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methods, but transmission system operators keep some degrees of freedom in parts of
the capacity calculation. Besides, many influencing factors define the flow-based
capacity domain, making it difficult to fundamentally model the capacity calculation
and to derive reliable forecasts from it. In light of this challenge, the given contribution
reports findings from the attempt to model the capacity domain in FBMC by applying
Artificial Neural Networks (ANN). As target values, the Maximum Bilateral Exchanges
(MAXBEX) have been chosen. Only publicly available data has been used as inputs to
make the approach reproducible for any market participant. It is observed that the
forecast derived from the ANN vyields similar results to a simple carry-forward method
for a one-hour forecast, whereas for a longer-term forecast, up to twelve hours ahead,
the network outperforms this trivial approach. Nevertheless, the overall low accuracy of
the prediction strongly suggests that a more detailed understanding of the structure
and evolution of the flow-based capacity domain and its relation to the underlying
market and infrastructure characteristics is needed to allow market participants to
derive robust forecasts of FMBC parameters.

Keywords: Flow-based market coupling, Cross-border electricity trading, Capacity
calculation, Maximum bilateral exchanges, Artificial neural networks

Introduction

Within the current pursuit of a single electricity market in Europe, the so-called Price
Coupling of Regions project was initiated in 2009. It allows to efficiently balance demand
and supply in one market zone irrespective of internal transmission constraints, while
simultaneously optimizing cross-zonal exchanges of electricity under coupling capacity
constraints between the zones. Two fundamental principles for the calculation of the cou-
pling capacity available for commercial cross-border exchange are currently implemented
in Europe: the Available Transfer Capacity (ATC) method and the Flow-Based Market
Coupling (FBMC) method. The latter is currently applied in Central Western Europe
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(CWE) at the borders between Germany/Luxembourg, Austria, Belgium, the Netherlands
and France for the day-ahead market.

Although common regulations define both the ATC and FBMC methods (Official Jour-
nal of the European Union 2015), their implementation, which is actually carried out by
the Transmission System Operators (TSOs), is not fully published (EFET - European Fed-
eration of Energy Traders 2018). TSOs have some degrees of freedom to individually apply
models and set parameters for ensuring the security of supply. For parties other than the
TSOs, it is therefore impossible to fundamentally model the ATC or FBMC method pre-
cisely. Therefore, it is very difficult for market participants to forecast the capacities which
TSOs will make available for future trading intervals. This lack of knowledge is an obstacle
for the formulation of trading strategies from the perspective of the market participants.

In view of the above, this contribution discusses an attempt to model the FBMC by
applying Artificial Neural Networks (ANN), and to let the ANN discover patterns adap-
tively from published data in order to forecast one specific indicator from the dynamic
capacity domain calculated through the FBMC method, which is the Maximum Bilateral
Exchanges (MAXBEX). Publicly available data related to the FBMC parameters is used as
an input to the ANN, and the results are evaluated by comparing them to published actual
outcomes. Although the observed low accuracy of the forecast rules out the proposed
method as a high-quality forecast approach, the findings discussed in this contribution
serve as important guidelines for future research on understanding and predicting the
flow-based capacity allocation process.

Flow-based market coupling

FBMC was launched in May 2015 for the region Central Western Europe, with the goal
of increasing the market performance and maximizing social welfare (Van den Bergh
et al. 2016). The CWE region, initially consisting of the borders between the Belgian,
French, Dutch and German-Austrian bidding zones, is the first region to have imple-
mented FBMC for the day-ahead market. The FBMC flow domain represents all feasible
combinations of commercial exchanges between participating bidding zones. To calculate
it, TSOs assess a number of quantities that are named below (Belgian Federal Commis-
sion for Electricity and Gas Regulation 2017; Plancke et al. 2016). Figure 1 summarizes
the flow-based capacity calculation on the basis of these quantities.

Critical Branch Critical Outage (CBCO) are network elements such as lines, cables,
transformers, generation units, or others that are significantly impacted by CWE cross-
border trades under monitored critical outages conditions. The maximum allowable
power flow (Fmax) is calculated for each CBCO under rated voltage conditions. Based on
market data, the Reference Flow (RF) on a critical branch is determined as the power flow
caused by commercial transactions outside the day-ahead power exchange, such as bilat-
eral trades or forward markets. In order to account for the uncertainty of the assumptions,
forecasts and approximations of the flow-based method, a Flow Reliability Margin (FRM)
is determined. The Final Adjustment Value (FAV) is an additional margin that allows
TSOs to take account of additional knowledge and experience that cannot be formally
modeled.

