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Abstract
Power grids are becoming increasingly intelligent. In this regard, they benefit
considerably from the information technology (IT) networks coupled with their
underlying operational technology (OT) networks. While IT networks provide sufficient
controllability and observability of power grid assets such as voltage and reactive
power controllers, distributed energy resources, among others, they make those critical
assets vulnerable to cyber threats and risks. In such systems, however, several technical
and economic factors can significantly affect the patching and upgrading decisions of
their components including, but not limited to, limited time and budget as well as
legal constraints. Thus, resolving all vulnerabilities at once could seem like an
insuperable hurdle. To figure out where to start, an involved decision maker (e.g. a
security team) has to prudently prioritize the possible vulnerability remediation actions.
The key objective of prioritization is to efficiently reduce the inherent security risk to
which the system in question is exposed. Due to the critical role of power systems, their
decision makers tend to enhance the system resilience against extreme events. Thus,
they seek to avoid decision options associated with likely severe risks. Practically, this
risk attitude guides the decision-making process in such critical organizations and
hence the sought-after prioritization as well.
Therefore, the contribution of this work is to provide an integrated risk-based decision-
support methodology for prioritizing possible remediation activities. It leverages the
Time-To-Compromise security metric to quantitatively assess the risk of compromise.
The developed risk estimator considers several factors including: i) the inherent
assessment uncertainty, ii) interdependencies between the network components, iii)
different adversary skill levels, and iv) public vulnerability and exploit information.
Additionally, our methodology employs game theory principles to support the strategic
decision-making process by constructing a chain of security games. Technically, the
remediation actions are prioritized through successively playing a set of dependent
zero-sum games. The underlying game-theoretical model considers carefully the
stochastic nature of risk assessments and the specific risk attitude of the decision
makers involved in the patch management process across electric power organizations.

Keywords: Risk-based prioritization, Game-theoretical decisions,
Time-To-Compromise

Introduction
On 12 May 2017, a very disruptive malware called WannaCry was observed. WannaCry
infected about 250,000 computers in 150 countries, particularly in critical systems.
It resulted in huge damage costs predicted about 4 billions of dollars (Berr 2017).
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Interestingly, WannaCry exploited a known and well-documented Windows-specific
vulnerability (NVD 2017). On top of this, Microsoft released a vulnerability patch on 14
March 2017 towards fixing this vulnerability and providing protection against any poten-
tial attacks. That is, the infected systems would not have been subject to this attack, had
these systems been updated during the two-month period before the attack. This raises
the question, why had these (critical) systems not been patched timely?
To answer this question, we reviewed some security standards and guidelines, includ-

ing (BSI: Bundesamt für Sicherheit in der Informationstechnik 2018; Mell et al. 2005;
Souppaya and Scarfone 2013). Based on our review, the key reasons for this phenomenon
are: i) strict patch validation process, ii) limited available security resources, and iii) high
reliability and availability requirements. Broadly speaking, while standards encourage, if
not oblige, organizations to perform maintenance and update of their assets in a timely
manner, they impose a very rigorous and time-consuming patch testing procedures before
deployment. However, available security resources are usually scarce and expensive. Such
constraints would prevent organizations from fully resolving all of the vulnerabilities that
their assets are at risk from. Moreover, power grids require high reliability/availability of
their components, only allowing for short periods of downtime (IEC61508 2010). Thus,
any maintenance and upgrade decisions have to be made very prudently, taking such
requirements into consideration. It is, therefore, very difficult – if not impossible – to
have an operational system that is completely vulnerability-free. Another complicating
factor is the rapidly growing volume of released patches. This can overburden security
teams, hence the reason for a poor patch management process. All these issues make the
question (where to start implementing remediation actions?) pivotal in patchmanagement
processes.
A proper patch prioritization represents an efficient way of dealing with the aspects

of security economics and risk management. It seeks to maximize the benefits of the
available resources through focusing on the most critical issues first and hence minimize
the inherent security risk in an effective manner (Giani et al. 2012; Gonzalez-Granadillo
et al. 2015). Such a process would certainly involve i) the use of some comparative
judgments to define a ranking system, and ii) a decision-support technique to evalu-
ate and compare the different options of a prioritization decision. In this context, the
vast majority of existing prioritization practices depends on merely qualitative measures
and/or severity-based decision-making processes. Qualitative judgments and measures
are typically highly subjective. Thus, they might lead to improper decisions heavily
biased by individual perspectives. Such decisions could be influenced by an inaccu-
rate interpretation of a system state caused by a forced consensus of the judgments
as well as disregard of diversity. The second limitation is that existing prioritization
approaches are vulnerability-centric; that is, their decisions always dictate that the vulner-
ability with the highest severity score should be resolved first. However, such decisions
are not necessarily the best response in terms of minimizing risk. Suppose all devices
in a network are affected by the same severe vulnerability like CVE-2017-0144 with
the severity rating of 8.1 HIGH (CVSS v3.0) (NVD 2017). In this case, all devices –
regardless of their characteristics or location on the network – are at high risk of
being compromised and have the same priority to be patched first. Such decisions
are, however, not always actionable, thereby extremely confusing an involved security
team.
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In practice, the process of risk management and assessment involves several other
technical and organizational factors, not only the severity scores. Hence, vulnerability
prioritization that is naturally severity-based is not a robust option for patch prioritiza-
tion that is risk-based. A recent Gartner research report stresses the need for a risk-based
prioritization approach that can correlate several factors such as asset values, sever-
ity of vulnerabilities, public exploit information, and attacker characteristics (Bhajanka
and Lawson 2018). This implies that the sought-after prioritization should incorporate
the decision-making process with proper risk assessment techniques. Throughout this
work, the Time-To-Compromise (TTC) metric is pursued as a comparative security
metric to analyze and quantify the risk mitigation impact of possible security actions.
Typically, TTC metric is used to deliver single-point estimates such as Mean-Time-
To-Compromise (MTTC) (Leversage and Byres 2008). However, these estimates cannot
robustly deliver an accurate risk prediction due to different uncertainties involved in real
systems and underlying observational data. Therefore, we present a generalized stochas-
tic TTC model integrated with Monte Carlo simulation1 techniques to account for the
input data variability and inherent prediction uncertainty.
Like the vast majority of security decisions, prioritization decisions are made in a non-

cooperative environment, in which two competitors, an involved decision maker (here-
after called the defender) and a potential attacker, seek to maximize their own benefits,
each from a certain space of possible actions or strategies. To address this fact, our
methodology leverages game theory principles to model the strategic behaviour of the
involved players and to advise the defender on the best response to potential compro-
mise plans. Generally, remote attackers seek to exploit cyber vulnerabilities present in IT
networks to obtain unauthorized access to interconnected OT networks, thereby caus-
ing significant damages. Due to their crucial role in our modern society, extreme (failure)
events in power grids can be associated with irreversible consequences to the public
health, safety, and security. Thus, the defender of such systems tends to boost the sys-
tem resilience through avoiding situations in which high-level risks are more likely to
happen. In a recent study on the power system resilience, Bie et al. stress the vital impor-
tance of being able to mitigate (high-level) extreme risks as a condition for having resilient
electricity infrastructures (Bie et al. 2017). To the best of our knowledge, this specific
risk attitude imposed by the criticality of electric power systems is not well-addressed
in existing prioritization approaches. Therefore, the presented game-theoretical model
accounts for the aforementioned risk attitude by relying on a stochastic (tail) order
reflecting the desired preference relation between the uncertain risk assessments. It is
worth mentioning that traditional game-theoretical models, in which an expected utility
(loss) optimization paradigm (Von Neumann and Morgenstern 2007) is overwhelmingly
pursued, are not compatible with the comprehensive nature of our risk assessments. Tra-
ditional models rely on scalar-valued payoffs, while our TTC-based risk assessments are
distribution-valued.
As we will see later in this work, the novelty of our approach lies in the way it integrates

the risk attitude of the decision makers involved in the patch management operations
across electric power organizations into the prioritization process. The rest of this paper

1Monte Carlo simulation is a technique used to understand the impact of uncertainty and statistical behavior in
prediction models. It depends on modeling input variable using probability distributions as well as performing an
iterative empirical process to obtain the required predictions (Mooney 1997).



