk
aversion, it is a standard choice. With a deterministic demand pattern, the distribution of
profits only depends on the distribution of the cost. The supplier forecasts cost up to a
normally distributed error term, the profits are therefore also distributed normally; sub-
tracting a risk term from the expected profits captures risk aversion. A is the coefficient
of risk aversion. The objective of the supplier is then to maximize risk-adjusted profits
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max z. (p1,...pr, H) = E[I1] —&Var[ I.]. (5)
PlrpT,H 2
The user population’s baseline demand is deterministic, Var[x;p,5] = 0. Cost is pre-
dicted by an unbiased estimator ¢;, i.e., Var[ C;] = Var [2,5 + et] = Var| ¢], where ¢; is
the randomly distributed error term of the prediction at time . The error terms are inde-
pendently distributed between time-slots, therefore, Cov [I1;, IT;] = x.x:Cov [Cy, C] =
x5x:Cov [€1, €] =0 Vt # s. With this, we get

T
z() =E [Z‘ nt] - %Var [Z nt} (6)
t=1

t=1
T A
= Z <E[ Ht] —Ex?Var[ Ct] ) (7)
t=1
T
= Z <(pt — )Xy — gx?Var[et]) . (8)
t=1

Var[ €], the variance of the cost forecasting error term at time ¢, equals the mean square
error of the prediction. The functional form of Var[ ¢;] depends highly on the used fore-
casting algorithm, as algorithms are performing best for different forecasting horizons
(Aggarwal et al. 2009). We model Var[ ¢;] based on three assumptions. First, we assume
that the supplier’s forecasting error will be smaller for shorter forecasting horizons, as
more relevant information for the price formation (e.g., power plant availability, weather)
is available shortly before market clearing. Second, we assume the forecasting error con-
verges to a final value for very long forecasting horizons. In particular, we suppose that
it does not grow infinitely large. This is reasonable as even without precise short-term
information there is a prior on cost distribution. Both these characteristics correspond
to forecasting with autoregressive models (cf. (Hamilton 1994, Chapter 4)). Third, we
assume that the forecasting error is proportional to the squared expected cost, i.e., there
is a constant coefficient of variation. This is the strongest assumption, especially as it
implies zero variance for an expected cost of zero. However, such a functional relationship
between the error term and the expected value seems particularly reasonable for the elec-
tricity sector. As there is a convex supply curve, variance due to both supply and demand
variation is bigger for higher price levels. Note, however, that other functional forms of
Var| €] can easily be incorporated in our model. Under the given assumptions we can
model Var| ] by

Var[¢;] = ¢ (1 — (p2_H> c?, 0<¢1, 1<g, 9)

where ¢; and ¢y are forecasting parametrs. A higher value for ¢; indicates a generally
higher error term variance, whereas a higher value for ¢, indicates faster convergence

to the residual error variance of an infinitely long forecasting horizon; it denotes the
n(2)
In(p2)
tion through forecasting. Note that ¢; is multiplied with A in (8), rendering a distinction

myopia of the forecast. Strictly speaking, is the half-life of the error variance reduc-

between them redundant. Therefore, ¢; = 1 for the remainder of this paper. Note that
adjustment of A in the simulations accounts for the dropped ¢;. For brevity, we define
@2 = @. It follows
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T

Y
2() =Y | (e —eym - Exf (1—¢ ). (10)

t=1

Gross Profit Risk

The intuition behind the non-discriminability of A and ¢; is straightforward: given a
better forecasting quality, the supplier’s constant coefficient of risk aversion has to be
higher to observe the same optimal decision.

Since we admit that suppliers can both increase and decrease prices compared to flat
pricing, suppliers will exhaust their opportunity to increase prices to a degree where they
are just competitive. However, we are restricting prices to 0 < p; < 2py,, V¢ to be able
to calculate C,,. Note that this restriction is never binding in our simulations. Under
these assumptions, constraint (4) binds so that the maximization of (10) resembles a cost
minimization problem.