The flow-based computation starts from the 2-Days Ahead Congestion Forecast
(D2CEF), which constitutes the "Base case" and represents the best estimate for the CWE
electrical system at the delivery day. Each TSO also determines the Generation Shift Keys



Abdel-Khalek et al.

Energy Informatics (2019), 2(Suppl 1): 12

Zonal Power Transfer
Distribution Factors
(PTFD’s)

Generation Shift
Keys (GSK’s)

D2CF or Base case

Remedial Actions
(RA)

Critical Branches - . )
Critical Outages Remamlng(/;\f&é)zble Margin
(CBCO's)
""" { Reference Flow (RF) ]7
External Constraints
[ Final Adjustment Value (FAV) Ji D)
[ Flow Reliability Margin (FRM) Ji
[ Maximum Allowable Power (Fmax) ]7

Fig. 1 Interaction of the flow-based parameters for the calculation of the capacity domain (European
Commission 2017)

(GSK), which define how a change in the zonal net position is mapped to the generating
units in a bidding area. Two other adjustment values are applied to the FBMC in order
to account for special uncertainties that can hardly be modeled or computed within the
method. These are the so-called Remedial Actions (RA) and External Constraints (EC).

The flow-based parameters that are finally computed and published are the Zonal
Power Transfer Distribution Factors (PTDF’s), which define the physical flow on a trans-
mission line resulting from one unit of cross-zonal power exchange between bidding
zones (resulting from the market-clearing result), and the Remaining Available Margin
(RAM), which give the maximum flows that are allowable for day-ahead trading. For each
CBCO, the RAM is calculated as the Fmax minus the sum of RF, FAV and FRM (Boury
2015). These values allow to determine the flow-based domain, which corresponds to
all combinations of concurrent mutual commercial exchanges of the countries in the
CWE region, which according to the FMBC method are in accordance with the physical
constraints of the transmission system.

The results of the flow-based calculation is a linearised form of the physical flow mar-
gins of the network elements that are available for further power exchange. They define
the boundaries of the flow-based domain with the limits of each critical line. Each con-
straint is a hyperplane in an #n — 1-dimensional search space, where # is the number of
coupled bidding zones. With four zones in CWE (until October 2018), the flow-based
search space was made up of an average of 15 to 20 planes, corresponding to the most
constraining critical branches.

Since the introduction of the FBMC to the market, a series of inconsistencies have
raised distrust in the correct functioning and transparency of the method; reasons for
this are the anonymization of the critical network elements, which impedes market par-
ticipants to link those with the data of the planned network element outages announced
by ENTSO-E. It is only since mid-2017 that all TSOs agreed to make this data public in
the Joint Allocation Office (JAO) platform, nevertheless creating concern regarding the
lack of standardization on critical elements location and naming. The ambiguity in the
definition of several parameters has been documented by several authors (Boury 2015;
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Van den Bergh et al. 2016; S6rés et al. 2013). Several major cases of TSO discretionary
action resulting in a lack of market transparency were observed and documented (Belgian
Federal Commission for Electricity and Gas Regulation 2017), to mention some: the unan-
nounced introduction of critical elements restraining transmission capacity additionally,
transparency of seasonal thermal limits (Fmax), increase of FAV values, and unannounced
changes in ECs.

Related work

Due to the worldwide importance of energy resources and price predictions, neural net-
works and deep learning have received increasing attention over the years, considering
their usefulness for energy consumers and generators in relevant decision-making pro-
cesses. The application of ANN in the energy market cover such a wide range of use
cases as wind turbine signal assessment (Qin et al. 2019), day-ahead photovoltaic power
forecasting (Wang et al. 2019a), or crude oil forecasting (Cen and Wang 2019; 2018), to
mention a few.

Recent day-ahead electricity price forecasting was done by (Wang et al. 2019b; Yamin et
al. 2004), while (Nazar et al. 2018) studied a hybrid model for simultaneous load and price
forecasting. Machine learning algorithms have also been applied to modeling parameters
related to grid capacity, e. g. (Staudt et al. 2018), who predict re-dispatch measures in the
German electricity market with an artificial neural network, or (Fainti et al. 2016), who
study line overloads applying an ANN which was trained using the Levenberg-Marquardt
algorithm.

