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Abstract

The vision of the future Smart Grid considers end-users connected to it as both
consuming and generating energy. Equipped with small-scale renewable energy
generators and storage systems, end-users, also known as prosumers, engage in a local
energy market for procuring and selling energy, in turn disrupting the traditional utility
model. The appeal of this vision lies in the engagement of end-users, in facilitating the
introduction and optimization of renewable energy sources, with the overall
expectation of optimizing the global energy generation and distribution process. To
handle the peer-to-peer energy exchange and distributed energy generation in the
digitalized Smart Grid, we proposed an optimization strategy. In the present work, we
propose a Monte Carlo based simulation model to investigate the role of the topology
in facilitating the peer-to-peer energy exchanges and distributed energy generation.
We consider a 37-node distribution network and evaluate four topological models:
radial, complete graph, random graph, and small-world. The results indicate that the
random graph model is better than other models in reducing the average delivery path
length and energy losses in the energy transfer between providers and consumers. The
small-world model has higher efficiency than other models in reducing the maximum
power load in the distribution network and the cost of buying energy for end-users. We
scale up the investigation by considering a 100-node network and evaluate the
random graph and the small-world models by varying the rewiring probabilities. The
results show that the small-world model outperforms the random graph model on
most efficiency metrics, even when considering infrastructural costs. This work
provides the foundation for a decision support system for analysis and high level
planning of the distribution network.
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Introduction
The traditional model of a power system, with large generation facilities and passive load
at the distribution end, is being challenged by the advances in renewable energy sources
and the digitalization of the infrastructure. The trend involving distributed energy gen-
eration (DEG) entails that the power flows, especially at the distribution level, become
multi-directional. The term Smart Grid captures the digitalization of the infrastructure
and the related trends as just presented. More generally, the Smart Grid adopts Infor-
mation and Communication Technology (ICT) to enhance the efficiency, environmental
sustainability, reliability and economics of producing and distributing electrical energy in
the power system (The Smart Grid 2016). If the overall efficiency of the traditional design
of power systems is approximately 30%, the expectation is to bring this as high as 70% for
the Smart Grid (Yu et al. 2011).
To achieve such radical efficiency increases, a number of technologies and techniques

are necessary. In the present work, we consider the scenario for which renewable energy
generators (REGs), such as photovoltaic (PV) panels and small wind turbines, enable end-
users (in this case also called “prosumers”) to produce electrical energy individually and
to exchange the energy freely among each other. In other terms, the end-users can engage
in a local energy market. After fulfilling the individual demands, their surplus energy
is sold and transmitted to other end-users who need to buy energy. There are two key
ingredients to realize such a scenario. One is the availability of such a market; the second
is an energy distribution infrastructure that supports efficient, multi-directional power
flows. In the present paper, we focus on the second issue: supporting “peer-to-peer energy
exchange,” that is, the distribution of energy among end-users at a local scale. By contrast,
“centralized energy exchange,” which is the current adopted model worldwide, means that
end-users get the required energy from a central operator to which they remit their excess
energy, when overproducing.
Achieved by introducing peer-to-peer energy exchange and trading in the same distri-

bution network and distributed energy generation, the “Prosumer-involved Smart Grid”
provides two important advantages: reducing the dependence on non-renewable energy
sources that are based on fossil fuels; and improving the independence from centralized
energy generation, operation and energy providers (The Smart Grid 2016). The distribu-
tion network is formed by the medium and low voltage (MV and LV) grids, including
transformers and substations. The term “local scale” identifies residential areas covered
by a sub-network of the distribution network running at low voltage without transformers
and substations.
The present work extends the results presented in Sha and Aiello (2016), where we

focused on the optimization of peer-to-peer energy exchange in the Prosumer-involved
Smart Grid. The optimization objectives were to improve management of distributed
energy generation, to reduce energy losses of delivery, to improve independence from a
central operator, and to decrease energy costs for end-users. The present paper proposes
a simulation model to investigate the topological effects on the optimization, that is, to
study how the topology of distribution grids affect the optimal energy exchange based on
distributed energy generation at the local scale. We study the effects of different topolo-
gies using the Monte Carlo approach (Law 2007). This work provides the foundation for
a decision support system for the analysis and high-level planning of the distribution net-
work towards managing distributed energy generation and peer-to-peer energy exchange.
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For the evaluation, we design four assessment metrics: energy loss ratio in the distribu-
tion network, energy cost for end-users, maximum load in electric lines, and average path
length of energy delivery. The evaluation process is divided into two stages. The first stage
is performed on a 37-node network with four topology models: radial, complete graph,
random graph (k = 4), and small-world (k = 4, p = 0.4). The second stage tests the ran-
dom graph model with different average degrees k = 4, 6, 8, 10, 12 and the small-world
model with different pairs of average degrees k = 4, 6, 8, 10, 12 and rewiring probabilities
p = 0.2, 0.4, 0.6, 0.8, 1.0. We test these models against 100-node networks. The present
work is also based on and extends our previous paper (Sha and Aiello 2018) by designing
the second stage of the evaluation process. The major contributions of the present paper
are: (i) a proposal for evaluating how the topology models and the model’s parameters
influence the performance of peer-to-peer energy exchange and trading, (ii) experiments
from the topological point of view employing the optimization of peer-to-peer energy
exchange, and (iii) a simulation model on the basis of the Monte Carlo approach and
various statistical distributions.
The remainder of the paper is organized as follows. The “State of the art” section dis-

cusses the related work. The “Optimization of peer-to-peer energy exchange” section
presents the mathematical optimization model of peer-to-peer energy exchange pro-
posed in our previous paper (Sha and Aiello 2016). The “Monte Carlo simulation” section
illustrates the Monte Carlo approach and the methods of simulating energy production,
consumption, and real-time price. Evaluated topologies, parameters and cases, assess-
ment metrics and evaluation settings are presented in “Simulation execution and results”
where also the results are discussed. The “Scope and limitations” section discusses the
scope and limitations of this paper. The “Conclusions” are offered in the final section.

State of the art
While energy exchange and trading in the Smart Grid is becoming increasingly studied, to
the best of our knowledge, there are few works that combine the topological perspective
with a probabilistic approach. In considering related work, we look into two main rele-
vant fields: energy exchange and trading in the Smart Grid, and topological approaches to
distribution networks.