Alshawish and de Meer Energy Informatics            (2019) 2:34 Page 4 of 25

is structured as follows: “Related work” section outlines the existing TTC models and
their limitations as well as some related game-theoretical patch management approaches.
Further, it includes a detailed overview of our contribution. The improved stochastic TTC
model and the involved game-theoretical model are formally described in “Stochastic
TTC Model” section and “Security game model” section, respectively. Our decision-
support methodology is explained in “Decision-support methodology” section, as well as
applied in “Use Case” section and comprehensively evaluated in “Evaluation of the pri-
oritization options” section. Finally, concluding thoughts and future research directions
follow in “Conclusion” section.

Related work
Electric power systems are cyber-physical systems whose operations and processes are
orchestrated, controlled, and monitored using computer networks. Despite their tremen-
dous benefits, computer networks make critical components of electric power systems
at risk of cyber threats. Therefore, mitigation of cyber risks in electric power networks
has attracted a lot of research attention. Among recent research activities on enhancing
cyber security of power systems, Shelar et al. proposes a game-theoretical model to opti-
mize the security strategy of electricity distribution networks (Shelar and Amin 2016).
They consider a specific adversary model, in which false data injection attacks are used
to compromise vulnerable distributed energy resource (DER) nodes. In Ciapessoni et al.
(2016), the authors propose an in-depth security analysis of electric power systems. Their
approach relies on an extended definition of risk, which includes factors such as threats,
vulnerability, contingency, and impact. It defines a dynamic selection of contingencies
based on the current identified threats.
Besides security enhancement methodologies, security metrics such as TTC have

attracted significant attention from the research community as a means to assess and pri-
oritize various security risks as well as defense strategies. Among the earliest works of
modeling and applying TTC metric are McQueen et al. (2006a); McQueen et al. (2006b);
Leversage and Byres (2008). In McQueen et al. (2006a); McQueen et al. (2006b), the
authors propose a basic model for estimating the time to compromise a specific control
system. The model is leveraged to calculate the shortest path (in terms of its time) to
reach and damage a target node of a system of interest. This model has been originally
designed to provide estimates of the risk associated with potential attacks against criti-
cal elements of electric power systems, which are SCADA control systems. In Leversage
and Byres (2008), the authors employ the same TTC model to estimate MTTC values of
different systems and mitigation strategies used to enhance security of SCADA systems.
More recent research work such as Nzoukou et al. (2013); Zhang et al. (2015) proposes
new models for estimating MTTC values of different security solutions and configura-
tions applied in critical infrastructure environments such as electric power systems. They
involve the use of vulnerability-based attack graphs. Each vulnerability represents a state
in the final graphical model and has its own MTTC value. Ultimately, the final MTTC
estimate is computed based on the MTTC values of the states and their CVSS2-driven
probabilities. In Zhang et al. (2015), the MTTCmetric is modified to evaluate the reliabil-
ity of power systems using the IEEE RTS79 as a test system. The presented results show

2CVSS stands for the Common Vulnerability Scoring System (CVSS 2015).
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that the power system becomes less reliable with the increased rate of successful attacks
on the cyber components. The main limitations of existing TTC models are threefold.
Firstly, these models yield merely single-point TTC estimates. Such estimates do not
account for the uncertainty, ambiguity, and variability of involved observational data.
Further, they can conveymisleading indications of extreme risks due to aggregation. Thus,
they can not ensure robust and accurate risk measures. Secondly, the models shown in
(McQueen et al. 2006a; 2006b) do not address explicitly the characteristics of potential
zero-day vulnerabilities. Thirdly, the models in Nzoukou et al. (2013); Zhang et al. (2015)
use vulnerability-based attack graphs, which suffer from the state explosion problem,
where the size of the state space becomes quickly unmanageable. This can significantly
limit the applicability of the models in real-world scenarios.
Game theory, in its turn, is widely used in the context of strategic security planning.

With regard to vulnerability patch management, the authors in Gianini et al. (2015);
Maghrabi et al. (2017) combine game theory principles and vulnerability scoring tech-
niques to prioritize vulnerabilities based on assessed severity indicators. As discussed in
“Introduction” section, vulnerability prioritization that is naturally severity-based is not
adequate for patch prioritization processes, which seek to reduce the risk of compromise
in an efficient way. In Panaousis et al. (2014), the authors discuss applying game theory
to advise security managers on how to optimally invest in security controls. Their game-
theoretical model assumes deterministic assessments (scalar-valued payoffs), and hence
does not account for inherent prediction uncertainties. Beyond that, the prioritization
decisions made by existing game-theoretical frameworks do not consider the aforemen-
tioned risk attitude of the decision makers involved in the protection of electric power
systems. In traditional game models, extreme risks may still be undesirably probable
though the average risk has been optimized.

Our Contribution: This paper provides a decision-support methodology that assists
the defender of an electric power system in prioritizing the possible vulnerability patch
actions according to their risk mitigation impact. Strictly speaking, the respective actions
are successively prioritized with the aid of a chain of security zero-sum games. The chain
depends on a general game-theoretical model with distribution-valued payoffs to account
for the process of decision-making under uncertainties. The game model benefits from
a stochastic (tail) order to incorporate the risk attitude, imposed by the criticality of
the investigated electric power systems, into the decision-making process. The security
(compromise) risk is quantified using a developed TTC estimator that has the follow-
ing features: i) simple and easy to understand, even for non-professionals; ii) practical
through the use of asset-centric compromise graphs instead of vulnerability-centric attack
graphs; and iii) addressing the inherent uncertainty and variability of involved observa-
tional/statistical data using Monte Carlo simulation techniques. Therefore, the obtained
TTC-based risk estimates are comprehensive, thereby conveying rich information on the
two primary dimensions of risk descriptors, i.e. risk impact levels and their occurrence
probabilities. The developed risk estimator can be leveraged to give indications on a
system robustness against not only technical vulnerabilities but also social and organi-
zational factors. However, for the sake of simplicity, we limit the underlying TTC model
presented in this paper to only software (technical) vulnerabilities. Due to the absence of
reliable information about the preferences of potential adversaries, we assume there is a
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completely negative correlation between the two players of our games. This yields that
the game model is zero-sum, thereby enabling the defender to defend the network against
the worst-case compromise scenario.