The prediction of flow-based capacities has been researched less frequently. Most stud-
ies in the literature focus on assessing the efficiency of FBMC for the market integration
of power transfers between countries or price areas, in particular in comparison with the
ATC method. For instance in Bjorndal et al. (2018); Plancke et al. (2016), different chal-
lenges of the FMBC model implementation are discussed, while (Bjorndal et al. 2018)
study the influence of the bidding zone configuration on the performance of both the
ATC and the FMBC model. Another focus of current research are modified method-
ologies and sensitivities for the determination of flow-based parameters in the FBMC
model, e. g. by using more efficient algorithms (Matthes et al. 2017), parameter variations
(Wyrwoll et al. 2018) or a statistical approach to Generation Shift Keys (GSK’s) (Schon-
heit and Sikora 2018). The influence of different GSK methodologies on both the market
zone as a whole and individual generator dispatch has been analyzed in Finck et al. (2018).
In Khatavkar et al. (2018), an ANN is used to estimate the transmission reliability margin
of electrical interconnectors in Canada.

There are hardly any studies that try to predict the flow-based parameters for coming
trading intervals. van Stiphout (2016) compares different methods for doing such fore-
casts based on past flow-based capacity data, e. g. estimating the future capacities on
the basis of similar hours of the past. Wallin (Wallin 2016) addresses similar topics, but
assesses electricity flows resulting from trading directly; he does that also on the basis
of past data, applying multiple regression and Tobit models, and focusing on ATC-based
transfers between selected European countries. To the best knowledge of the authors, no
other models addressing predictions of the flow-based domain (or parameters derived
from it) exist, and particularly no other uses of machine learning approaches for this
forecast have been presented in the literature before.
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The model
In order to compensate for the missing transparency in the flow-based calculation
method, and to improve forecasting abilities of cross-border capacities available to day-
ahead trading, a machine learning approach is proposed here to model the FBMC. One
can distinguish two different perspectives to this problem. A forecast strategy based on
time-series analysis, for instance the application of an autoregressive integrated mov-
ing average (ARIMA) model, could be addressed directly to information representing
the capacities calculated from the flow-based market coupling. Such a purely statisti-
cal model could ignore the actual flow-based calculation method and the dependence of
these capacities on the underlying state of the electricity system. A complementary strat-
egy would be to reverse-engineer the capacity calculation from available past information,
thus learning the non-disclosed relationship between the state of the electricity system
and the resulting cross-border capacities. This approach could be coupled with available
forecast models for power system dynamics, for instance load and generation forecasts,
to yield forecasts of the cross-border capacities. Since a detailed exploration of both of
these approaches and their possible combinations is beyond the scope of this short paper,
in the following, a nonlinear autoregressive exogenous model (NARX) incorporating both
perspectives is applied. Such a model relates the current value of a time series to past val-
ues of that same series, here corresponding to information representing the cross-border
capacities, and to past values of an exogeneous series, here given by information repre-
senting the state of the electricity system. This model is implemented as a time-series
artificial neural network (ANN). The ANN approach is chosen, as it provides a num-
ber of benefits, such as non-linearity, adaptability, response capacity (in the context of
pattern classification, the network not only provides a pattern selection but also the reli-
ability of decision making), or fault tolerance due to the massive interconnection (Haykin
2008). After learning, the chosen NARX neural network can be applied in closed-looped
form, which yields a forecast of the target time series, here representing the flow-based
cross-border capacities.

In the following subsections, the target values that the ANN should compute are
described, and the input variables with their data sources are specified. Then, the specific
design of the implemented ANN is illustrated.