Energy exchange and trading in the smart grid

In the context of the Smart Grid, a Microgrid comprises a cluster of distributed energy
generators that are locally controlled and work at low voltages (≈≤ 1 kV) or medium volt-
age (usually ≈ 1 − −69 kV) (Hatziargyriou et al. 2007). A Microgrid behaves, from the
power grid’s perspective, as a single energy producer or consumer (Hatziargyriou et al.
2007). Game Theory is the most widely employed approach to model the system and its
users (Abdella and Shuaib 2018). Matamoros et al. study how energy can be exchanged
between two Microgrids in a peer-to-peer manner in order to minimize the total cost
of energy generation and transportation, while each Microgrid fulfills its local energy
demand (Matamoros et al. 2012). The approach is generalized for the case of Microgrids,
which are fully connected, have a ring and a linear topologies (Gregoratti and Matamoros
2015). Other game theoretic approaches are presented in Lee et al. (2015), Zhang et al.
(2018), and Marzband et al. (2018). Most studies on energy exchange and trading at the
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Microgrid level do not consider the topological effects on the reaching of equilibria and
improving performances.
The PowerMatcher project focuses on a set of users connected to the same distribution

network and coordinating their loads (Kok et al. 2005, 2010, 2012; Warmer et al. 2007,
2008; Hommelberg et al. 2007; Bliek et al. 2010; Kok 2010, 2013; MacDougall et al. 2011).
Based on an agent-oriented architecture, the focus is on physical deployment and demon-
strating the feasibility of local energy exchange. End-users, owning home appliances,
electric vehicles and/or industrial installations, act as small electrical energy consump-
tion. Small-sized distributed energy generators based on renewable sources provide small
energy production in the operation of the electricity infrastructure. In this way, the Pow-
erMatcher enables integration of the large amounts of renewable energy in the power grid
while avoiding overloads in the distribution network. The aim of the project is to sup-
port the matching of supply and demand. A market-based control approach is employed
to optimally balance energy production and consumption. The PowerMatcher project is
validated both in the field deployment and in simulation studies with good results. It can
improve the match between energy consumption and the availability of renewable energy
production, and can reduce the imbalance caused by unpredictable behavior of renewable
sources. In addition, it is able to relieve possibly overloaded distribution networks.
Another study based on Game Theory proposes a model that involves energy exchange

and trading among prosumers (Samadi et al. 2016). Some studies investigate energy
exchange based on intelligent buildings. Mocanu et al. propose a Building Energy Man-
agement Systems (BEMS) enabling energy exchange among buildings to optimize their
energy scheduling and energy cost (Mocanu et al. 2014). In Kim and Lavrova (2013), Kim
et al. optimize power flows in order to share energy among buildings equipped with bat-
tery storage systems. Based on energy exchange among buildings, the work presented
in Čaušević et al. (2019) proposes a mechanism that can supply electricity to communi-
ties affected by a power outage. The proposed mechanism assigns different priorities to
buildings in the community based on community preferences. During power outage, the
building with the highest priority is supplied with electricity by energy exchange first. In
(Wörner et al. 2019), Wörner et al. describe the implementation of an actual prototype of
blockchain-based electricity market for energy exchange within a neighborhood. The goal
of this work is to evaluate the application of blockchain technology in energy exchange
among prosumers.
In this field, the closest line of research to our study is on power routing which is a

mechanism allowing electrical energy routing between prosumers and consumers. It is
an essential service required for the energy exchange and trading (Abe et al. 2011; Zhong
et al. 2016). In Tashiro et al. (2012), Tashiro et al. propose a system at physical layer to dis-
patch electrical energy by power packets from a source to a destination. The power packet
means that electrical energy is treated like data packets tagged with the information about
senders and receivers (Tashiro et al. 2012). The paper provides the physical foundation
scheme for the peer-to-peer energy exchange. In Wang et al. (2017), Wang et al. present
a design of a power router that is responsible for power dispatching. The design includes
the hardware structure of the router and a power routing algorithm based on graph the-
ory and lowest cost selection. The proposed power routing algorithm considers physical
constraints of the power network. Based on such power router, Zhu et al. design a routing
protocol to find the most energy efficient path for power flows from one house to another
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house (Zhu et al. 2011). This protocol focuses on the data security perspective on the
power routing. A power router is also the subject of (Nguyen et al. 2010) in which Nguyen
et al. present the cost-scaling push-relabel algorithm to control the power flow in distri-
bution networks considering the distributed energy generation, bidirectional power flows
and meshed network topology. In Brocco (2013), Brocco proposes a distributed protocol
to create and maintain energy transit paths between energy sources and loads devices.
The work focuses on the autonomous control of the power routing. In Hong and Kim
(2016), Hong et al. propose a strategy utilizing game theory for optimizing power routing
among prosumers or Microgrids. The main aim of their strategy is to minimize the trans-
action price. Power routing is simply modeled as a traditional transportation problem to
balance the energy supply and demand. Ma et al. propose a power dispatching protocol
based on the power packet and power router (Ma et al. 2018). The protocol focuses on
matching energy consumers with suppliers, balancing load and generation, and schedul-
ing energy transit in the distribution network. Very recently, the authors of (Jogunola
et al. 2020) proposed a slime-mould inspired approach for optimizing the power routing
among prosumers in the distribution network. The optimization approach considers the
energy losses of power routing, the capacity constraint of electric lines, and the topology
of the distribution network. This work is in line with our previous paper (Sha and Aiello
2016). The power routing algorithms proposed in the above cited works (Wang et al. 2017;
Zhu et al. 2011; Nguyen et al. 2010; Brocco 2013; Hong and Kim 2016; Ma et al. 2018;
Jogunola et al. 2020) are all centralized. Decisions about energy price, energy transit and
demand-supply balance are decided centrally by the power router or a central controller.
The work in (Jogunola et al. 2020) considers meshed graphs as the topology of the distri-
bution network. The work presented in Nguyen et al. (2010) and Wang et al. (2017) use
meshed direct graphs to model the topology of the power network, while other papers do
not consider the topology perspective.
While the reviewed work focuses mostly on the coordination mechanism among the

actors, in the present work we consider issues of efficiency of delivery and show how this
is influenced by the underlying network topology.

Topological approaches to distribution

Reconfiguration problems of the distribution network from a power engineering point of
view are the focal point of topological studies of the distribution networks. Reconfigura-
tion in distribution systems is defined as altering the topological structures of distribution
feeders by opening and closing the switches for reducing power loss or balancing load in
the system (Civanlar et al. 1988). For example, Gohokar et al. apply the network topol-
ogy approach to formulate the reconfiguration problem of the distribution network and
achieve at least a 5% energy loss reduction (Gohokar et al. 2004).
From the power distribution’s perspective, the topology of the distribution network has

an important influence on electrical energy distribution and might need to change with
respect to distributed energy generation for the Smart Grid. Brown argues for the neces-
sity for non-radial distribution networks to support distributed energy generation in the
Smart Grid (Brown 2008). This standpoint is further emphasized in Dugan et al. (2010)
where the adoption of a meshed distribution network is shown to have the potential to
reduce energy losses and to facilitate distributed energy generation. In addition, Alvarez-
Herault et al. propose approaches to upgrade the distribution network topology from the
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current radial shape to a meshed network; the goal is to support the increasing connec-
tion of the distributed renewable energy generation for the Smart Grid (Alvarez-Herault
et al. 2015).
In our previous work, we consider possible evolution of the distribution grids towards

a Smart Grid. In particular, we provide a topological analysis of the Dutch distribution
networks (Pagani and Aiello 2011). We assess the topological properties’ influence on the
cost of peer-to-peer energy exchange and trading in the Prosumer-involved Smart Grid.
In the following (Pagani and Aiello 2014), we investigate several network topology models
(e.g., small-worlds, random graphs) to discover which one performs best for supporting
the peer-to-peer energy exchange and trading, and how network topology models influ-
ence the cost of electrical energy transit in the Smart Grid. Finally, in Pagani and Aiello
(2016), we take a practical step in evaluating how to evolve the existing distribution net-
work to a smart grid model, taking into account the physical constraints. In the present
work, we go beyond a statical topological analysis and look into the actual power flows
and practical network topologies, which clarifies and fills gaps left by previous works on
the subject.