Stochastic TTCmodel
A TTC estimate denotes to a prediction of the time needed for a potential adversary
to exploit technical vulnerabilities of a system towards gaining an unauthorized access
to it. This corresponds to the time of a graph transition connecting a pair of nodes
(SOuRCe, DESTination) given that the adversary controls the SORC node and seeks to
compromise the DEST through exploiting its vulnerabilities. To estimate a Transition-
Time-To-Compromise (TTTC), we developed a stochastic model that takes into account
a set of inputs summarized in Table 1. The inputs depend on existing statistical obser-
vations and outcomes of a security analysis of the network in question. Our TTC model
delivers comprehensive TTC estimates described using probability distributions instead
of single-point estimates delivered by the basic model presented in McQueen et al.
(2006b).
Basically, our model rests on the following two probabilities:

• p0: the probability that an adversary find “zero” fully functioning exploit (from
his/her M available exploits) for the n vulnerabilities visible at DEST, given that there

Table 1 A list of our TTC model inputs

Var. Description and information source

N The total number of disclosed vulnerabilities. Major vulnerability databases catalogue about
141348 vulnerabilities (RAPID7 2018; NVD 2018).

nH The number of known high-complex vulnerabilities (visible at DEST) that require a measurable
amount of investments and efforts to be successfully exploited. We use the “Attack Complexity
(AC)” metric of the open standard CVSS to retrieve such details (CVSS 2015).

nL The number of known low-complex vulnerabilities (visible at DEST) exploitable without special
conditions or circumstances (CVSS 2015).

n The number of known vulnerabilities visible at DEST; n = nL + nH . The “Attack Vector (AV)” metric
of the CVSS system can be further used to identify the vulnerabilities’ exploitation contexts, i.e.
exploitable from (remote) network, or adjacent/local access. This piece of information is used to
identify which vulnerabilities are exploitable through inter-layer transitions or intra-layer
transitions.

S The adversary’s experience and skill level function. S has a significant impact on the different time
and probability computations of our model. For example, it is more certain that an expert
adversary can employ existing exploits or even craft her/his own one with less time than the time
needed by a beginner hacker. Based on an existing statistical study (Leversage and Byres 2008), S
can equal to Expert=1.0, Intermediate= 0.55, Beginner= 0.3, or Novice=0.15.

E The total number of existing exploits. Rapid7, a major exploit database, catalogues about 3859
readily available exploits (RAPID7 2018).

M The average number of readily available exploits that can be adapted or modified given the
adversary skill level;M = E × S (Leversage and Byres 2008).

C The average number of vulnerabilities for which an exploit can be found or crafted by an
adversary given her/his S; C = n × S (Leversage and Byres 2008).

β1 The time needed for a successful compromise attempt using a readily available exploit code of
known vulnerability. It is described by a random variable following the beta distribution with the
mean of 1 day and a value range [ 0 . . . 5] days (McQueen et al. 2006a).

�5.8 The time needed to craft a working exploit code for a specific vulnerability. It is described by a
random variable following the gamma distribution with the mean value of 5.8 days. 5.8 days has
been derived based on the observed average time between a vulnerability announcement and
the release of the first exploit (McQueen et al. 2006a).

�65 The time to find a new zero-day vulnerability. It is described, similar to �5.8, by a random variable
following the gamma distribution with the mean value of 65 days. 65 days is derived based on
observations of the lifetime of zero-day vulnerabilities (Nzoukou et al. 2013; McQueen et al. 2009).
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are totally N known vulnerabilities. Based on the definition of the hypergeometric
distribution3:

p0 =
(N−M

n
)

(N
n
) (1)

• p̂: the probability that an adversary fails to craft any functioning exploit for the
known vulnerabilities visible at DEST. p̂ depends mainly on S (0 ≤ S ≤ 1 ≡ Expert)
and (nL, nH) (see Table 1). More precisely, if DEST has no known vulnerability then p̂
should be 1. But, p̂ should be very small if the adversary has in-depth knowledge (i.e.
S ≈ 1) and DEST has a known low-complex vulnerability; it can be approximated by
p̂ = 1− S. Under the assumption of independent vulnerabilities, p̂ can be generalized
as follows:

p̂ = (1 − S + l̂)nL × (1 − S + ĥ)nH (2)

where l̂ and ĥ are two control parameters4 reflecting that an adversary’s chance of
failing is higher against high-complex vulnerabilities rather than low-complex ones.

In our model, an adversary trying to compromise a node DEST can be in one of three
random processes. For each process i, we are interested in two quantities; namely

• pi: the probability of being in process i, and
• ti: the time needed for a successful compromise attempt given that the adversary is in

process i.

Process 1: An adversary has identified one or more known vulnerabilities and has one or
more exploits readily available. Therefore, the probability that the adversary is in Process
1 is the complement of the probability that an adversary has zero exploit readily available,
which is p0 as defined in Eq. (1). This yields:

p1 = 1 − p0 = 1 −
(N−M

n
)

(N
n
)

The time needed for an adversary in Process 1 can be described using the random
variable β1 as described in Table 1. Typically, the time and the adversary skill level vary
inversely. Thus, we modify the time estimate in such a way that the time increases if the
adversary skill level decreases. This yields:

t1 = β1 × 1
S

Process 2: An adversary has identified one or more known vulnerabilities but couldn’t
find a functioning exploit readily available and s/he tries to craft an own exploit. p2 is
defined as the product of the probability of having zero readily available exploit (p0) and
the probability of successfully developing at least one functioning exploit for at least one
of the n visible vulnerabilities; i.e. 1 − p̂. This yields:

p2 = p0 × (1 − p̂) =
(N−M

n
)

(N
n
) × (1 − (1 − S + l̂)nL × (1 − S + ĥ)nH )

3The hypergeometric distribution describes the probability of obtaining exactly m marked objects in n draws, without
replacement, from a finite object population of size N that contains exactly M marked objects (Forbes et al. 2010):

p(m) = (Mm)(N−M
n−m )

(Nn)
4Here, we use l̂ = 0, ĥ = 0.10, and 00 = 1 in the p̂ computations.
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Then, t2 depends on i) the time needed to craft a working exploit modeled as a random
variable �5.8 in Table 1, and ii) the expected number of tries ET until the adversary can
develop a fully working exploit code for one of the n vulnerabilities.

ET = S × (1 +
n−C+1∑

i=2
[ i ×

i∏

j=2
(
n − C − j + 2
n − j + 1

)] ) (3)

This yields:

t2 = �5.8 × ET

Briefly, Eq. (3) implies that the number of tries until developing one working exploit
significantly depends on the adversary skill level; the higher the skill level, the less the
number of tries. That is, as S increases, the expected number of vulnerabilities for which
an exploit can be developed (C) increases, as well. However, the number of useless vul-
nerabilities, defined as (n − C), will be decreased and so do the number of tries ET. The
detailed derivation of Eq. (3) is shown in McQueen et al. (2006a).

Process 3: An adversary does not have any working exploits, neither has s/he developed a
functioning exploit for any known vulnerability at DEST. Therefore, s/he tries to discover
an unknown (zero-day) vulnerability and then develop a working exploit therefor. For the
sake of simplicity, a potential adversary can be in one of these processes. That is, the three
identified processes are both “mutually exclusive” and “collectively exhustive” and their
probabilities can be added to yield a probability of 1. Thus, p3 is equal to the product
of the probability of having zero readily available exploit (p0 defined in Eq. (1)) and the
probability of failing to develop any functioning exploit (p̂ defined in Eq. (2)):

p3 = 1 − p1 − p2 = p0 × p̂ =
(N−M

n
)

(N
n
) × (1 − S + l̂)nL × (1 − S + ĥ)nH

In Process 3, t3 involves three factors: i) the time needed for discovering unknown vul-
nerability, modeled as �65 in Table 1; ii) the time needed to craft an own exploit �5.8; and
iii) the skill level S. This yields:

t3 = 1
S

× (�65 + �5.8)

Ultimately, the transition time is the sum of the expected time of the three processes:

TTTC = t1 × p1 + t2 × p2 + t3 × p3 (4)

To assess the risk of compromise in electric power networks, we developed a risk
estimator integrating Eq(4) and its underlying processes with Monte Carlo simulation
(cf. “Decision-support methodology” section for further details).