Target values

The values of interest in this study are the flow-based domains for each market
time unit. As described previously, the two parameter sets that define these domains
are the zonal PTDF’s and the RAM. To allow a straightforward comparison between
modeled and actual capacity values, in the following, a specific property of the flow-
based domain, denoted as the Maximum Bilateral Exchanges MAXBEX, is considered.
These values are explicitly published by the Joint Allocation Office and indicate the
maximum feasible exchanges between two bidding zones (in MW) for each mar-
ket time unit (which is one hour), under the assumption that the other net posi-
tions are null. This implies that the Maximum Bilateral Exchanges are not feasible
simultaneously, but they form the cross-sections of the flow-based domain with the
axes representing the twelve possible pairs of countries in the CWE region. In this
study, MAXBEX values were chosen to be used as the target values for the neural
network.
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MAXBEX data was downloaded from the JAO Utility Tool in an XML format, and a
parser Python code was created to convert the data to a CSV format. In order to focus
on the capacity calculation for a stationary setup of the bidding zones, only data before
the split between the market zones of Germany and Austria has been considered. The
data set covers the period 01/01/2016 — 30/09/2018, which corresponds to 24:095 hourly
time steps. For each time step, the twelve target variables associated with the MAXBEX
values between each ordered pair of the four considered market zones are included. It
has to be mentioned that the given links must not be understood in the physical sense.
There is, for example, no direct transmission line between Germany and Belgium; and yet
power trade can happen between these bidding zones, where electricity would physically
flow through the lines in and between other bidding zones. Figure 2 shows a statistical
analysis of the published MAXBEX values for the time period under consideration. It can
be seen that available capacities increased over the years for many exchange links. The
autocorrelation of the MAXBEX time series of the different links is illustrated in Fig. 3.
The MAXBEX values show a high autocorrelation, which suggests that despite possible
fluctuations, there is an apparent relationship between subsequent capacity values. For
higher time lags, this autocorrelation decreases, while showing diurnal cycles.

Input variables

The calculation of parameters used to obtain the flow-based domain relies strongly on
forecasts, such as the D2CF, GSK’s and PTDF’s. In addition, non-standardized constraints
based on TSOs’ experience, like the FAV, EC, and RA are included. As this informa-
tion is not publicly available, it was decided to take only power generation per type and
load time series per country as the input data for the ANN. All input data was retrieved
from the ENTSO-E Transparency Platform through the use of the Python client for the
ENTSO-E APL
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Fig. 2 Arithmetic mean and standard deviation of MAXBEX capacities on all links. Note that capacities are not
symmetric, i. e. MAXBEX from one country to the other is not the same as from the latter country to the former
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Fig. 3 Autocorrelation of the MAXBEX time series for time lags up to 168 hours (one week). The blue line
depicts the average over all links, the shade the corresponding standard deviation

In order to retrieve and process the data for the different queries and countries, a
Python-based tool was developed. The tool adjusts, if necessary, data from a quarter-hour
or half an hour frequency to hourly time units. Finally, all types of generation and the load
for the four CWE zones were put into a single Pandas frame and then converted to a CSV
file for further processing. The raw data obtained from the retrieval tool in CSV format
is the generation per production type (both renewable and conventional) and the load in
hourly time units.

ANN architecture

In order to obtain a forecast of some essential features of the flow-based capacity domain,
a time series neural network (Brockwell and Davis 2016) was developed in a Matlab
R2018b environment. More specifically, a nonlinear autoregressive model with exogenous
input (NARX) was selected to predict the time series of MAXBEX (Hudson Beale et al.

1999).
The defining equation for the NARX model applied in this contribution is
y() = £yt — 1),y —2),u¢ — 1),ut —2)] . (1)

Here, y(¢) is a vector representing the target time series at time ¢, i. e. the MAXBEX
capacities for each link, and u(¢) is a vector including the exogenous input time series at
time step ¢. The standard NARX neural network is a feedforward network, with a sigmoid
transfer function in the hidden layers and a linear transfer function in the output layer
(Hudson Beale et al. 1999). The Levenberg-Marquardt supervised training algorithm is
used for the learning of the network.

The learning, validation, and testing of the network occurs in open-loop mode. In this
mode, according to Eq. (1), a forecast of the target time series only one time step ahead
is realized. Once the network is trained, for a longer-term forecast it can be applied in
closed-loop mode. In this mode, only two initial values of the target time series are used
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by the model, whereas for subsequent time steps, the function f in Eq. (1) feeds back
the predicted values y(¢) into the model. Nevertheless, the exogenous time series u(¢)
is assumed to be given for the closed-loop forecast. For instance, using the closed-loop
mode for a forecast of the next twelve hours of the target values, the model uses the
past two values of the target time series plus the past two and next eleven values of the
exogenous input time series. Although in reality, this information would not be available,
the choice of this model accounts for the potential availability of accurate forecasts for
the input data, i. e. the load and generation time series. For such forecasts, the assumed
actual values are representing the upper limit of accuracy.