Optimization of peer-to-peer energy exchange
Prosumers produce energy for their own consumption or for resell. In the model, we
proposed, any node can be a buyer and the price for energy is set dynamically per trans-
action (Sha and Aiello 2016). Electric utilities also sell energy and have to cater system’s
balance for a profit. Nodes can simply be consumers. All end-users are part of the same
energy market to trade energy negotiating at real-time prices. The market’s borders are
defined by the topology of the infrastructure and are therefore geographical in nature.
More precisely, the model uses the following assumptions.

- Buying and selling energy are random discrete events.
- Buying or selling energy is an autonomous decision of each prosumer.
- Buying, selling and transmitting energy, in different time slots are independent events.
- At any given time slot, a prosumer can only be a consumer or a provider, not both.
- The providers prefer selling energy to the peers rather than the electric utility.
- The consumers prefer buying energy from the peers rather than the electric utility.
- Energy delivery entails a non-null energy loss.
- Energy losses are only due to power line transit.
- The cost of energy losses is paid by the consumer.
- The compensation of delivery energy losses is not considered.
- Only active power in the distribution network is considered.
- Voltage instability in electric lines is not considered.

We define a weighted electricity distribution graph as one where nodes and edges rep-
resent end-users (including prosumers) and the electric lines connecting the end-users,
respectively. The substations and transformers are not represented in the graph. The elec-
tric lines are differentiated according to their electrical resistance, and thus are modeled
as weighted edges. According to the electrical resistance of the electric line, we can calcu-
late the energy loss in this line. The edges are considered directed to represent the flow.
The direction of the edge is dependent on the time slot, that is, it can change at different
times. Formally, we have
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Definition 1 (Weighted Electricity Distribution Graph) An electricity distribution
graph is a weighted graph G(V ,E,W ) such that each element vi ∈ V is an end-user that
is a consuming unit of a physical distribution network. If there is an edge eij = (vi, vj) ∈ E
between two nodes, there is a physical electric line connecting directly the elements repre-
sented by vi and vj. The weight of the edge eij is w(eij) ∈ W that is the electrical resistance
of the physical electric line connecting vi and vj.

In the weighted electricity distribution graph, we have
Fact 1 Between any two nodes, a path PATH(i, j) = {eia, eab, ..., exj} represents a set of
physical electric lines connecting vi and vj.
As a point of notation, given a systemwith p end-users, we write EU = {eu1, eu2, ..., eup}

to denote these end-users and a set of time slots T = {�t1,�t2, ...} where �ti =
�tj (i �= j). A set of energy consumers and providers at �t is denoted by EC(t) =
{ect,1, ect,2, ..., ect,n} and EP(t) = {ept,1, ept,2, ..., ept,m}, respectively. For each provider, we
have ept,i = (pricet,i, supplyt,i), where pricet,i represents the energy price (€/kW·h) of ept,i
and supplyt,i represents an amount of energy supplied by ept,i. The amount of energy
that ect,i buys from ept,j is represented by buyt,(i,j) ∈ (0, supplyt,j]. The energy gener-
ated and consumed by eut,i are represented by GEt,i and Ct,i, respectively. Thus, we have
Qt,i = GEt,i − Ct,i representing the amount of energy which eut,i is able to sell or needs
to buy. If Qt,i > 0, eut,i has surplus energy to sell. If Qt,i < 0, eut,i needs to buy energy to
fulfill its demand. If Qt,i = 0, eut,i is self-satisfied.
In the proposed model, the power flow will follow varying paths which depend on the

set of pairwise agreements between nodes per time slot and the physical constraint of
keeping the system in electric balance. This also means that energy losses on the network
will vary per time slot. Since energy losses are paid by the buyer, the buyer has the interest
to make energy provisioning decisions that are optimal with respect to losses. In other
words, the individual optimization goal can be stated as: “given an open energy market
with real-time pricing possibilities, how to find the cheapest energy provider dynamically
and be delivered energy following the paths with minimum energy losses.”
For a consumer ect,i, the cost of buying an amount of energy x is defined as CoB(x). The

energy loss of delivering x to the consumer is defined as LoD(x). The delivery path from
ept,j to ect,i is PATH(j, i) = {e1, e2, ...} where PATH(j, i) consists of electric lines {e1, e2, ...}
without substations and transformers. Energy loss in an electric line e ∈ PATH(j, i) is
defined as LSe. Thus, energy loss of a delivery path PATH(j, i) is the sum of LSe in all
electric lines {e1, e2, ...} ∈ PATH(j, i). Then, in case of Qt,i < 0, the objective function of
optimizing energy cost of ect,i at any given time slot is the following:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CoB(|Qt,i|) = min
|EP(t)|∑

j=1

(
pricet,j ·

(
buyt,(i,j) + LoD

(
buyt,(i,j)

)))

LoD(buyt,(i,j)) = min
∑

∀PATH(j,i)

(
∑

e∈PATH(j,i)
LSe

) (1)

Since a prosumer can only act as a consumer or a provider at any given time slot, we
have Eq. (2). Meaning that a prosumer cannot buy and sell energy at the same time slot.

EC(t) ∩ EP(t) = ∅ (2)
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The set of consumers and producers is a subset of the set of nodes. Then, we
have Eq. (3). The formula contains “⊆” and not “=”, because some prosumers can be
self-satisfied at a given time slot.

EC(t) ∪ EP(t) ⊆ EU (3)

At each time slot, the total energy consumption and the total energy supply in the distri-
bution network have to be the same. Since prosumers are not necessarily able to provide
the energy to all consumers, a super agent (i.e., an electric utility) is part of the model with
the ability to buy or sell energy at fixed prices when end-users’ demand and supply are
unbalanced. The super agent buys energy at a lower price than it sells it.
The amount of energy balanced by the super agent at �t is represented by ES(t). Pos-

itive values of ES(t) (ES(t) > 0) represent the selling of energy by the utility, negative
values (ES(t) < 0) represent buying. Three constraints represent the condition that the
system has to be always in balance.

|Qt,i| =
|EP(t)|∑

j=1
buyt,(i,j) (4)

|EC(t)|∑

i=1
|Qt,i| =

|EP(t)|∑

j=1
supplyt,j + ES(t) (5)

|EC(t)|∑

i=1
Ct,i =

|EP(t)|∑

j=1
GEt,j + ES(t) (6)

Finally, two physical system’s constraints are part of the model: ampacity and flow direc-
tionality. Ampacity of an electric line ek is the maximum electric current Imax

ek carried by
the electric line (Grigsby 2007). The ampacity is related to the dependent on the voltage
Uek in the following way Imax

ek ×Uek ×�t. The power flow starting from ept,j going through
ek is represented by f(ek ,ept,j). This leads to:

