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Abstract
An algorithm for the non-intrusive disaggregation of energy consumption into its
end-uses, also known as non-intrusive appliance load monitoring (NIALM), is
presented. The algorithm solves an optimisation problem where the objective is to
minimise the error between the total energy consumption and the sum of the
individual contributions of each appliance. The algorithm assumes that a fraction of the
loads present in the household is known (e.g. washing machine, dishwasher, etc.), but
it also considers unknown loads, treating them as a single load. The performance of the
algorithm is then compared to that obtained by two state of the art disaggregation
approaches implemented in the publicly available NILMTK framework. The first one is
based on Combinatorial Optimization, the second one on a Factorial Hidden Markov
Model. The results show that the proposed algorithm performs satisfactorily and it
even outperforms the other algorithms from some perspectives.

Keywords: Energy disaggregation, Non intrusive appliance load monitoring, Energy
efficiency

Introduction
The introduction of smart meters makes possible to collect energy consumption read-
ings at fine-grained spatio-temporal resolution (i.e., measurements with granularity in
the order even of a few seconds, for single households), thus enabling the extraction of
detailed information about individual energy usage habits. In turn, such knowledge allows
for the construction of more accurate mathematical models to characterize individual and
collective energy consumption behaviors. Energy end-use disaggregation aims at breaking
down the total energy consumption measured at household level into the contributions
of single electrical appliances. The use of such disaggregated information is twofold: on
one side, it can be leveraged to develop predictive models capable of forecasting future
energy consumption behaviours, on the other side it can be directly provided to cus-
tomers, so that household’s components gain a detailed knowledge of their energy usage.
For instance, through an App developed in the context of the enCOMPASS project1,

1http://www.encompss-project.eu
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customers can visualize their hourly consumption, as well as charts on their energy end-
uses patterns across major end-use categories (e.g., washing machine, dishwasher, clothes
dryer, fridge) and they can be alerted of occurring consumption anomalies. Furthermore,
personalized hints for reducing energy consumption can be directly delivered to the
users. These stimuli are aimed at fostering the adoption of energy saving actions, such as
replacing low-efficient appliances into high-efficient ones and reducing energy waste (e.g.
turning off lights when rooms are empty).
In this paper we present a novel algorithm for end-use energy disaggregation that

evolves the features of a previous work by Piga et al. (2016) accounting for the coarse
granularity of standard smart metering systems (a data point every 15 min) and for
the presence of unknown loads. To this purpose, we first briefly introduce the main
approaches discussed in literature for solving the energy disaggregation problem, then we
introduce our algorithm, and finally we evaluate its performance by comparing it against
two state of the art disaggregation algorithms applied to a publicly available dataset.

State of the art of energy use characterization
There is a rich literature on automatic disaggregation methods (known as Non-Intrusive
Appliance Load Monitoring – NIALM – algorithms) (Batra et al. 2014) aimed at
decomposing the aggregate household energy consumption data collected from a sin-
gle measurement point into device-level consumption data, requiring limited or even no
interaction with the user.
The first algorithm for NIALM was proposed by (Hart 1992). Hart’s approach is based

on the segmentation of the aggregate power signal into successive steps, which are then
matched to the appliance signatures. However, this method is not able to detect multi-
state appliances and it is neither able to decompose power signals made of simultaneous
on/off events on multiple appliances. Since Hart’s contribution, the NIALM problem has
been extensively studied in the literature. The survey papers by Zoha et al. (2012) and
by Zeifman & Roth (2011) give a complete review on the state-of-the-art of NIALM
methods.
Note that the vast majority of the studies on NIALM algorithms validate the proposed

solutions using publicly accessible datasets of real energy consumption measurements.
The most widely used datasets made available in the last years are reported in Table 1.
Alternatively, synthetic load consumption traces generated by open source software such
as Loadprofilegenerator2 can be adopted.

An optimisation based algorithm for low frequency disaggregation
Motivation

The algorithm here presented is based on the approach described in (Piga et al. 2016),
which exploited the assumption that the power demand profiles of each appliance are
piecewise constant over time. The disaggregation problem was treated as a least-square
errorminimization problem, with an additional (convex) penalty term aiming at enforcing
the disaggregated signals to be piecewise constant over time. However, the assumption of
piece-wise constant pattern behaviour is less likely to hold when considering the coarse
energy measurement granularity made available by standard smart metering system (i.e.,

2Free download available at www.loadprofilegenerator.de (accessed on March 31, 2019)
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15 min resolution). Moreover, the approach in Piga et al. (2016) could not be applied in
presence of unknown loads. We have therefore evolved the load disaggregation algorithm
in Piga et al. (2016) to take into account the presence of unknown electrical devices. In the
following, we formalize the final version of the energy end-use disaggregation problem as
a quadratic programming (QP) model.