Results and discussion

A NARX network with 20 neurons in the hidden layer and two delays was applied to the
target and input time series for the period 01-01-2016 to 31-08-2018 (32 months). For
the learning process, the time series has been divided into a training set with 70 %, a val-
idation set with 15 % and a testing set with 15 % of the data. The learned NARX network
then has been used in closed-loop mode to forecast for every hour of the period 01-09-
2018 to 30-09-2018 the MAXBEX values of each ordered pair of CWE countries for the
next up to twelve hours. This forecast has been compared to a simple carry-forward pro-
cess. Note that due to the autocorrelation properties of the time-series (see Fig. 3), the
carry-forward method is expected to yield a significantly better forecast than a random
value in the interval of possible MAXBEX values, but will show an increasing error for
longer time lags. Figure 4 displays the average root-mean-square deviation (RMSD) for
both forecasts for lags of one hour up to twelve hours. The RMSD values have been nor-
malized with respect to the average MAXBEX for each border. As a baseline, also the
average normalized RMSD between the target series and a random time series in the
range of maximum/minimum MAXBEX, and a randomly shuffled version of the target
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Fig. 4 Average normalized RMSD between the target time series and the forecast based on simple
carry-forward (blue bars) and a NARX network (orange bars). Forecast time lags range from one hour to
twelve hours. Errorbars denote the standard deviation of the normalized RMSD over the twelve different pairs
of countries
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time series have been calculated. This yields an average relative RMSD of 48.3 % and
41.7 %, respectively (for corresponding value for each link consult Table 1).

The results show that the one-hour forecast on average has an RMSD of 12 % of the
average MAXBEX. For this lag, the simple carry-forward method yields almost the same
accuracy as the application of the NARX network. For larger lags, the NARX network
performs better than the carry-forward method, for instance with an RMSD of 25 % of

Table 1 RMSD between the forecast and the target time series of the MAXBEX of each pair of
countries, normalized by the average MAXBEX

DE/AT—NL NL— DE/AT DE/AT—BE BE—DE/AT
Average MAXBEX [MW] 3020 2340 3182 3026
norm. RMSD random [%] 538 44.8 444 44.8
norm. RMSD shuffle [%] 50.0 48.1 369 448
Forecast method CF NARX CF NARX CF NARX CF NARX
norm. RMSD 1 hour lag [%] 16.6 156 14.1 135 9.9 9.5 1.8 1.9
norm. RMSD 2 hour lag [%] 22.1 194 205 189 15.0 129 179 174
norm. RMSD 3 hour lag [%] 256 21.1 249 221 189 149 226 213
norm. RMSD 10 hour lag [%] 380 24.7 398 299 28.1 189 329 2838
norm. RMSD 11 hour lag [%] 385 24.7 40.8 30.2 283 189 33.0 29.1
norm. RMSD 12 hour lag [%] 39.1 24.7 418 30.5 28.7 189 336 29.6
DE/AT—FR FR—DE/AT NL—BE BE—NL
Average MAXBEX [MW] 3733 4102 2130 3219
norm. RMSD random [%] 624 420 406 396
norm. RMSD shuffle [%)] 62.6 319 30.5 34.5
Forecast method CF NARX CF NARX CF NARX CF NARX
norm. RMSD 1 hour lag [%] 17.2 16.8 1.5 11.5 7.5 76 1.3 11.0
norm. RMSD 2 hour lag [%] 26.3 234 157 154 1.5 109 16.0 15.2
norm. RMSD 3 hour lag [%] 329 27.2 182 175 14.8 132 19.1 17.8
norm. RMSD 10 hour lag [%] 500 344 240 209 226 17.5 26.7 235
norm. RMSD 11 hour lag [%] 499 343 24.3 212 229 176 27.2 239
norm. RMSD 12 hour lag [%] 50.1 34.2 250 215 233 17.8 27.7 24.3
NL—FR FR—NL BE—FR FR—BE
Average MAXBEX [MW] 2006 3536 2475 4010
norm. RMSD random [%] 69.6 40.7 494 286
norm. RMSD shuffle [%] 50.8 43.0 447 227
Forecast method CF NARX CF NARX CF NARX CF NARX
norm. RMSD 1 hour lag [%] 13.1 12.5 15.0 14.1 1.7 109 82 8.0
norm. RMSD 2 hour lag [%] 20.0 18.0 187 16.6 184 15.6 11.8 1.0
norm. RMSD 3 hour lag [%] 258 219 214 18.2 238 19.0 14.2 12.7
norm. RMSD 10 hour lag [%] 419 28.6 29.1 216 359 257 18.2 14.6
norm. RMSD 11 hour lag [%] 425 287 296 21.7 36.0 258 18.3 14.6
norm. RMSD 12 hour lag [%] 432 28.8 303 218 364 26.1 18.7 14.7