∑

ept,j∈EP(t)
f(ek ,ept,j) ≤ Imax

ek · Uek · �t (7)

On a given line at a given time slot, there can be only one direction of flow, that is, the
direction of f(ek ,ept,j), represented by d(ek ,ept,j) takes values in the pair: {−1, 1}. For example,
if there is a power flow in an electric line from point A to B at �t, another power flow in
this electric line from point B to A at the same �t is not allowed.

|
∑

ept,j∈EP(t)
d(ek ,ept,j)| =

∑

ept,j∈EP(t)
|d(ek ,ept,j)| (8)

Monte Carlo simulation
To understand the optimization strategy’s effectiveness and its dependence on the various
parameters, we resort to stochastic simulations. In particular, theMonte Carlo Simulation
method relies on generating repeated random numbers (Law 2007; Raychaudhuri 2008).
In our work, this entails the use of statistical distributions for modeling energy consump-
tion, renewable energy production, and real-time pricing. We run simulations for several
topological models, to assess the topological effects on the optimization of energy dis-
tribution. In particular, we consider: a small-world model (Watts and Strogatz 1998), a
random graphmodel (Noh and Rieger 2004), a complete graphmodel, and a radial model.
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The reason for choosing the small-world model is that this model obtains a good balance
between the upgrading costs for infrastructure and energy distribution efficiency (Pagani
and Aiello 2014). The other models are considered as they form a benchmark for compar-
ison. The radial model is the currently most common network distribution model used in
practice and thus can be considered for the comparison with current practice. While the
random graph and the complete graph models can be seen as extreme cases of the small-
world models where the rewiring probability is maximum or null, respectively. Next, we
illustrate the specific sub-models for energy production, consumption, and distribution
networks.

Simulation of wind energy production

Wind power is dependent on the length of the turbine’s rotor blades, air density, and wind
speed. The formulas of generating electric power Pw by a wind turbine, and calculating
electrical energy Ew are derived from (Grogg 2005), shown next:

⎧
⎪⎨

⎪⎩

P = 0.5 × A × ρ × V 3 × Cw
Pw = min(P,Pmax)

Ew = Pw × �t
(9)

The units of Pw and Ew are Watt and Joule, respectively. The area swept by the rotor
blades (m2), air density (kg/m2), and wind speed (m/s) are represented by A, ρ and V,
respectively. We use Cw ∈ (0, 1) to represent the efficiency of a wind turbine, and Pmax
(Watt) is the maximum power output.
The analytical relationship between the electric power Pw and the wind speed V

depends on the control characteristics of the wind turbine, which are cut-in speed Vci
and cut-off speed Vco. The wind turbine only works when the wind speed is in [Vci,Vco].
Otherwise, the turbine is locked. Meaning that Pw = 0 when V < Vci or V > Vco.
We apply a standard three-bladed turbine (Bukala et al. 2015) in the simulation, where

the swept area of blades A = 10.75 (m2), the maximum power output Pmax = 2600
(Watt), Vci = 2 (m/s), and Vco = 13 (m/s). We approximate the wind turbine’s efficiency
Cw from the efficiency curve, as shown in Fig. 1. For air density, we use the average value
ρ = 1.225 (kg/m3) (International Organization for Standardization 1975).
The wind speed is generated by applying a Weibull distribution (Karki et al. 2006). The

scale and shape of the distribution are calibrated by means of historical measures. In
Ayr (2014), the author calculates the parameters of the Weibull distribution for 97 sites
in Italy based on wind data collected throughout the country during 30 years. We use
Milano Malpensa site’s data provided by that work, in which the scale is 3.18 and the
shape is 1.4 (Ayr 2014). This site is located near an international airport. Therefore, the
wind data of this site are more stable and can provide useful information of wider validity
(Ayr 2014).

Simulation of solar energy production

For the photovoltaic panel simulation, we consider one hour intervals and the tempera-
ture, air pressure, local time, and geographical location. For a cloudy sky, the model of
hourly solar radiation is on the basis of the widely adopted model from (Sung et al. 2015).



Sha and Aiello Energy Informatics             (2020) 3:8 Page 10 of 26

Fig. 1 Three-bladed efficiency curve of the wind turbine, from (Bukala et al. 2015)

The model is characterized by the peak solar radiance Smax,t (kW/m2), the sunrise trise
and sunset tset times. More precisely:

⎧
⎪⎨

⎪⎩

Iss,t = 0, t ≤ trise
Iss,t = Smax,t · sin π ·(t−trise)

tset−trise
Iss,t = 0, t ≥ tset

(10)

where Iss,t is the solar radiance (kW/m2) of the simple sky model at time t, trise and tset are
the sunrise and sunset time, respectively. In the present work, as the panels are assumed
to be roof-based, Smax,t is the maximum terrestrial radiance in an hour IETI,max,t multi-
plied by the hourly clearness index CIt . IETI,max,t is dependent on the zenith angle θZ,t ,
eccentricity factor E0, and the peak value on terrestrial surface I0, shown below (Sung
et al. 2015):

{
Smax = IETI,max,t · CIt
IETI = I0 · E0 · cosθZ,t = 1362 · 1 + 0.033 · cos 2·π ·dn

365 · cosθZ (11)

where dn is how many days simulated in a year. The angle between the sun position
and vertical axis is called the zenith angle (Z) θZ,t . To calculate θZ,t , we refer to (Grena
2012) where five algorithms for the calculation are presented. We choose the Algorithm
3 because it has the best balance between model precision and computational costs.
Algorithm 3 depends on the temperature, air pressure, local time, and geographical

location. For the geographical location, we choose Maastricht in The Netherlands as
detailed weather data is available thanks to the Royal Netherlands Meteorological Insti-
tute (KNMI) (Daily Data from theWeather in the Netherlands). Furthermore, Maastricht
is the least influenced city of the Netherlands with respect to North Sea weather fluctua-
tions. The data includes daily average cloud coverage, daily minimum temperature, daily
maximum temperature, lowest hourly value of air pressure, and highest hourly value of
air pressure. We use the meteorological data of 2016, where the sunrise and sunset times
are obtained from “www.timeanddate.com”.

https://www.timeanddate.com
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In a year, we select a random day dn and the hour t in dn is the time slot. When t is not
in the sunrise to sunset interval, the energy output is null. Otherwise, we use the weather
data of the day and generate random numbers to calculate solar radiation and solar energy
production in t. The value of the air pressure at t is randomly generated between the min-
imum and maximum values of the air pressure in a day. For the temperature, we assume
that the hourly temperature Tt is linear between the minimum temperature Tmin at the
timeHTmin and maximum temperature Tmax atHTmax in a day. Then, we can estimate the
temperature at time t as follows:

⎧
⎪⎨

⎪⎩

Tt = (Tmax−Tmin)·(t−HTmin)
HTmax−HTmin

+ Tmin , t ∈[HTmin,HTmax] ,HTmin < Hmax

Tt = (Tmin−Tmax)·(t−HTmax)
HTmin−HTmax

+ Tmax ,HTmax < t < HTmin,HTmax < HTmin

Tt = 0, other
(12)

when the time t is not in [Tmin,Tmax], we generate a random number in [Tmin,Tmax]
as Tt .
For a cloudy sky, the clearness indexCIt is the sky portion that is without cloud covering.