The previously used concept of risk-adjustment is ill-defined for flat pricing, as there is
no specific decision horizon. To compare the results of TDP and flat pricing, we adjust
gross profits under flat pricing with a risk term corresponding to an infinitely long fore-
casting horizon, assuming that the supplier sets the flat pricing scheme well in advance of
the period of consideration.

T
A
2 2
Zﬂat(') = Z (pﬂat - Ct) Xt,base — Extybﬂsect (11)
t=1 | ——— - -  ——
Gross Profit Risk

Note that zg,, is not a function of the pricing horizons, as is intuitive. For non-zero
usage and cost, the risk under flat pricing is strictly higher than under TDP, because the
supplier has less freedom to manage its risk. Comparing (10) and (11) one recovers the
supplier’s three-part gain from offering a TDP tariff.

Az =z() — Zﬂat(')

T
= Z (ptxt _pﬂatxt,base) +
t=1

M~

(Ct (xt,base - xt))

~
I
—

< 0, due to discount and shifting 0, procurement savings

T

A _
+ Z (2(’% (x?,hase - x? (1 -9 H)))
t=1

> 0, risk avoided

v

The magnitude of the terms determines the profitability of TDP for the supplier.

Simulations
The results of the optimal pricing horizon and horizon-specific prices significantly
depends on the choice of parameters. Because of this, we will vary the impatience param-
eter B, the discount parameter §, the risk aversion (and forecast quality) parameter A,
and the myopia parameter ¢ over a wide range. C,,(8) is calculated based on 8 and H to
ensure that there can never be more energy shifted from a time-slot than consumed in
the baseline case (i.e., we do not allow negative net demand).

We consider pricing horizons of length H € 9,9 = {2,3,4,6,8,12,24} within one
day, i.e, T = 24. To compare the effects of different pricing horizons, we optimize
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the risk-adjusted profit concerning an exogenous pricing horizon, i.e., using an exhaus-
tive search for the optimal H. As the pricing horizon can only take (specific) integer
values whereas the prices are continuous, we have a mixed-integer (MI) problem. Further-
more, the shifting function is non-linear. Therefore, we have a mixed-integer non-linear
program (MINLP). Using exhaustive search concerning the pricing horizon leaves ||
non-linear problems (NLPs) per parameter combination. Solving several of NLPs instead
of a mixed-integer non-linear program (MINLP) has the additional advantage of superior
solver availability.

The baseline demand rests upon the standard load profile for residential electricity
customers in Germany (Meier et al. 1999). Flat pricing is pg,; = 0.25 to create a com-
prehensible reference system. Note that we refrain from using units in this work and that
we are abstracting from all fees and surcharges that are priced into existing retail electric-
ity tariffs, as they are not decision variables of the supplier. Expected costs equal stylized
average prices of the German intraday electricity market. Figures 2 and 3 show both the
standard load profile and the stylized price curve, respectively. Note that both capture
important real-world aspects of the German energy system. The model itself does not
depend on that given structure.

Demand is low during night time. During the morning hours, there is a steep increase
when people are cooking breakfast or showering using an electric water heater. Before
noon, there is a period of low consumption again before cooking leads to a steep increase
at noon. During the early afternoon, there is low usage again before a long period of
high usage in the early evening hours, caused by multimedia consumption, cooking, and
other activities. The stylized prices of the electricity wholesale market follow a similar
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Fig. 3 Stylized cost
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trend, as flexible but expensive power plants have to serve demand peaks. The most sig-
nificant deviation between consumption and cost trends is at noon, where demand is
high but prices do not increase. The reason is that solar generation peaks at noon, coin-
ciding with the demand peak. An increasing amount of solar generators in the energy
system will further reduce midday electricity prices, even though it is a time of high
demand.