Security gamemodel
We use game theory to support the decision-making process in electric power networks.
Game theory offers a sound mathematical foundation to model the interaction between
the defender D and the attacker A. The latter abstracts all external adversaries that seek
to benefit from a network’s technical vulnerabilities towards compromising a target com-
ponent that is usually critical to the operation of the respective network. On the contrary,
D abstracts any decisionmaker (e.g. chief security officer or patchmanagement operation
team) seeking to minimize the risk of compromising the target. Therefore, our security
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game G is modeled as a two-player game, in which D engages in a competition against
A, who seeks to cause the maximal damage (loss) to D. We define as SPD = {di} a finite
set of the security actions (e.g. vulnerability remediation activities) the defender is able to
perform to defend the network in question towards minimizing the risk of compromise.
Additionally, the set SPA = {ai} represents the potential ways the attacker can use to
compromise the network. System analysis and experts with different domains of exper-
tise can provide valuable information to identify both SPD and SPA. A utility function U
can be modeled as a payoff matrixM telling the estimated risk of compromise under each
combination in SPD × SPA. In this work, the risk will be quantified in terms of the TTC
security metric. While SPA can be reliably identified based on analyzing the network and
available domain-knowledge, any assumptions on the different adversaries’ behaviours
and intentions (i.e. A’s preferences on which action from SPA is more likely to happen)
may be wrong and can significantly affect the final results. To address this challenge and
in absence of reliable information about A’s preferences, we assume that there is a com-
pletely negative correlation betweenD andA payoffs; that is, the moreA gains the more
D losses and this yields that the game is zero-sum. The zero-sum assumption allows D
to defend the network against the worst-case scenario. Hence, it adds some robustness to
the model against differently incentivized adversaries, as long as they all have the same
action space.
Classical game settings presuppose actions with deterministic consequences. In this

case, the utility function for D is a mapping U : SPD × SPA → R. That is, the game
outcome is computed based on payoffs (losses or revenues) described as crisp numbers.
However, our security game is formulated based on risk assessments that are usually
described as probability distributions (i.e. random variables). Therefore, our zero-sum
game model needs to deal with the inherent stochastic variability and fuzziness of these
assessments. It is worth mentioning that we refrain from averaging out the risk assess-
ments to avoid any loss of information about the occurrence probabilities of high-level
risks. Such information plays a key role in the decision-making process across power grid
systems. In such critical systems, decision makers are typically high-risk averse and put
a higher value on avoiding actions, in which high-risk levels are more likely to happen.
To integrate this special risk attitude into the decision-support process, we let the util-
ity function U mapping into more general risk descriptions, such as an abstract space of
probability distribution F instead of R, i.e. U : SPD × SPA → F . As a result, our security
game model is characterized as a zero-sum game with distribution-valued payoffs, and
D’s objective is to optimize, here minimize, U against what A does. This model involves
the use of a stochastic order to enable comparing random variables and hence the actions
with distribution-valued payoffs. Throughout this work, the ordering relation between
probability distributions relies on the stochastic tail order (�) studied in Rass et al. (2016).
Let X,Y two random variables captured by two probability distributions with a common
compact support [ c1, c2], then the stochastic tail order (�) is defined as follows:

X � Y ⇐⇒ ∃c0 ∈[ c1, c2] : Pr(X > c) ≤ Pr(Y > c) ∀c ≥ c0

Briefly, the order (�) prefers actions, in which extreme consequences are less likely to
occur. Obviously, this order is consistent with the aforementioned risk attitude. Hence,
�-based games have the appeal of minimizing the likelihood of extreme risks by doing
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optimization through shifting the risk mass towards low-risk levels rather than optimiz-
ing single statics such as the average values. This is achieved by choosing the equilibria
that put more importance on D’s actions that essentially remedy risks with high(er) like-
lihood for high(er) levels. The technicalities and theory behind the stochastic ordering
and construction of stochastic games are of no interest in this work, but we refer the
interested reader to the papers (Rass et al. 2016; 2015) for more details. For example,
(Rass et al. 2015) reconstructs the entire theory of games based on any total stochastic
order, such as the presented �-order.
For our security game model, we adopt D’s perspective. The optimal game outcome is

attained through computing the Nash equilibrium (NE) of the game. According to the
normative interpretation of (zero-sum) games, a NE describes the D’s optimal security
strategy (i.e. action profile) no matters what A plays. A (mixed5) equilibrium security
strategy defines an object δ∗

D ∈ �(SPD), which assigns probability δ∗
D(di) ≥ 0 for each

action di ∈ SPD and satisfying
∑

di∈SPD δ∗
D(di) = 1. We call �(SPD) the simplex over the

set SPD . In this way, the best action for the defender in �(SPD) is the one that optimally
makes the outcome risk distribution �-minimal, thereby minimizing the likelihood of
extreme risks. The outcome risk distribution associated with playing two actions δD ∈
�(SPD) and δA ∈ �(SPA) takes the form u(δD , δA) = δDTMδA, whereM ∈ F |SPD |×|SPA|

is the payoff matix of our security game. Suppose δ∗
A ∈ �(SPA) is the best action for the

attacker that maximizes the risk of compromise. Then, the best defender action δ∗
D should

satisfy the following:

u(δ∗
D , δ∗

A) � u(δD , δ∗
A) ∀δD ∈ �(SPD)

Ultimately, we interpret a mixed security strategy δ∗
D (hereafter referred to as δ∗) as a

belief function on the defense actions SPD (described in the form of a probability mea-
sure, i.e., δ∗ : SPD →[ 0, 1],). This belief function can be realized to the defender as an
advice on how to best defend the network of interest using the most effective remediation
actions. Here, the most effective actions stand for those actions assigned with nonzero-
probabilities by the belief function; i.e. δ∗(di) > 0. In practice, D has no incentive to play
actions assigned with zero-probabilities as they are dominated actions and it is definitively
better to play other actions given the equilibrium state defined by δ∗. For a finite zero-sum
game with payoffs as random variables, there is always a Nash equilibrium in the space of
mixed strategies (Rass et al. 2015, cf. Theorem 3). To compute the Nash equilibrium strat-
egy of our security game model G = {[D,A] , [ SPD , SPA] ,M ∈ F |SPD |×|SPA|}, we use a
modified fictitious play algorithm implemented in R package (Rass and König 2017).

Decision-support methodology
We propose a six-step methodology to support the defender of electric power networks
to prudently assess priorities and make a decision on the importance of the possible
remediation activities. Our methodology ensures a systematic work flow and a seamless
integration between the different involved techniques and principles. The six steps are
depicted in Fig. 1 and briefly sketched in our previous work (Alshawish and de Meer
2019a). The steps can be grouped into three successive phases as follows:

5A pure equilibrium strategy is a special (degenerate) case of mixed strategy that assigns probability 1 to a specific action.
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Fig. 1 Risk-based decision-support methodology for prioritization

1) System Comprehension: This phase seeks answers to the following questions:

• what is context of our analysis?,
• what are the action sets available to the involved players given the identified

context?, and
• what are the objectives of our analysis given the identified context?

2) Action-Response Evaluation: This phase relies on the output of the former phase to
respond to the question of “how to assess the outcomes of the different actions with
respect to the identified objectives?”.