CIt is generated by a normal distribution whose mean value is in [ 0.4476, 0.64811] and
standard deviation of 0.14 (Jurado et al. 1995). The mean value of CIt varies daily and the
seasonal variability is taken into account. We transform the daily average cloud coverage
CCd into themean value of the clearness index in a day by 1−CCd/CCupper , whereCCupper
is the upper bound of CCd.
The formulas of producing solar power Ps and electrical energy Es by a photovoltaic

panel are shown next1.
⎧
⎪⎨

⎪⎩

P = A · r · Cp · Q
Ps = min(P,Ppeak)
Es = Ps · �t

(13)

The unit of Ps isWatt and the unit of Es is Joule. The surface area of a photovoltaic panel
(m2) and solar radiation (W/m2) are denoted by A and r, respectively. We use Cp ∈ (0, 1)
to denote the efficiency of a photovoltaic panel.We useQ ∈[ 0.5, 0.9] to denote theQuality
Factor (Performance Ratio) that includes all loss relating to the solar power production of
the photovoltaic panel. The peak power output of the photovoltaic panel is Ppeak (Watt).
We choose LG360Q1C2 as the simulated photovoltaic panel where the photovoltaic

panel’s efficiency Cp = 0.196, the photovoltaic panel’s surface area A = 1.73 (m2) and the
photovoltaic panel’s peak power output Ppeak = 360 (Watt). Because it has the top-three
highest quality in 2017 and affordable price for the residential users3.
For residence buildings, fixed or adjustable panels are realistic choices. We assume that

all photovoltaic panels are adjustable panels and their tilt is adjusted twice a year: in the
summer and winter. Because adjustable panels can capture more energy during the whole
year than fixed panels (Landau 2017). The Quality Factor (Performance Ratio) of the
adjustable panel is Q = 0.75 (Landau 2017).
In the Netherlands, a modern residential building typically has 4 to 6 photovoltaic

panels (van Sark and Schoen 2017). In relevant rare cases, some buildings do not have
sufficient roof areas to fit 4 panels and some buildings have relevant higher energy con-
sumption requiring more than 6 panels. Therefore, we consider that an end-user installs

1Photovoltaic Software: http://photovoltaic-software.com/PV-solar-energy-calculation.php
2Product page (accessed on 30 December 2017): www.lgenergy.com.au/products/solar-panels/lg-neon-r-r/lg360q1c
3https://www.ohmhomenow.com/best-solar-panel-brands/

http://photovoltaic-software.com/PV-solar-energy-calculation.php
https://www.lgenergy.com.au/products/solar-panels/lg-neon-r-r/lg360q1c
https://www.ohmhomenow.com/best-solar-panel-brands/
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2 to 8 panels. Since the photovoltaic panels are usually installed with even numbers, we
randomly select a number in {2, 4, 6, 8} for a prosumer when the simulation starts. The
total energy generated by the whole installation is the sum of the generation of each
photovoltaic panel.

Simulation of energy consumption

Studies on the household energy consumption profile exist. Ogunjuyigbe et al. provide
the profile of a typical household (Ogunjuyigbe et al. 2016). In Gottwalt et al. (2011), a
similar profile is identified. Both of these profiles have two consumption peaks. One is in
the morning and another one is in the afternoon. Therefore, the consumption in an hour
of end-users can be assumed to be drawn by a bimodal distribution (Galtung 1967).
The bimodal distribution has two normal distribution curves combined that can model

the two consumption peaks during one day. Then, we assume the boundary of the bimodal
distribution to be at 11:00AM. Therefore, one peak appears in the morning around
6:00AM, and the other one is in the afternoon around 5:00PM. The bimodal distribu-
tion’s parameters are calculated via the dataset of Liander (Energy Consumption of Small
Customers in the Netherlands). In the afternoon, the standard deviation and mean of the
consumption are 0.064 and 0.227, respectively. In the morning, the standard deviation
and mean of the consumption are 0.058 and 0.15, respectively.

Simulation of energy prices

The energy price is assumed to change every hour and to correlate to overall country
demand. It therefore follows the bimodal distribution of energy consumption with the
same boundary. The parameters of such energy price distribution are coherent with the
“electricity price statistics”4 of 2017. The mean value of the distribution is €0.2 per kW·h
which is the average price for the European 28 countries (“EU-28”). The standard devi-
ation of the distribution is 0.05. The minimum price is €0.05 per kW·h. The electric
utility offers a fixed price that is set to €0.22 per kW·h, which is the average price of
“Euro area”.

Simulation of distribution networks

A standard three-phase IEEE distribution test feeder is used to represent the radial
topologies (Kersting 2001). The network consisting of 37 nodes is adapted for the simu-
lation by removing the transformer and regulator, by considering a voltage of 120V for all
electric lines (Fig. 2a). All of 37 nodes in the test feeder are assumed to be end-users and
the distributed loads of three phases are assumed to be balanced. To generate small-world
(Fig. 2b) and random graph (Fig. 2c) models, we use the Java library “GraphStream”5. Each
electric line in all topologies has the same material and equal length. Thus, all electric
lines have equal electrical resistance and ampacity.

Simulation execution and results
We built a Java program to implement the Monte Carlo simulations of the model pre-
sented in “Monte Carlo simulation” section. The simulation program was run on the

4http://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_price_statistics
5http://graphstream-project.org

http://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_price_statistics
http://graphstream-project.org
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Fig. 2 A test feeder and graphs of topology models

Peregrine High Performenace Computing cluster6 with 24 cores at 2.5 GHz and 112 GB
memory. The running of this program approximately consumed 139 hours.

Assessment metrics

We design four metrics to evaluate the topological effects on the optimization strategies.
The metrics are populated using the same load demand satisfaction. Firstly, to assess the
energy delivery efficiency, we measure the energy loss ratio in the distribution network.
The measured energy losses are on the basis of transferring the equal amount of energy in
various considered topologies. For any end-user, the losses based on transferring energy
from prosumers and from the super agent are both accounted for. LOSSt,i denotes the
energy loss of an end-user eut,i at �t. BUYt,i denotes the amount of energy that an end-
user eut,i buys at �t. We measure the ratio between energy losses on the network and the
amount of energy that all end-users buy over a day (Eq. 14).

∑

∀t∈|T |
∑

∀eut,i∈|EU|
LOSSt,i

∑

∀t∈|T |
∑

∀eut,i∈|EU|
BUYt,i

(14)

Secondly, to evaluate the economic benefits of a particular topology, we measure the
energy costs for end-users. The energy costs are the total money that the end-users pay for
buying and delivering energy from both prosumers and the super agent. COSTt,i denotes
the energy cost of an end-user eut,i at �t. We measure the energy cost (unit: EUR) of
buying and delivering 1 kW·h energy on the network (Eq. 15).