The impatience parameter is S € {0.5898, 0.6355, 2.8, 3.0, 4.0} to allow for a wide range
of potential user types. Note that for a high value of B the probability of shifting demand
by two or more time-slots is substantially smaller than shifting a single time-slot and is
therefore neglectable, representing either a low ability or a low willingness to shift. The
discount parameter between zero and 0.5, i.e., § € {0,0.1,0.2,0.3,0.4,0.5}. While a dis-
count parameter of zero denotes that shorter horizons cause no additional inconvenience,
a discount factor of 0.5 denotes the case that a discount of 25% is necessary for end-users
to consider TDP with a two-period horizon.

The risk aversion parameter is between 0.1 and 1, i.e., A € {0.1,0.15,0.3,0.5,1}. This
corresponds to a coefficient of risk aversion between 1 and 10 as seen in the literature
on decision-making for portfolio investments in conjunction with a constant coefficient
of variation (CV) of the root-mean-square deviation (RMSE) of approx. 0.3. A CV of the
RMSE of 0.3 implies that the RSME accounts for 30% of the mean cost, or that the mean-
square error (MSE) accounts for 10% of the squared mean costs, respectively. Hence, the
values for the coefficient of risk aversion are scaled by 0.1. Note that the actual MSE of
electricity price forecasts depends significantly on the used forecasting algorithm, fore-
cast horizon, market, product, etc. Still, we are confident that the variation of A within
one order of magnitude is sufficient to describe the effect of risk aversion given imperfect
forecasts.

The myopia parameter is to ¢ € {1.01,1.02,1.05, 1.1, 1.5}. While a factor of 1.5 describes
an error variance reduction of approximately 67% for a forecasting horizon of a single
time-slot, and practically no error variance reduction for a forecasting horizon of 24 time-
slots, a factor of 1.01 describes an almost linear error variance reduction from 99% to
21% for a forecasting horizon of one and 24 hours, respectively. The parameter variation
combined with the exogenously determined pricing horizon H results in a total number
of 5250 simulation runs.

Results and discussion

Figure 4 shows the distribution of the optimal objective function values for TDP and the
risk-adjusted profit for flat pricing (the black line designates the risk-adjusted profit for
A = 0.3, the borders of the grey areas the other values for A). Note the clipping at an
objective function value of 0.0, so that not all results are visible for a discount parameter
of § = 0.5 and flat pricing, respectively. The optimal objective function value greatly
depends on the choice of parameters. While the greatest variance stems from the discount
parameter §, the other parameters also significantly influence the outcome. When end-
users do not expect a discount, i.e., § = 0, the optimum is virtually the same for all pricing
horizons but the longest. This is since for short or moderate pricing horizons, the reduced
procurement cost and the increased risk are balanced. For a long pricing horizon, i.e. H =
24, the risk increase is so substantial that even the enhanced shifting cannot outweigh the
discount.
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Risk-adjusted profits under flat pricing are significantly smaller for most values of A.
Only with a large discount parameter §, TDP lacks competitiveness for shorter pricing
horizons. The result, however, is different when looking at gross-profits, i.e., ignoring risk
adjustments, in Fig. 5. Here, TDP is not competitive for short pricing horizons and barely
competitive even for longer pricing horizons. The foregone profits due to the offered
discount are so significant that the procurement cost decrease due to shifting is not sub-
stantial enough to outweigh its effect. Without a discount, the mean gross profits are
higher for all pricing horizons, as the opportunity to modify prices increases the degrees
of freedom for the supplier without any disadvantages. The comparison of TDP and flat
pricing, as well as risk-adjusted and gross profits, shows how substantial the effect of risk
management is for the optimal decision making of the supplier. Strikingly, if the supplier
is risk-neutral, then TDP can only be competitive if the discount is near zero. If, however,
the supplier is highly risk-averse, TDP can be preferable even if end-users expect large
discounts, and expected profits are lower.