Two forecast methods have been applied: A simple carry forward (CF), and a forecast based on the closed-loop application of the
described ANN with 20 neurons in the hidden layer and two delays (NARX). Average MAXBEX values for all links are given, which
allows retransforming the normalized RMSD values to absolute values. As a comparison, for all links the normalized RMSD
between the forecast and both a random time series in the range of the minimum/maximum MAXBEX and the randomized time
series itself is displayed
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the average MAXBEX for the NARX method compared to 34 % for the carry-forward
method for the twelve-hour forecast. The link-specific results presented in Table 1 con-
firm this trend for all pairs of countries, but with considerable variation in the forecast
accuracy. Based on the NARX network, the RMSD in terms of the average MAXBEX for
the one-hour forecast ranges between 7.6 % for the link NL—BE and 16.8 % for the link
DE/AT— NL. For the twelve-hour forecast, the spread is higher, with values from 14.7 %
for the link FR— BE to 34.2 % for the link DE/AT— FR. Table 1 also gives the normalized
RMSD between the target time series and a random time series in the range of the min-
imum/maximum MAXBEX, as well as the normalized RMSD between the target time
series and randomly shuffled counterpart. These values serve as a baseline representing
a trivial forecast. It is apparent that both these trivial forecasts and the simple carry-
forward forecast mirror the accuracy of the forecast derived from the NARX network
(for instance a high RMSD for the link DE/AT—FR, and a comparatively low RMSD for
the link FR— BE). This indicates that the better accuracy of the NARX-based forecast for
some links is related to properties of the corresponding MAXBEX time series, not neces-
sarily to a better forecast performance of the network itself. Results are only displayed for
alag of 1 — 3 and 10 — 12 hours for brevity; it can be seen that RMSD increases strongly
with longer lags in the first hours, and less in the last hours forecasted here.

Figure 5 provides some more details about the distribution of the errors for the carry-
forward method and the NARX network, respectively. For the two directions of the link
between France and Germany/Austria one observes a comparatively low (FR—DE/AT)
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Fig. 5 Error per time step for one-hour forecast (left) and twelve-hour forecast (right) for the link FR— DE/AT
(top) and the link DE/AT—FR (bottom). The x-value and the y-value of each point represents the difference
between the real value and the predicted value at a certain time according to the carry-forward method and
the NARX network, respectively
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and a comparatively high (DE/AT— FR) forecast error. In Fig. 5, the forecast error (pre-
dicted target value minus real target value) is plotted for both orientations as a scatterplot,
with the x-value determined from the carry-forward method, and the y-value derived
from the NARX network. For the FR—DE/AT orientation, a close correlation for the
one-hour forecast can be observed, which shows that in this case, both methods yield
similar forecasts (and corresponding errors). The pronounced values at x = 0 illustrate
that the MAXBEX value of this link often remains unchanged. This leads to an exact fore-
cast with the carry-forward method, while the NARX network doesn’t achieve a similarly
(actually artificially) high accuracy. For the twelve-hour forecasts, the low variability in
the MAXBEX time series for this link is reflected by three pronounced stripes, whereas
overall, the correlation between the forecast errors is reduced. This indicates that for the
higher lag, the NARX network yields considerably different forecasts. A similar behavior
is observed for the link DE/AT— FR, but with higher variability and spread in the forecast
€errors.

Analogously, calculations have been done for different parameters of the NARX net-
work, including a higher number of delays or a high number of neurons in the hidden
layer. Although the details of the forecast depend on these parameters, no overall signifi-
cant improvement of the forecast accuracy for other parameter choices was observed.

Conclusion

An Artificial Neural Network was used to model the MAXBEX time series, a specific
characteristics of the flow-based capacity domain of cross-border power exchange. This
was done because the FBMC method, as implemented in the CWE region, has been crit-
icized for lack of transparency and ambiguous technical definitions, which has drawn
distrust to the method. Incomplete information makes it difficult for market participants
in the CWE coupled day-ahead market to do precise market forecasts. It was investigated
whether an ANN model could fill the gap of missing data on available transfer capacities
between coupled countries.

The chosen NARX network combines information on past allocated capacities as well
as generation and load data to predict future MAXBEX values. This approach was chosen
as a middle ground between reverse-engineering the MAXBEX values from data describ-
ing the market state and the grid infrastructure, and a purely time series-based analytic
approach based on properties of the MAXBEX values themselves.