∑

∀t∈|T |
∑

∀eut,i∈|EU|
COSTt,i

∑

∀t∈|T |
∑

∀eut,i∈|EU|
BUYt,i

(15)

Thirdly, to evaluate the influence on energy distribution flows we measure the maxi-
mum load in distribution networks. Themaximum load in an electric line is themaximum
energy an electric line carries at a time slot. We measure the maximum load (unit: kW) of
the distribution network which is the maximum value of the loads in all electric lines in
6Peregrine HPC cluster:
www.rug.nl/society-business/centre-for-information-technology/research/services/hpc/facilities/peregrine-hpc-cluster

https://www.rug.nl/society-business/centre-for-information-technology/research/services/hpc/facilities/peregrine-hpc-cluster
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the whole network over one day. The electric line set is E and the load in an electric line
et,i at �t is denoted by LOADt,i. Then, we have:

max
∀t∈|T |

{ max
∀ei∈|E|

LOADt,i} (16)

Lastly, we measure the average delivery path length for energy distribution in order to
assess the efficiency of transmitting electricity between two nodes. The average delivery
path length is the average hop count of all delivery paths from all resources (providers) to
all destinations (consumers) in the distribution network. It represents the average number
of electric lines of the delivery paths to transfer energy from providers to users who buy
the energy. Since each electric line in all topologies has the same length and electrical
properties, each electric line in all topologies has the same weight. Hence, the delivery
path length equals the weighted delivery path length. DPLt,i denotes the total delivery
path length for transferring all bought energy to an end-user eut,i at �t. DPNt,i denotes
the number of delivery paths for transferring all bought energy to an end-user eut,i at
�t. Then, we measure the average delivery path length (unit: step) to transfer all bought
energy by all end-users over a day:

∑

∀t∈|T |
∑

∀eut,i∈|EU|
DPLt,i

∑

∀t∈|T |
∑

∀eut,i∈|EU|
DPNt,i

(17)

Power flow patterns

We apply two patterns of the power flow. One is Radial-flow that simulates energy distri-
bution flows in the traditional way. In the distribution network, all end-users get energy
from a central provider. The prosumer is not part of this pattern. The central provider
injects electrical energy into the distribution network via Node 799, as shown in Fig. 2a.
The second pattern is the Optimal-flow one that adheres to the model proposed

in “Optimization of peer-to-peer energy exchange” section. In this model, some or all
of the end-users act as prosumers; energy production, real-time energy price, and peer-
to-peer energy exchange are enabled. A single super agent injects electricity into the
distribution network via Node 799 when end-users’ demand exceeds supply. For the ran-
dom graph, complete graph, and small-world models, the location of Node 799 is decided
by the model generation randomly. We refer to (Sha and Aiello 2016) for the algorithms
of the Optimal-flow and do not repeat them here.

Evaluation stages and prosumer settings

We divide the evaluation process into two stages. In the first stage, we compare the
performance based on various topologies. We test the random graph, complete graph,
radial, and small-world models. For the small-world model, we use a rewiring probabil-
ity p = 0.4 and an average degree of four k = 4, which provide a good balance between
energy distribution efficiency and the cost of upgrading the infrastructure (Pagani and
Aiello 2014). Then, we use the same average degree k = 4 for the random graph model.
The experiments are performed on the modified IEEE 37-node test feeder, introduced in
“Simulation of distribution networks”. To model the traditional distribution way, we apply
the Radial-flow pattern introduced in “Power flow patterns” to the radial topology. We
apply the Optimal-flow to all topologies. This leads to five evaluation cases: “Traditional”,
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“Complete Graph”, “Small-world”, “Random Graph”, and “Radial”. We apply Traditional
to the baseline. We use several settings of the prosumer for the Optimal-flow cases
with the goal to understand the influence of the number of prosumers. The case con-
siders 24%, 50%, 75%, and 100% of prosumers; more precisely M = 9, 18, 27, 37 in the
37 nodes networks. These settings are referred to as “24%-prosumer”, “48%-prosumer”,
“73%-prosumer”, and “100%-prosumer”, respectively. For the baseline (i.e., evaluation case
Traditional), the number of prosumers is always 0 and it is therefore referred to as
“0%-prosumer.”
In the second stage, we test Small-world and RandomGraph by varying graph formation

probabilities by small increments. More precisely, the tested parameters of the random
graph model are average degrees k = 4, 6, 8, 10, 12, while for the small-world model we
test the same average degrees as the random graph model and p = 0.2, 0.4, 0.6, 0.8, 1.0 as
the rewiring probabilities. We repeat the experiments for the 100 node graphs. The eval-
uation cases are named with the acronyms of topology models. For example, the random
graph with k = 4 is referred to as “RG4” and the small-world having k = 4, p = 0.4 is
referred to as “SW44”.
In the second stage, we go beyond the traditional distribution way. Therefore, only the

Optimal-flow pattern is applied and the Traditional case is not part of the simulation. We
only compare the Random Graph case and the Small-world case with each other. We also
assume that all end-users are prosumers, since the evaluation in this stage focuses on the
topologies. Hence, this stage only has one prosumer setting, M = 100. In addition, this
stage has the same physical constrains of distribution networks as the first stage. Meaning
that the voltage for all electric lines is 120V, and all phases have the balanced loads, and
each electric line has the same electrical resistance and ampacity.

Simulation settings

Small wind turbines and photovoltaic panels are the typical small scale energy generators
adopted by prosumers. We randomly associate to each prosumer either a wind or solar
generator. Hence, the wind and solar sources are given equal weight in the simulation. The
solar source is only available in the daytime but wind is recurrent. This setting provides
the possibility of simulating energy exchange in the nighttime.
The Monte Carlo approach is based on running many several simulation instances and

processing the statistics of all outputs (Law 2007). Thus, in the first stage, we run the sim-
ulation 10,000 times. Meaning that the program simulates 10,000 days and calculates the
mean values of the simulation outputs. The simulation randomly selects each day from
the four seasons. Hence, the simulation represents the seasonal effects. In the second
stage, the number of simulated days is set to 5000. Because the computation time of simu-
lating more than 5000 days is too long to be accepted by the HPC cluster. Each evaluation
case runs once in each iteration. In any iteration, �t = 1 hour and there are T = 24
time slots.