3) Decision Making: This phase seeks to figure out the defender’s best response. In our
study, it supports the defender to tackle the pivotal question “where to start?”.

It is worth noting that our methodology defines an integrated decision-making process
that glues past, present and future together. It utilizes past knowledge and experience
about the system dynamics to identify a set of technically possible offensive and defen-
sive actions. This knowledge paves the way for constructing appropriate action-response
models to assess the outcomes of these different actions and behaviours under the cur-
rent system configurations in order to infer the action with the best response that has to
be implemented in the future towards minimizing the risk of interest (Alshawish and de
Meer 2019b). The six steps are:

Step-1) Context establishment: The first step aims at understanding the system and
the environment of interest. This can involve i) identifying the perimeter of the system
and hence determine the scope of the analysis; ii) identifying the different components
and resources relevant to the examined system and the connections among them; iii)
identifying possible exposures to risks using techniques such as vulnerability assessment
or organizational architecture analysis; and iv) identifying a potential target component
that matters most to the system of interest. In the context of power systems, master termi-
nal units (MTUs), Intelligent electronic devices (IEDs), data concentrator, and SCADA6

servers are of crucial importance for controlling and operating electric power networks
since they communicate and control critical machinery and processes. The outcome of
this step is a topological map of the examined system, a list of the known vulnerabilities
of the system components, and their CVSS-based characteristics such as the “Attack
Vector” (AV) and “Attack Complexity” (AC) metrics. These data, denoted as SQ, repre-
sent the “status quo” of the system before implementing any remediation action. Note

6SCADA is an acronym for Supervisory Control and Data Acquisition.
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that “Context establishment” is a prerequisite step for other steps7 within the first phase
“System Comprehension” as illustrated in Fig. 1. In this step, a comprehensive system
analysis has to be performed. This process usually dictates the involvement of many
experts with different domains of expertise. The knowledge collaboratively acquired from
several experts can be further vetted to determine its accuracy and usefulness. There-
fore, incorporating the expertise of several experts has positive effects with regard to (i)
knowledge completeness, as well as (ii) quality and reliability of the acquired knowledge.

Step-2) Identification of potential attack strategies: The attack (or compromise)
strategies represent a set of entry points to the examined network and their correspond-
ing (feasible) compromise paths. These paths can be used by a remote adversary to reach
the identified target. Based on the topological map delivered by Step-1, we can model
the possible attack strategies using asset-centric compromise graphs8. In a compromise
graph, there are basically two node types based on the characteristics and the function-
ality of the corresponding physical component or subsystem: i) Network nodes that are
accessible from across the Internet or from a different layer (e.g. border devices, such
as routers and firewalls, are always network nodes as they can maintain connectivity
between two layers); and ii) Local nodes that are only accessible locally and from nodes
located in the same network layer. The target node can, therefore, be either a network
node or local node based on its characteristics and connectivity pattern. Additionally,
each compromise graph has one hypothetical root node (called “Launch”) representing an
adversarial remote node. The transitions (or edges) of a compromise graph represent the
possible compromise steps. They are classified into: i) Breach edges (or inter-layer tran-
sitions; only possible if the transition’s source and destination nodes belong to different
layers and the destination is a network node), and ii) Penetration edges (or intra-layer
transitions; only possible between two nodes of the same layer regardless whether they
are network or local nodes). In this respect, it is worth mentioning that the involvement
of experts with special domain knowledge and security skills can be of vital importance at
this step to refine and simplify the final compromise graphs through discarding impractical
and technically infeasible compromise paths. The output of Step-2 describes the set SPA.

Step-3) Identification of potential defense strategies: The defense strategies rep-
resent the different vulnerability remediation actions or security investment plans the
defender is able to implement to control and mitigate the compromise risk of the system
of interest. For the sake of simplicity, each set of changes and activities designed to fix
and improve an individual node of the identified compromise graphs can be represented
by one defense strategy as shown in “Use Case” section. Since there are some vulnera-
bilities without any applicable patches or workarounds, each strategy di is characterized
by its envisaged Fix-rate(di). This metric is the ratio between the number of fixed
vulnerabilities and the number of vulnerabilities identified in the respective node. The
output of Step-3 describesD′s action space (SPD).

7Step-2 to Step-4 can be performed in any arbitrary order.
8Compromise graph is asset-centric rather than vulnerability-centric. This aims at i) avoiding the known “state explosion
problem” due to the potentially large number of vulnerabilities in a system; and ii) simplifying the model to the system’s
operators, who usually do not understand the language of technical vulnerability. In the asset-centric approach, nodes
are the components of the examined network. Thus, if there are some components that approximately share the same
profile (e.g. connectivity pattern, functions, patch level, etc.), they can be grouped into one subsystems (one node in the
graph). This facilitates an additional reduction of the graph complexity.
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Step-4) Identification of goals: This step aims at identifying the different (opera-
tional, legal, organizational, and/or technical) goals and their relevant key performance
indicators (KPIs). Utilizing optimization techniques, the defender seeks to find the best
defensive action that can keep the balance between all identified goals. Throughout this
work, we focus only on minimizing the compromise risk of the system in question,
quantified in terms of the presented TTC security metric. As a result, we are inter-
ested in assessing the priorities of the defense strategies identified in Step-3 with
respect to their impact on risk reduction against all compromise strategies identified in
Step-2.

Step-5) Effectiveness assessment: Generally, this step aims at assessing the outcomes
of all possible combinations of the (defender, attacker) actions, i.e. all (di, aj) ∈ SPD×SPA,
in terms of the goals identified in Step-4. At this phase, action-response models have
to be defined leveraging different qualitative, quantitative, or semi-quantitative assess-
ment techniques such as mathematical models, simulation, eliciting expert judgments,
or using historical and statistical data. In this work, we call this step “risk assessment”
as we address only one objective to be optimized, which is the risk of compromise.
Our risk assessment process benefits from the stochastic TTC model described in
“Stochastic TTCmodel” section. The model involves the use of a wide variety of observed
and statistical data. That is, significant uncertainty and variability are associated with
such data and can have serious impact on the TTC estimation process. As a matter of
fact, single-point estimates fail to communicate comprehensive risk assessments to the
interested decision makers. To address this challenge, the presented methodology incor-
porates an iterative TTC estimation process based onMonte Carlo simulation techniques,
in which any input parameter that has inherent uncertainty is modeled using a proper
probability distribution function. At each iteration, different values can be used for these
parameters based on their distribution functions. In this way, the assessment outcomes
will provide the decision maker with a range of possible TTC estimates and the occur-
rence probabilities thereof. In addition to random sampling, each iteration of the risk
assessment process of a scenario (di, aj) ∈ SPD × SPA, includes the following steps:

i) Identify the involved compromise graph based on aj.
ii) Retrieve values of some model inputs (e.g. nH , nL) from SQdi , which is a version of

the state SQ locally modified according to Fix-rate(di). That is, suppose SQ
states that nodes x and y have 5 and 3 high-complex vulnerabilities, respectively. If
di fixes all vulnerabilities in node x, then the TTC model will use SQdi , in which
(x, y) nH−→ (0, 3).

iii) Estimate a TTTC value of each transition in aj through applying the model
described in “Stochastic TTC model” section.

iv) Estimate a time-to-compromise value of each identified path from node “Launch”
to “T” in aj, denoted as PTTC. A PTTC value of a specific path z is simply the sum
of the TTTC estimates of its constituting transitions ct : PTTCz = ∑

ct∈z
TTTCct .

v) Record the obtained PTTC estimates for all identified compromise paths in the
graph aj.