Although in general, the NARX network yields a better forecast than a simple carry-
forward method, it can be concluded that the accuracy of the prediction is still too low to
provide reliable information to market participants. Nevertheless, the findings presented
in this contribution can help to direct future research on this topic. It was observed that
the MAXBEX values often do not change over several hours, despite changes in the load
and generation time series of the associated countries. This indicates that the MAXBEX
values do not represent the variability of the flow-based domain sufficiently to assess the
functional interdependencies hidden in the flow-based capacity calculation process. Sim-
ilarly, the presented results suggest that the load and generation data do not adequately
support the time-series modeling inherent in the NARX network to provide an accurate
forecast of the MAXBEX values. This information should be supplemented for instance
with data on predicted line outages, newly available transfer capacity, or changes in the
market structure.



Abdel-Khalek et al. Energy Informatics (2019), 2(Suppl 1): 12 Page 12 0f 13

About this supplement

This article has been published as part of Energy Informatics Volume 2 Supplement 1, 2019: Proceedings of the 8th
DACH+ Conference on Energy Informatics. The full contents of the supplement are available online at? https://
energyinformatics.springeropen.com/articles/supplements/volume-2-supplement-1.

Authors’ contributions

HA-K implemented all data management tools, the Matlab code and the NARX algorithm, and prepared all figures
except Fig. 1. RV realized preparatory code and analysis, compiled Fig. 1 and drafted a preliminary version of this paper.
MS and AW wrote the final version of the paper and the abstract. They checked all implementations, formulated the
conclusions, and summarized the related work. JFU proofread the final paper and provided his knowledge on
Flow-Based Market Coupling throughout the work. All authors read and approved the final manuscript.

Funding
Publication of this supplement was funded by Austrian Federal Ministry for Transport, Innovation and Technology.

Availability of data and materials
All input data is taken from ENTSO-E and JAO sources, as mentioned in the text.

Competing interests
The authors declare that they have no competing interests.

Published: 23 September 2019

References

Belgian Federal Commission for Electricity and Gas Regulation (2017) Functioning and design of the Central West
European day-ahead flow based market coupling for electricity: Impact of TSOs Discretionary Actions. CREG. https://
www.creg.be/sites/default/files/assets/Publications/Studies/F1687EN.pdf

Bjerndal E, Bjerndal M, Cai H (2018) Flow-Based Market Coupling in the European Electricity Market — A Comparison of
Efficiency and Feasibility. Norwegian School of Economics, Department of Business and Management Science.
https://ideas.repec.org/p/hhs/nhhfms/2018_014.html. Discussion Papers

Bjorndal E, Bjorndal MH, Cai H (2018) The Flow-Based Market Coupling Model and the Bidding Zone Configuration. SSRN
Electron J. https://www.ssrn.com/abstract=3272190

Brockwell PJ, Davis RA (2016) Introduction to Time Series and Forecasting. 3rd edn. Springer, Berlin

Boury J (2015) Methods for the determination of flow-based capacity parameters: description, evaluation and
improvements. Master’s thesis, KU Leuven

Cen Z, Wang J (2018) Forecasting neural network model with novel CID learning rate and EEMD algorithms on energy
market. Neurocomputing 317:168-178

Cen Z,Wang J (2019) Crude oil price prediction model with long short term memory deep learning based on prior
knowledge data transfer. Energy 169:160-171

EFET - European Federation of Energy Traders (2018) Open letter to CWE regulators regarding the transparency of data
provided by TSOs in the framework of flow-based market coupling. Technical report, European Federation of Energy
Traders

European Commission (2017) Documentation of the CWE FB MC solution. Technical report, ENTSO-E

Fainti R, Alamaniotis M, Tsoukalas LH (2016) Three-phase congestion prediction utilizing artificial neural networks. In:
2016 7th International Conference on Information, Intelligence, Systems Applications (lISA). IEEE. pp 1-5

Finck R, Ardone A, Fichtner W (2018) Impact of Flow-Based Market Coupling on Generator Dispatch in CEE Region. In:
2018 15th International Conference on the European Energy Market (EEM), Lodz, PL, June 27-29, 2018. IEEE,
Piscataway. pp 1-5

Haykin S (2008) Neural Networks and Learning Machines: A Comprehensive Foundation. 3rd edn. Pearson, London