Results

The results of the simulation are intended to determine the impact of the topology on
the efficiency of open peer-to-peer energy market and, what models perform best. First,
we consider the various topological models, and then we analyze the effects of parameter
tuning for the most promising ones.
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Topology comparison

First, we assess the energy loss ratio. That is, the total amount of energy losses in the dis-
tribution network divided by the total amount of energy bought by all end-users (Eq. 14).
This metric indicates the performance of energy loss reduction for delivering energy in
the distribution network. The measured energy losses are based on transferring a given,
fixed amount of energy in the evaluated topologies, including the losses of transferring
energy from prosumers and from the super agent. The simulation results are shown in
Fig. 3, where the Complete Graph, Small-world, RandomGraph, and Radial have decreas-
ing energy loss with the increasing number of prosumers. The decrease of performance
for these topologies are approximately linear. The energy loss maximally decreases 23%,
compared to the baseline, achieved by the Complete Graph when the percentage of the
number of prosumers reaches 100%. The Complete Graph performs better than other
topology models in all prosumer settings. The Random Graph ranks second. Its perfor-
mance is less than the performance of the Complete Graph by 4.3% at 24%-prosumer, by
5.7% at 100%-prosumer, and by 6.5% at other two prosumer settings. The performance of
the Small-world only has 0.7% less than the performance of the Random Graph at 73%-
prosumer. Using three different prosumer settings, these two topology models have the
same performance. The Radial ranks last. Its performance is less than the performance of
the Small-world by 2.9%, 4.3%, 4.3%, and 4.4% at four prosumer settings respectively.
Second, we evaluate the energy costs for end-users which include the cost of buying

energy and the cost of transferring energy. The costs are the money paid by the end-
users for buying and delivering one Kilowatt-hour on the network (Eq. 15). This metric
indicates the performance of energy cost reduction in various topology models. As one
can see in Fig. 4, the Complete Graph, Small-world, Random Graph, and Radial have
decreasing energy costs with the increasing number of prosumers. The decrease for the
topologies are almost linear. The energy cost maximally decreases 8%, compared to the
baseline, achieved by the Complete Graph when the prosumer percentage reaches 100%.
The Small-world ranks second followed by the Random Graph and the Radial is the last

Fig. 3 Energy loss ratio
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Fig. 4 Energy costs for end-users

one. However, with the same prosumer setting, the performances of different topologies
have small differences. The performance of the Small-world is less than the performance
of the Complete Graph by 0.4% at all prosumer settings. However, it exceeds the per-
formance of the Random Graph by 0.4% at 73%-prosumer and 100%-prosumer. The
Random Graph has the same performance as the Small-world at 24%-prosumer and 48%-
prosumer. The performance of the Radial is less than the performance of the Random
Graph by 0.8% for all prosumer settings.
Then, we evaluate the maximum load in the distribution network. The simulation

results are shown in Fig. 5, where the Complete Graph, Small-world, Random Graph, and
Radial have meaningful reductions compared to the baseline. The Complete Graph per-
forms better than other topologies for all prosumer settings. It achieves the maximum
reduction of 96.3% when the prosumer percentage is 100%. The Small-world ranks sec-
ond. Its performance reaches 88.7% at 100%-prosumer, which is less than the performance
of the Complete Graph by 7.6%. The performance of the Random Graph is almost same
as the performance of the Small-world. The performance difference between these two
topologies is no more than 0.2%. The Radial ranks last. Its performance is less than the
performance of the Random Graph by 9.6%, 11.6%, 10.9%, and 9.3% at four prosumer set-
tings respectively. Furthermore, for all topologies, increasing the number of prosumers
only has slight influence on the results.
Lastly, we evaluate the average delivery path length for delivering energy and show the

simulation results in Fig. 6. As one can see, the performances of four prosumer settings
are very close for all topologies. The average delivery path length maximally decreases
with a value of 84%, compared to the baseline, achieved by the Complete Graph at all pro-
sumer settings. The Random Graph ranks second. Its maximum reduction for this metric
reaches 56.1% at 73%-prosumer and 100%-prosumer, which is less than the performance
of the Complete Graph by 27.9%. The Small-world ranks third. It has close performance
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Fig. 5 Maximum load of the distribution network

Fig. 6 Average delivery path length
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Table 1 The cases’ comparison of the performance

Metrics

Cases Baseline Radial Random graph Small-world Complete graph

Energy loss ratio 0.139 −12.9% −17.3% −16.5% −23%

Energy cost 0.251 € −6.4% −7.2% −7.6% −8%

Maximum load 8.808 kW −79.3% −88.6% −88.7% −96.3%

Average deliver path length 6.25 step −30.3% −56.1% −53.6% −84%

to the Random Graph. The maximum performance difference between these two topolo-
gies is 2.7% at 48%-prosumer and 73%-prosumer. The Radial ranks last. The performance
of the Small-world exceeds the performance of the Radial from 23.1% to 30.3% which
means a relevant large performance enhancement.
The figures provide an overall illustration of the assessment metrics’ performance. To

show the enhancement clearly, assessment numerical data are also provided. Thus, the
reduction percentage compared to the baseline for each metric is calculated, as shown
in Table 1. The energy loss ratio, maximum load, energy cost, and average delivery path
length maximally decrease of 23%, 96.3%, 8%, and 84%, respectively, with respect to the
Complete Graph. The Radial has the bottom performances for all metrics. Comparing
the Small-world and Random Graph, they have the same maximum reduction of energy
loss ratio which is 17.3%. The Small-world performs better than the Random Graph with
respect to energy cost and maximum load achieving the maximum reduction of 7.6% and
88.7%, respectively. However, the RandomGraph exceeds the Small-world for the average
delivery path length. It achieves the maximum reduction of 56.1%.
In summary, the Complete Graph outperforms the other topologies’. Because it has full-

meshed topology providing edges for all pairs of nodes. But the Complete Graph is only
an idealized model because of its high construction and management costs. Considering
more practical topologies, both of the Small-world and Random Graph perform well for
several metrics. The Small-world stands out in two metrics: the maximum load and the
energy costs. The RandomGraph stands out in othermetrics: average delivery path length
and energy loss ratio. The performance of average delivery path length and the maximum
load is independent of the number of prosumers. However, the performance of energy
loss ratio and energy costs is highly relevant to the number of prosumers.

Parameter influence on random graph and small-world

In the second stage, our aim is to assess the parameter influence on the small-world and
random graph models. For the random graph model, all metrics have a similar trend that
is shown in Fig. 7. As one can see, the value of the assessment metric decreases with
the increase of the average degree. Furthermore, the influence of average degree on the
random graph model is non-linear. Thus, the speed of the improvement gets slower while
the average degree k increases. This means that the performance of the random graph
model improves with the increase of its average degree. But the speed of this improvement
attenuates with the increase of the average degree.
For the small-worldmodel, all metrics have a similar shape and trend, as shown in Fig. 8.

The performance decreases with the increasing of the “k” and “p” values. This means
that the small-world model’s performance improves with the increase of its rewiring
probability and average degree. Furthermore, the curves on p-axis (x-axis) and k-axis
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Fig. 7 Parameter influence on the performance of the random graph model

(y-axis) indicate that the influence of the average degree is much more significant than
the influence of rewiring probability. The most significant improvement of the perfor-
mance happens when “k” increases from 4 to 6. After that, the performance improves less
with the increase of “k”. Especially when k > 8, the speed of performance improvement
dramatically reduces. That is, the influence of the average degree on the performance
improvement is marginal when k > 8.
The figures provide an indication of overall trends and shapes of the parameter influ-

ence on the small-world and the random graph models. Overall, the performance of these
two models is highly dependent on their parameters. To clearly compare the performance
of these two models on the 100-node network, numerical data of the evaluation are also
provided. Thus, we select the values at the same average degree “k” (rewiring probabil-
ity p = 1.0 for the small-world model) of these two models for each metric, as shown
in Tables 2, 3, 4 and 5, for comparison. One notices that the small-world model exceeds
the random graph model in most of cases in three metrics, Energy Loss Ratio, Maximum
Load, and Average Delivery Path Length. The random graphmodel has only better perfor-
mance than the small-world model in the metric Energy Cost. The possible explanation
is that the small-world model has enhanced propagation speed (Watts and Strogatz 1998)
which makes peer-to-peer energy exchange efficient for large-scale networks. Overall,
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Fig. 8 Parameter influence on the performance of the small-world model

the small-world model has advantages over the random graph model in the large-scale
network.