Figures 6 and 7 show the objective value and the optimal choice for H when g is 0.5898
(a high willingness to shift), and § is 0.2 (a moderate discount factor). Figure 6 shows
that longer pricing horizons attain higher objective function values (given a medium risk
aversion of A = 0.3) as long as the myopia parameter ¢ is low (farsighted forecasts are
possible). This is since lower discounts are necessary and there is only a moderate risk
adjustment. However, Fig. 7 shows that the optimal choice of H varies for higher risk aver-
sion parameters. Especially for myopic cost predictions, a shorter pricing horizon yields
high utility under increased risk aversion. Note that ¢ = 1.5 is an outlier, as forecasting
risk is high for all forecasting horizons with a myopia parameter this high.
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Figure 8 shows the difference in risk-adjusted profit for the optimal pricing horizon
from Fig. 7 and flat pricing. The difference can be substantial, especially for significant
risk aversion and low myopia. This seems reasonable as TDP gets particularly attractive
for the supplier if she wants to actively manage her risk exposure and can do so using
reliable forecasts. For insignificant risk aversion and high myopia, the advantage of TDP is
still existing, even if shrinking considerably. Generally speaking, the advantage of offering
TDP instead of flat pricing increases with the availability of reliable forecasts and risk
aversion.

Figure 6 shows that, for a myopia parameter of ¢ = 1.05 (and a risk aversion parameter
of A = 0.3), the optimal objective value is comparable for pricing horizons between 6 and
24 hours (with H = 12 yielding the highest results). To disentangle the different effects
contributing to this result, Fig. 9 shows the pricing for these parameters 24-hour pricing
horizon. We omit the other horizons as the optimal pricing is very similar across the
different horizons. Clear peaks are visible around approx. 8-10 AM and 7-8 PM,, i.e., high
demand times with high procurement cost. Around noon end-user prices are low albeit
there is an increased consumption; this is since procurement is cheap at midday. Price
peaks at high-usage, high-cost times are more distinct for longer pricing horizons, as it is
easier to make end-users shift their demand in this case. However, this increase leads to
the necessity to slightly reduce prices at low-cost times to stay competitive.

The usage shifting of end-users through the time-dependent pricing is notable, as
Fig. 10 shows. Note that, again, the figure only shows the 24-hour horizon for clarity.
Shifting patterns are similar between different pricing horizons, but most pronounced for
the 24-hour horizon. TDP primarily serves by incentivizing demand shifting away from
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the expensive evening hours. This is more successful for longer pricing horizons, as there
are more alternative time-slots to which end-users can shift their consumption (since g is
small in this setting, the willingness to shift by even more than one hour is relatively high).
For H = 24, users shift more than one-third of the baseline demand at 7-8 PM to other
time-slots, resulting in a significant procurement benefit for the supplier. Not only the
procurement costs but also the absorbed risk is smaller if the supplier successfully incen-
tivizes shifting from high-cost times, as the risk associated with demand at a specific time-
slot increases quadratically with the expected demand and the expected cost (see (10)).
The inclusion of risk as opposed to a purely deterministic model shows more distinct
differences between cheap and expensive time-slots. Shifting directions are mostly equal
for all pricing horizons, as the characteristics of load profile and cost throughout the day

conclusively determine expensive and inexpensive times for the supplier.
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g
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Fig. 9 Optimal pricing for a 24-hour pricing horizon
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Figure 11 shows the dependence of the optimal objective function values for the differ-
ent input parameters. Each parameter is varied independently, meaning that all but the
varied parameter take their most beneficial form, e.g., the risk aversion parameter is 0.1
during the variation of the other parameters. The discount parameter is the largest driver
of variation in the optimal objective function value, followed by the myopia parameter.
The effect of the risk aversion parameter is slightly lower, the effect of 8 the smallest of
the four.