Hudson Beale M, Hagan MT, Demuth HB (1999) Deep Learning Toolbox'™ User’s Guide. The MathWorks Inc. https://de.
mathworks.com/help/pdf_doc/deeplearning/nnet_ref.pdf

Khatavkar V, Swathi D, Mayadeo H, Dharme A (2018) Short-term estimation of transmission reliability margin using
artificial neural networks. Adv Intell Syst Comput 628:17-27

Matthes B, Spieker C, Rehtanz C (2017) Flow-based parameter determination in large-scale electric power transmission
systems. In: 2017 IEEE Manchester PowerTech. IEEE. pp 1-6

Nazar MS, Fard AE, Heidari A, Shafie-khah M, Cataldo JP (2018) Hybrid model using three-stage algorithm for
simultaneous load and price forecasting. Electr Power Syst Res 165:214-228

Official Journal of the European Union (2015) Guideline on capacity allocation and congestion management. Technical
report, Commission Regulation (EU) 2015/1222

Plancke G, De Vos K, De Jonghe C, Belmans R (2016) Efficient use of transmission capacity for cross-border trading:
Available Transfer Capacity versus flow-based approach. In: 2016 IEEE International Energy Conference (ENERGYCON).
IEEE. pp 1-5

QinY, Li K, Liang Z, Lee B, Zhang F, Gu Y, Zhang L, Wu F, Rodriguez D (2019) Hybrid forecasting model based on long
short term memory network and deep learning neural network for wind signal. Appl Energy 236:262-272

Schonheit D, Sikora R (2018) A Statistical Approach to Generation Shift Keys. In: 2018 15th International Conference on
the European Energy Market (EEM). pp 1-6

S6rés P, Divényi D, Raisz D (2013) Flow-based capacity calculation method used in electricity market coupling. In: 2013
10th International Conference on the European Energy Market (EEM). IEEE. pp 1-7

Staudt P, Traris Y, Rausch B, Weinhardt C (2018) Predicting Redispatch in the German Electricity Market using Information
Systems based on Machine Learning. In: 39th International Conference on Information Systems. ICIS 2018 Proceedings

van Stiphout F (2016) Approximating the Flow-Based Transport Capacity Constraints for the Day-Ahead Power Market.
Master's thesis, University of Twente


https://energyinformatics.springeropen.com/articles/supplements/volume-2-supplement-1
https://energyinformatics.springeropen.com/articles/supplements/volume-2-supplement-1
https://www.creg.be/sites/default/files/assets/Publications/Studies/F1687EN.pdf
https://www.creg.be/sites/default/files/assets/Publications/Studies/F1687EN.pdf
https://ideas.repec.org/p/hhs/nhhfms/2018_014.html
https://www.ssrn.com/abstract=3272190
https://de.mathworks.com/help/pdf_doc/deeplearning/nnet_ref.pdf
https://de.mathworks.com/help/pdf_doc/deeplearning/nnet_ref.pdf

Abdel-Khalek et al. Energy Informatics (2019), 2(Suppl 1): 12 Page 13 of 13

Van den Bergh K, Boury J, Delarue E (2016) The flow-based market coupling in Central Western Europe: Concepts and
definitions. Electr J 29(1):24-29

Wallin P (2016) Estimation of cross-border flow inelectricity markets using a Markovian-Tobit approach. Master's thesis,
KTH Swedish Royal Institute of technology

Wang F, Zhang Z, Liu C, Yu Y, Pang S, Dui¢ N, Shafie-khah M, Catal&o JP (2019a) Generative adversarial networks and
convolutional neural networks based weather classification model for day ahead short-term photovoltaic power
forecasting. Energy Convers Manag 181:443-462

Wang F, Li K, Zhou L, Ren H, Contreras J, Shafie-Khah M, Cataldo JP (2019b) Daily pattern prediction based classification
modeling approach for day-ahead electricity price forecasting. Int J Electr Power Energy Syst 105:529-540

Wyrwoll L, Kollenda K, Miller C, Schnettler A (2018) Impact of Flow-Based Market Coupling Parameters on European
Electricity Markets. In: 2018 53rd International Universities Power Engineering Conference (UPEC). IEEE. pp 1-6

Yamin H, Shahidehpour S, Li Z (2004) Adaptive short-term electricity price forecasting using artificial neural networks in
the restructured power markets. Int J Electr Power Energy Syst 26(8):571-581

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Abstract
	Keywords

	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