Scope and limitations
The main assumption made in the present study is that changing the topology of distri-
bution grids is not only feasible, but advantageous to move from a centralized electricity
infrastructure to a distributed, peer-to-peer, decentralized one. The study shows how
nodes connected to such future grids could exchange energy and what would be valid
strategies to optimize the energy exchanges.
It is important to notice that this is a mathematical, topological study that considers the

operation aspects of distribution grids, and not the long term planning. In fact, changing
the topology of a distribution grid has relevant costs tied to the necessary laying of cabling
and connecting stations. This fact can hinder the broad applicability of the methods pro-
posed here. At the same time, we remark that electric assets have typically a long life (e.g.,
50–70 years Willis (2013)) and are usually amortized in decades. In other words, such

Table 2 Performance comparison of Energy Loss Ratio between the small-world and the random
graph

Average degree Random graph (RG) Small-world (SW) Model with better performance

4 0.0741 0.0758 RG

6 0.0590 0.0585 SW

8 0.0521 0.0517 SW

10 0.0480 0.0478 SW

12 0.0452 0.0450 SW
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Table 3 Performance comparison of Energy Cost between the small-world and the random graph

Average degree Random graph (RG) Small-world (SW) Model with better performance

4 0.1752 0.1759 RG

6 0.1732 0.1735 RG

8 0.1722 0.1726 RG

10 0.1717 0.1721 RG

12 0.1713 0.1717 RG

costs would be spread over a very long time horizon. In addition, new distribution and
Microgrids could be designed directly with alternative topologies such as those studied
here. In Pagani and Aiello (2016), we have made an economic evaluation to describe the
economic feasibility to move towards denser topologies starting from existing medium
and low voltage grids of the North of the Netherlands. We conclude that investigating
alternative distribution topologies has potential and that it is necessary to perform addi-
tional studies that include also the planning phase and the amortization costs of the
infrastructure in the economy of the operation costs.
Another assumption made is that energy can flow easily from distributed generation

to load across the distribution grid and the losses are only due to power line transit. In
other terms, we do not consider other possible losses or power quality issues. Technical
solutions to make such flow across a distribution grid possible and efficient are assumed
to be available. This is a potential treat to the applicability of the presented approach,
though it is a highly investigated area and we are optimistic about the feasibility.
Finally, when considering alternative topologies, we assume that all links have the same

physical properties, i.e., are the same. This is done to focus on the topological aspects.
Furthermore, one could consider these values as averages. Given that distribution grids
typically have short links, in the order of magnitude of kilometers, we consider this
assumption acceptable for the topological testing. Furthermore, evidence from a previous
study done on actual distribution networks, are encouraging in this respect (Pagani and
Aiello 2016).

Conclusions
We propose a simulation approach to evaluate the topological effects of the distribution
network on peer-to-peer energy exchange and distributed energy generation. The model
and solution of optimizing peer-to-peer energy exchange come from our previous work
(Sha and Aiello 2016) and is here used to evaluate several topological models under vary-
ing distributed energy generation and load conditions. The evaluation is on the basis of
Monte Carlo simulation. We apply various statistical distributions to simulate renewable

Table 4 Performance comparison of Maximum Load between the small-world and the random
graph

Average degree Random graph (RG) Small-world (SW) Model with better performance

4 1.33 1.29 SW

6 0.97 0.90 SW

8 0.81 0.76 SW

10 0.72 0.70 SW

12 0.68 0.66 SW
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Table 5 Performance comparison of Average Delivery Path Length between the small-world and
the random graph

Average degree Random graph (RG) Small-world (SW) Model with better performance

4 3.55 3.65 RG

6 2.72 2.70 SW

8 2.36 2.35 SW

10 2.16 2.15 SW

12 2.02 2.01 SW

energy generation, energy consumption of end-users, and real-time prices. For the eval-
uation, we design four assessment metrics that are: energy loss ratio in the distribution
network, energy cost for end-users, maximum load in electric lines, and average delivery
path length of energy delivery.
We started with a 37-node radial network. Then, we moved onto more topological

refined models. The random graph model can reduce the average delivery path length
when transferring energy from providers to consumers, and energy losses of delivery with
respect to other models. On the other hand, the small-world model has higher efficiency
than other models in reducing the maximum power load in the distribution network and
the cost of obtaining energy by the end-users. The second stage tested on 100-node net-
works shows that the small-world model outperforms the random graph model in the
large-scale network. In addition, the most significant performance enhancement of the
small-world model happens when the average degree k ≤ 8. Thus, the small-world model
with k ∈[ 4, 8] is a better choice when we consider the balance between performance and
saving on infrastructural costs. This result is in line with the outcomes of our previous
work (Pagani and Aiello 2014).
From a practical point of view, the small-world model appears to have advantages over

other models since it can provide a good balance between energy distribution efficiency
and the cost of network construction. For the distribution network with dozens of end-
users, the small-world model can provide better performance than the random graph
model as it requires lower infrastructural/construction costs. For the larger network,
since the construction cost of distribution infrastructure rises with the increase of the
network scale, the small-world model has a larger advantage over other topology models
from an economic perspective. In addition, the small-world model performs better with
the higher ratio of prosumers to end-users in the distribution network. Considering the
increasing social and economic appeal of becoming a prosumer, the small-world model
appears to be a valid design model for energy distribution networks. Such a result con-
firms the results of our previous work using other metrics and simulations (Pagani and
Aiello 2014). The present work provides the foundation for a decision support system for
analysis and high level planning of the distribution network towardsmanaging distributed
energy generation and peer-to-peer energy exchange.
Additional technical challenges need to be addressed in order to implement the peer-

to-peer energy exchange and distributed energy generation in the envisioned smart grid.
Firstly, ICT-related systems should be designed for the Smart Grid, which enable end-
users to share the trading information such as the data of energy providers, consumers
and prices. Secondly, more accurate approaches should be developed to forecast energy
production and consumption for end-users. Finally, more precise costs of renewable



Sha and Aiello Energy Informatics             (2020) 3:8 Page 24 of 26

energy generation should be estimated, in turn to enable good real-time energy prices
forecasts.
To gain further insights on the attractive models of future Smart Grids, we plan to con-

sider the buffering effects of having distributed energy storage systems, such as home
batteries and electric vehicles. This entails the addition to the model of optimization
strategies for charge/discharge cycles. With distributed energy storage systems, pro-
sumers are enabled to decide whether the surplus energy should be sold to the end-users
for an immediate profit or stored for later self-usage with some level of efficiency of
storage.
Considering the voltage problem caused by the distributed energy generation, more

advanced the reactive power and voltage control as ancillary services should be devel-
oped and applied for the distribution network. Moreover, the influence of distributed
energy storage systems on the voltage problem and reactive power control should be
investigated.
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