All parameters but § are direct results of the availability of information systems for the
end-users or the supplier. Both the risk aversion parameter A (recall that X also includes
a term of general forecast quality) and the forecast myopia ¢ depend on the possibility
to accurately predict wholesale prices as long in advance as possible. Prediction methods
using artificial intelligence (AI) can contribute to the availability of such methods. The
discount parameter § reflects the inconvenience caused for an end-user by subscribing to
short-term TDP. An automated HEMS, such as smart home technology, may reduce the
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perceived inconvenience. An intelligent agent as part of the SH can also predict prices not
currently set and thus enable reasonable shifting beyond the horizon.

Conclusions and future work

We proposed a modeling framework to describe end-users’ consumption shifting for
electricity under TDP. There are different aspects of risk in the model, especially the
supplier’s risk aversion and the time-dependence of forecasting precision. These aspects
significantly influence the optimal decision-making of suppliers in the context of network
economics. They outline how state-of-the-art information systems reducing uncertainty
on the supply-side and inconvenience on the demand-side can influence the supplier’s
optimal pricing horizon decisions.

We show that particularly in the presence of significant risk-aversion, TDP shows
substantial advantages compared to flat pricing, as suppliers may reduce both the pro-
curement cost itself and the corresponding risk. By actively taking suppliers’ risk into
account we were able to show that even if gross profits are lower under a TDP scheme,
it can be beneficial for the supplier’s utility to offer such a tariff. Because users only sub-
scribe to TDP if it does not reduce their utility, we can show that the aggregated utility of
both the supplier and users can be increased given the non-zero risk aversion, leading to
an increased overall welfare.

Shifting only renders a significant advantage if the price dispersion is sufficiently
large. Our results show that prices during costly evening hours are regularly 50% higher
than during low-cost time. Being able to create such a price spread requires the pos-
sibility to almost fully pass on wholesale developments to the end-users. However,
time-independent fees and surcharges largely drive current residential electricity prices.
A policy implication of our work is therefore that by allowing for time-dependent fees,
e.g., grid congestion fees, a welfare increase is attainable that contributes to both supplier
and user rents. A worthwhile extension of the paper would be a non-zero long-term price
elasticity to include behavioral change of end-users subject to TDP. In a dynamic setting
with a changing baseline demand, new dimensions of complexity for the supplier arise.
Additionally, demand uncertainty could be included.

Active modeling of competition between suppliers could be included in an extension of
this work. Currently, we model competition ad hoc to incorporate the necessity to offer
prices comparable to the status quo. However, if profit (or utility, respectively) increases
are possible due to TDP, competitors presumably would also switch from flat pricing
to TDP. Exploring the equilibria resulting from such competition is an ample direction
for future research. Characteristics of existing markets could be modeled in more detail,
especially the availability of financial derivatives to manage risks, e.g., futures and for-
wards. The decision space of how to procure on different markets and how to set prices
accordingly then is significantly larger, and the necessity for a decision support system is
all the more necessary.

The parameterization of the demand shifting (and the long-term price elasticity) could
be validated using real-world data. We explored the space of potential willingness to pay
by parameter variation. Instead, appliance-specific models are conceivable. A distinction
between forward and backward shifting or non-proportional shifting might be interest-
ing. Another aspect on the demand-side would be the introduction of a variable discount
parameter. The necessary discount may depend on other factors than just the pricing
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horizon. For instance, it is conceivable that lower discounts are necessary when the price
dispersion is low as opposed to highly variable prices.

Offering a portfolio of tariffs to leverage heterogeneity between end-users could be a
highly interesting direction for further research. Typically, suppliers do not just offer one
tariff but can build a portfolio of customers who self-select their ideal tariff. How different
users would react to an offering of tariffs and how the resulting portfolio of end-users
would look like are extremely important managerial questions for suppliers being active in
tariff markets. Last, further research should scrutinize the presented model, in particular
the defined waiting function and the discount magnitude, using a real-world pilot. Such a
study was outside the scope of the presented work, however, it ultimately ought to be the
goal to validate modeling choices in light of actual end-user behavior.
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