Subsequently, the outcomes of all iterations are merged using several techniques (e.g.
frequency histogram, kernel density estimation, or the maximum entropy method) to
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generate the final TTC distribution function. It is worth mentioning that the assess-
ment results of all scenarios (di, aj) ∈ SPD × SPA will be used to construct the payoff
matrices of our security games, which ultimately support the sought-after prioritization
decisions.

Step-6) Prioritization process of the defense strategies: This step aims at assisting
the defender in arranging the possible defense strategies in the order of their risk mitiga-
tion effects. This involves an iterative process of playing security games, whose underlying
model is presented in “Security game model” section. Each game supports the defender
in choosing and ranking one action as dictated by the computed Nash equilibrium strat-
egy. As a result, this process yields a chain of security games, the length of which is equal
to (|SPD| − 1), where |SPD| stands for the cardinality of the set SPD . We call this tech-
nique iterated prioritization of risk mitigation actions (IPRMA), while the whole process
is described in Algorithm 1. We construct the first game in the chain G1 using the com-
plete action spaces SPD and SPA as well as their corresponding payoff matrixM1, whose
elements are assessed following the process defined in Step-5. The best action of G1,
denoted as d∗

1, will be chosen according to the probability distribution prescribed by the
Nash equilibrium of G1, i.e. δ∗

1 . Then, d∗
1 is ranked top on the ordered action list, assigned

with the highest priority to be implemented. Afterwards, the system state SQ is globally
updated according to the envisaged remediation effects of d∗

1 (i.e., Fix-rate(d∗
1)). That

is, SQ is modified as if d∗
1 would really have been implemented. Then, d∗

1 will be removed
from the possible action space SPD . The changes applied on SPD and SQ result in a new
and smaller game, the best action of which is assigned a lower priority than the previously
removed action. This process is repeated, creating new and even smaller games, until all
security actions are ranked.

Algorithm 1 IPRMA process - chained games
Require: SQ, SPD ← {d1, . . . , dn}, SPA ← {a1, . . . , am}
Ensure: an ordered list of SPD acc. to their remediation impact
1: initializeol ← {} � an empty ordered list
2: initializek ← 0 � the game index
3: while length(SPD) > 1 do � length(SPD) ≡ |SPD|
4: k ← k + 1
5: Mk ← assessRisk(SPD , SPA, SQ) � assess the payoff matrix for all action

combinations in SPD × SPA
6: Gk ← constructGame(SPD , SPA, Mk)

7: δ∗
k ← nashEq(Gk) � compute the Nash equilibrium of Gk

8: d∗
k ← bestAction(δ∗

k ) � the best action drawn acc. to the probability distribution
prescribed by δ∗

k
9: ol.insert(d∗

k ) � add the best action into ol
10: SQ.update(d∗

k) � update the (global) state SQ with the changes associated with d∗
k

11: SPD ← SPD \ {d∗
k } � remove the best action from SPD

12: end while
13: ol.insert(SPD) � insert the last (least important) action into ol
14: return ol � return the ordered list of the defender actions



Alshawish and de Meer Energy Informatics            (2019) 2:34 Page 15 of 25

Use Case
For illustrative purposes, we consider a simplified network of an electricity provider,
which controls the electricity provision process basically using SCADA systems. The
decision makers involved in the management operations of this system increasingly inte-
grate IT devices into the OT space that had been designed with neither widespread
connectivity nor adequate security in mind. On the one hand, this integration aims at
leveraging all available resources for enhancing the grid efficiency and control. But on
the other hand, it could pave the way for a broad spectrum of potential attackers, rang-
ing from amateur (cyber) criminal to advanced terrorist and state-sponsored attackers, to
take control of critical assets and operational resources. Due to technical and operational
constraints of power systems, the defender has to develop a coherent patch manage-
ment plan. In this respect, we apply the decision-support methodology presented in
“Decision-support methodology” section to assist the defender in prioritizing possible
remediation actions.

1) Context establishment: As a first step, it is necessary to conduct an analysis of the
network infrastructure of the examined system. The analysis outcome is depicted in
Fig. 2. It illustrates the topological map of the examined electricity provider with the
different technical subsystems and the connections among them. The electricity provider
operates basically two different interconnected network layers. Layer (LA) includes the
most networking components that are reflecting the business and the high-level control
requirements. It is composed of the traditional office workstations and servers as well as
the control servers that are responsible for the high-level supervision and data acquisition
of the devices located in the substation network. Based on their functions and connec-
tivity characteristics, the devices in LA are grouped into three subsystems S1, S2, and S3
as depicted in Fig. 2. Layer (LB) provides an abstract representation of an IEC-61850-
based electric substation. This layer includes three subsystems S4, S5, and S6. Subsystem
S4 includes the local substation workstations and HMI devices. Subsystem S5 com-
prises the substation management server for managing the substation assets integrity and
reliability. Subsystem S6 represents the substation controller connected to the most crit-
ical process network and primary field devices. These devices include, just to name
a few, transformers, circuit breakers, and capacitor banks. Controlling and protecting
these critical devices involve the use of a set of programmable devices called Intelligent
Electronic Devices (IEDs). Additionally, the examined system utilizes two border devices
R1 and R2 (with router and firewall functionality), to control the segregation between the
whole system and the Internet as well as between the two identified layers. With regard
to the accessibility type, S3 and S6 are Local components as they are not accessible from
outside their respective layers. The other LB’s devices are Network components but not
accessible from across the Internet. On the contrary, S1, S2, and R1 are Network compo-
nents and Internet-accessible, marked as Network+ nodes. S6 is identified as the target
node (T) of our study based on its key role in controlling and operating the electric dis-
tribution network. More specifically, once a remote adversary A gains an unauthorized
access to S6 through a cyber intrusion path, A has control of important devices such
protective relays and circuit breakers. These devices are typically employed to protect
critical and expensive assets such as transformers, generators, and transmission and dis-
tribution lines. Therefore, A can cause major damage and a widespread power outage
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Fig. 2 A topological map of the studied electricity provider network

by manipulating the configuration settings of these devices. Exploiting cyber vulnerabil-
ities of power grids can result in further consequences including, but not limited to, (i)
disruption of grid stability through controlling Volt-Amp Reactive (VAR) devices, thereby
causing voltage and frequency fluctuations in the grid; (ii) loss of substation information
essential to the reliable operation of power grids such as metering information and fault
recordings; and (iii) loss or interruption of communication and control channels and thus
loss of engineering and maintenance access to IEDs and remote terminal units (Barnes
and Johnson 2009). In our use case, the conducted vulnerability analysis gives addition-
ally insights on the number of vulnerabilities visible in the network, classified according
to their CVSS-based characteristics; i.e. AV9 and ACmetrics. These pieces of information
are summarized in Table 2.

2) Identification of potential attack strategies: Based on the outcome of the former
step, we can identify three entry points available for a remote adversary A attempting to
compromise the identified target subsystem. These points are the three subsystems S1, S2,
and R1, which are Internet-accessible. As explained in “Decision-support methodology”

9If a vulnerability is only exploitable with a local node access, interaction with any user of the respective node can
facilitate the exploitation via local network access as well.
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Table 2 The shared system state SQ
Sub- Access. AV: Network AV: Adj.+Local

system type nH nL nH nL

R1 Network+ 1 5 0 0

S1 Network+ 2 5 3 7

S2 Network+ 3 4 5 5

S3 Local 1 3 2 6

R2 Network 2 5 0 0

S4 Network 5 5 5 5

S5 Network 3 6 4 4

S6 (T) Local 0 3 3 6

section (see Step-2), each attack strategy can be modeled using a compromise graph
describing the different feasible compromise paths from the respective entry point to the
target. Figure 3 depicts three compromise graphs corresponding to the three possible
attack strategies. The attack strategy a1, for example, aims at exploiting the weaknesses
of the border device (R1) to breach10 Layer (LA) in the first place. After establishing an
initial foothold in LA, A has two options: i) spreading through LA to strengthen the
gained foothold through penetrating an ordinary node S1, S2, or S3 and then breaching
Layer LB; or ii) rushing forward towards the target through breaching a network node
in Layer LB; i.e. R2, S4, or S5. As explained in “Decision-support methodology” section,
technical and domain knowledge from experts can be incorporated at this stage to refine
the list of paths depending on their relevance and practical feasibility. Based on such
knowledge, the back transitions, such as the one from S1 to R1 in the compromise graph
a1, are obviously meaningless. In an analogous manner, the attack strategies a2 and a3
are established exploiting the vulnerable network nodes S1 and S2, respectively. It is
worth mentioning that the involved experts consider the breach transition from S1 to
S2 as technically meaningless and can not offer potential adversaries with better chances
to reach the target. Therefore, we omitted this transition from the compromise graph
of a2. The compromise graphs provide a powerful and compact representations of A’s
action space. Each graph can be easily updated upon identification of new compromise
steps/paths.

3) Identification of possible defense strategies: The defender D has identified 8
defensive actions corresponding to the patching solutions designed to fix the known vul-
nerabilities in the 8 nodes of the established compromise graphs. These strategies are
SPD = {d1 − R1, d2 − S1, d3 − S2, d4 − S3, d5 − R1, d6 − S4, d7 − S5, d8 − T},
where the strategy (d1 −R1) stands for the defense strategy d1 dedicated to fix the known
vulnerabilities in the node R1. If there are some vulnerabilities without any applicable
patches or workarounds, these vulnerabilities should not be removed from the shared
state SQ when we update their respective nodes. For the sake of simplicity, we assume
here that each defense strategy is able to completely resolve all vulnerabilities visible at its
respective node; Fix-rate(di) = 1 ∀di ∈ SPD .

10Breach stands for inter-layer transitions. Penetration stands for intra-layer transitions.
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Fig. 3 Three compromise graphs corresponding to the identified attack strategies a1, a2, and a3

4-5) Identification of goals and effectiveness assessment: The risk of compro-
mise is quantified using the TTC security metric. The Monte-Carlo-simulation-
based assessment process has (1000) iterations11 and utilizes the model described in
“Stochastic TTC model” section. For each iteration, the input parameters accept differ-
ent values according to their specified distribution functions. Regarding the adversary
skill level parameter, each iteration chooses a random value based on the following prob-
ability mass function (Expert: 14%, Intermediate: 33%, Beginner: 34% and Novice: 19%),
which is derived from the statistical findings of an existing research work on the classi-
fication of hackers by their observed behaviors (Zhang et al. 2015). The obtained TTC
distributions can be further processed to generate corresponding risk probability dis-
tributions through categorizing the TTC assessments based on a set of risk categories
that is predefined and approved by the system operator and other involved stakeholders:
Risk Levels ={extremely severe (10): 0(day)-14(days), very high (9): 15-28, high-to-
very high (8): 29-45, high (7): 46-90, medium-to-high (6): 91-150, medium (5): 151-230,
low-medium (4): 231-300, low (3): 301-360, very low-low (2): 361-540, very low (1):
>540 days}. In Algorithm 1, the function assessRisk() realizes the aforementioned risk
assessment process to return the payoff matrices needed for our security games.

6) Prioritization process of the defense strategies: Based on Algorithm 1, the prioriti-
zation process involves constructing a chain of 7 security games. In Table 3, we summarize
the input/output associated with each of those games. The chain begins with the game
G1, which is formulated using the whole action spaces SPD and SPA, where |SPD| = 8
and |SPA| = 3. Using the shared state SQ described in Table 2, the function assessRisk()

11The number of iterations has been estimated by fixing a precision factor ε = 0.001 and using the Kullback-Leibler
divergence DKL(Xka ||Xkb ) to measure the difference between two probability distributions representing two risk
distributions of the same scenario estimated using different number of iterations. We fixed a random test scenario and
tried different number of iterations {100, 200, . . . , 10000}. We chose 1000 since DKL(X1100||X1000) ≈ 0.000586 < ε.
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Table 3 A chain of stochastic security games

Game G SPA SPD δ∗
k = nashEq(G) bestAction(δ∗

k )

G1 {a1, a2, a3} {d1, d2, d3, d4, d5, d6, d7, d8} (0, 0, 0, 0, 0, 0, 0, 1) d8 − T

G2 {a1, a2, a3} {d1, d2, d3, d4, d5, d6, d7} (0, 0, 0, 0.375, 0, 0.625, 0) d6 − S4

G3 {a1, a2, a3} {d1, d2, d3, d4, d5, d7} (0, 1, 0, 0, 0, 0) d2 − S1

G4 {a1, a2, a3} {d1, d3, d4, d5, d7} (0.6, 0, 0, 0, 0.4) d1 − R1

G5 {a1, a2, a3} {d3, d4, d5, d7} (0, 0, 0, 1) d7 − S5

G6 {a1, a2, a3} {d3, d4, d5} (1, 0, 0) d4 − S3

G7 {a1, a2, a3} {d3, d5} (0, 1) d5 − R2

computes the payoff matrix M1 of G1. For the sake of clarity, Fig. 4 shows the matrix
M1 used to compute the Nash equilibrium in G1. The matrix has the shape 8 × 3. Each
matrix element (i, j) corresponds to the comprehensive TTC-based risk assessments of
the respective action combination (di, aj) ∈ SPD × SPA. Figure 4 shows that the risk of
compromise varies not only from one defense action to another (e.g., risk of level 10 and
9 is more probable under action d4, as shown in the 4th row in M1, rather than action d8
– regardless which compromise action is played) but also from one compromise action
to another given a specific defense action (e.g., risk of level 10 and 9 is more probable
under action d2 if the attacker follows action a1 or a3 but not a2. That is, even simple
scenarios can be associated with a certain amount of complexity involved in answer-
ing important questions such as where to start? and what to do next?. Therefore, our
approach analyzes the situation as a whole towards supporting the defender whenmaking
prioritization-related decisions.
As Table 3 tells us, the Nash equilibrium of G1 describes a pure equilibrium strategy,

in which the action (d8 − T) is the most effective action in reducing the risk of com-
promise under the current state SQ. Therefore, the defender assigns the highest priority
to fix the vulnerabilities visible at the target node T (i.e. S6) immediately. Based on
this result, the action (d8 − T) is placed at the top of the sought-after ranking and
removed from SPD . Then, SQ is updated accordingly through removing all vulnerability
in the target. This yields a new game G2, which has the same attack action space but
with a smaller defense action space SPD ← SPD \ {d8}. The game chain proceeds for-
wards till all the defensive actions are ranked. It is worth mentioning that the function
bestAction() uses the probability distribution dictated by the Nash equilibrium of each
game to draw the corresponding best action. For example, bestAction() chooses the action
(d4−S3) with the probability (0.375) and the action (d6−S4) with the probability (0.625)
as dictated by the mixed equilibrium strategy δ∗

2 of the game G2. In Table 3, we show
only one prioritization option by pursuing the actions with the highest probabilities, i.e.
d∗
k ← argmaxdi∈SPDδ∗

k (di). Afterwards, the chain proceeds forwards until the last game
G7, which supports the decision on the prioritization of the last two actions. Ultimately,
there are definitively at least two prioritization options if there is one game of the chain
with a mixed equilibrium strategy. These options can be combined together in a compre-
hensive prioritization tree, in which the nodes are the different defense actions connected
by edges that have weights representing the action probabilities as assigned by the corre-
sponding Nash equilibria. Each tree has a hypothetical root node. The weight of each
path l, starting from the root to a any leaf node in the tree, can be computed as the
product of the weights of its composing edges; i.e. w(l) = ∏

ei∈l w(ei), where w(ei) stands
for the weight of the edge ei that is part of the path l. With regard to our use case, Fig. 5
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Fig. 4 The 8 × 3 payoff matrix of the first game (G1) in the chain;M1

depicts the final prioritization tree. It includes three prioritization options: i) OptionA =
d8 → d4 → d6 → d1 → d2 → d7 → d3 → d5, ii) OptionB = d8 → d6 → d2 → d1 →
d7 → d4 → d5 → d3, and iii) OptionC = d8 → d6 → d2 → d7 → d4 → d3 → d1 → d5
with the probabilistic weights of 0.375, 0.375, and 0.25, respectively.
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Fig. 5 The decision-support tree for action prioritization

Evaluation of the prioritization options
This section aims at analyzing the results of the application of our methodology and
shows the performance of the delivered prioritization options. The key goal of our pre-
sented methodology is achieved by constructing the prioritization tree depicted in Fig. 5,
which supports the defender in making risk-informed decisions about the prioritization
of the possible security actions. The tree represents a tremendous reduction of the deci-
sion space that the defender needs to explore. In the examined use case, our methodology
ends up with 3 prioritization options out of 40320 possible prioritization variations of the
8 identified defense actions12.
For our risk-based methodology, we are interested in investigating whether the three

delivered decision options have comparatively equivalent risk mitigation effects. This
analysis is achieved by utilizing the equilibrium payoffs obtained by the different games
of the constructed chain. The equilibrium payoffs describe the expected risk distributions
the defender can assure her/himself in the different games. To have a complete vision of
the risk mitigation progress as the decision-support chain move forward, we constructed
two additional games G0 and G8. The former delivers insights into the compromise risk
distribution under the current network configuration before implementing any defense
action, whereas the latter addresses the situation after all actions are performed. Broadly
speaking, the three options exhibit a similar positive effect of reducing the compromise
risk as the chain progresses. As shown in Fig. 6a, b, and c, the three options squeeze the
risk probability mass towards the lower risk levels, in much the same manner.
Unlike classical game models with scalar-valued payoffs, the outcomes of our chain are

more comprehensive, thereby enabling a detailed analysis of the remediation impact of the
respective options. They allow for drawing conclusions that are of utmost interest to the
defender of power systems. In our use case, the defender is interested in the performance
of the three decision options with respect to

Q1) what are the average risk values expected by each game in the decision chain?;
Q2) what is the maximal risk level that occurs in 95% and 75% of the cases in each

game?; and
Q3) what are the chances of suffering a compromise risk of the category

“medium-to-high (6)” or above after each step in the chain?

The answer to the question Q1 is provided by the results depicted in Fig. 7. They
show that the three decision options approximately lead to similar expected risk values
over the whole chain progress. The drastic risk reduction is obtained directly by the out-
come of G1, in which the average risk is reduced from (6.429) corresponding to the level

12n actions can be sequenced in n! variations.
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a

b

c

Fig. 6 Comprehensive risk mitigation progress. amitigation effects of decision OptionA. bmitigation effects
of decision OptionB. cmitigation effects of decision OptionC
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Fig. 7 The average compromise risk values of the three obtained prioritization options

“medium-to-high” to (4.111) corresponding to the level “low-to-medium”. The answers to
Q2 and Q3 are more crucial to the defender as they give insights into the impact of the
three decisions on the occurrences of high-level risks. Table 4 presents detailed statisti-
cal quantities about the obtained equilibrium risk distributions. The results show that the
probability of suffering from a risk at level 6 or higher is reduced from 58.75% to 9.87%
when having applied the game G1. Moreover, as can be seen from Table 4 as well, the
maximal risk level in 95% cases is also reduced from 9 to 7 when having applied the game
G1. Based on the results shown in Fig. 7 and Table 4, the three options have almost similar
remediation effects. More precisely, OptionA can result in a slightly better risk minimiza-
tion after two steps (seeG2 effects). Nevertheless, OptionB and OptionC can compensate
this difference in the third step. That is, OptionB and OptionC can contribute slightly
more beneficial effects if the decision constraints allow implementing three remediation
actions in sequence.

Conclusion
Due to their complexity and dynamic nature, electric power networks will always have a
degree of vulnerability making them attractive targets for remote adversaries with differ-
ent intentions. An involved defender seeks to prioritize the possible remediation actions
towards efficiently mitigating the risk of compromise stemming form exploiting vulner-
abilities in such systems. In fact, even small number of actions can create a large explo-
ration space that demands a huge effort for the defender. Unlike traditional IT defenders,
who are commonly indifferent between decision options with equal expected utility
(losses) even if one option might be riskier, defenders of electric power systems are more
sensitive to extreme (risky) events due to the high criticality of such systems. Therefore,
this work presents an integrated risk-based decision-support methodology to assist the
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Table 4 Statistical quantities of the equilibrium risk distributions of all decision-support games

Q2 (95%) Q2 (75%) Q3 Pr(risk > 6)

Game Decision option Decision option Decision option

A B C A B C A B C

G0 9 9 9 9 9 9 0.5875 0.5875 0.5875

G1 7 7 7 6 6 6 0.0987 0.0987 0.0987

G2 7 7 7 5 5 5 0.0561 0.0784 0.0784

G3 6 6 6 5 4 4 0.0374 0.0017 0.0017

G4 6 6 6 5 4 4 0.0348 0.0012 0.0012

G5 5 5 5 3 3 3 0.0012 0.0011 0.0010

G6 5 5 5 3 3 3 0.0009 0.0007 0.0008

G7 5 5 5 2 2 3 0.0008 0.0006 0.0007

G8 5 5 5 2 2 2 0.0 0.0 0.0

defender inmaking risk-informed decisions on the action priorities. It provides a seamless
integration between game theory, decision theory, and risk management. This integra-
tion addresses comprehensively the competitive nature of the decision environment,
the specific risk attitude of the defender of power grids, and uncertainties inherent in risk
assessments. Given several constraints, the need for prioritization is evident in electric
power systems. Our risk-based prioritization approach enables the defender to quantize
the remediation problem of the whole system into a finite set of manageable remediation
actions. Even with scarce resources, the most critical actions will be performed first to
help minimize the risk of compromise in an efficient manner.
As a future research direction, we seek to extend the TTC-based risk assessment model

to address the overall attack surface of organizations, including social and organizational
factors. Besides the compromise risk, decision constraints such as limited time and bud-
get can be also integrated into the decisions-making process through defining proper
action-response models. Moreover, we believe our methodology has a high degree of
flexibility. Therefore, it can support the defender to address multiple target components
at the same time. This can be achieved by extending the attacker action space SPA to
include compromise graphs of different targets. Furthermore, the same methodology can
be exploited to obtain risk-based vulnerability prioritization through a proper adaptation
of the space SPD to address specific vulnerabilities.
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