Quadratic programmingmodel for energy disaggregation

We now define the problem inputs (sets and parameters), the output variables, the objec-
tive function and the problem constraints. The problem is formulated as a Mixed Integer
Quadratic Program as follows.
The input data sets to the problem are:

T, the set of time epochs (t = 1, 2, . . . , |T |);
A, the set of appliances;
La, the set of energy consumption levels of appliance a, with a ∈ A.

The input parameters are:

ct , the aggregate energy consumption during time epoch t ∈ T ;
ma, the maximum daily energy consumption of appliance a ∈ A;
da, the maximum daily usage duration (i.e., maximum number of consecutive epochs
in which the appliance is on) of appliance a ∈ A;
wa, the minimum daily usage duration (i.e., minimum number of consecutive epochs
in which the appliance is on) of appliance a ∈ A;
ua,t , is a binary parameter, set to 1 if appliance a ∈ A can be turned on at time t ∈ T ;
αa, is the multiplicative weight of appliance a ∈ A.

The model includes the following variables:

xa,l,t , is a binary variable set to 1 if appliance a ∈ A operates at consumption level
l ∈ La during time epoch t ∈ T ;
ya,t , is a binary variable set to 1 if appliance a ∈ A changes consumption level at time
epoch t ∈ T ;
oa,t , is a binary variable set to 1 if appliance a ∈ A is on at time epoch t ∈ T ;
fa, is a binary variable set to 1 if appliance a ∈ A is on during at least one time epoch
during the considered time horizon;
wm is an integer variable indicating the last epoch of activity of the washing machine;
cd is an integer variable indicating the first epoch of activity of the clothes dryer.

The objective function minimizes the sum of two contributions: the first one is the
quadratic error (i.e., the difference between the observed aggregated measurement and
the sum of the reconstructed consumption of every appliance, at every time epoch),
the second one is a penalty for every change of consumption level experienced by each
appliance during the optimization horizon.

min
∑

t∈T

⎛

⎝ct −
∑

a∈A,l∈La
l · ua,t · xa,l,t

⎞

⎠
2

+
∑

t∈T ,a∈A

(
αa · ya,t

)

By tuning the weights αa, the penalty attributed to a non-piecewise-constant energy
consumption of certain appliances can be strengthened or relaxed. Note that the

(2019), 2(Suppl 1): 13
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quadratic term accounts for the consumption of all the unknown loads. Note also that, if
the contributions of unknown appliances to the aggregated energy consumption pattern
are significant, the minimization of such quadratic term would lead appliances in set A
to be pushed to on state most of the time. To avoid such drawback, constraints that limit
the length of the activity period and the maximum consumption of the appliances in set
Amust be inserted (as discussed in the following paragraphs).
The problem includes the following set of constraints.

∑

l∈La
xa,l,t = 1 ∀t ∈ T , a ∈ A (1)

yat ≥ ua,t · xa,l,t − ua,t · xa,l,t−1 ∀a ∈ A, l ∈ La, t ∈ T : t > 1 (2)

yat ≥ ua,t · xa,l,t−1 − ua,t · xa,l,t ∀a ∈ A, l ∈ La, t ∈ T : t > 1 (3)

∑

l∈La,t∈T
l · ua,t · xa,l,t ≤ ma ∀a ∈ A (4)

∑

l∈La
l · ua,t · xa,l,t ≤ max

l∈La
l · oa,t ∀a ∈ A, t ∈ T (5)

oa,t · t − oa,t′ · (t′) ≤ da
[
1 − |T | · (oa,t + oa,t′ − 2)

]∀a ∈ A; t, t′ ∈ T2 : t > t′ (6)

fa · |T | ≥
∑

l∈La,t∈T
l · ua,t · xa,l,t ∀a ∈ A (7)

∑

t∈T
oa,t ≥ wa · fa ∀a ∈ A (8)

wm ≥ owm,t · t ∀t ∈ T (9)

cd ≤ ocd,t · t + |T | · (1 − ocd,t) ∀t ∈ T (10)

cd ≥ wm + 1 (11)

∑

t∈T
ua,t · xa,l′,t ≥ fa ∀a ∈ Ã, l′ = max

l∈La
l (12)

∑

a∈A,l∈La,t∈T
l · ua,t · xa,l,t ≤

∑

t∈T
ct (13)

Constraint 1 imposes that each appliance operates at a single energy consumption level
during each time epoch. Constraints 2, 3 set variable ya,t = 1 if appliance a ∈ A changes
consumption level at epoch t ∈ T . Constraint 4 imposes that the daily energy consump-
tion of appliance a ∈ A does not exceed the daily limit. Constraint 5 sets variable oa,t = 1
if appliance a ∈ A is on at epoch t ∈ T . Constraint 6 imposes that the maximum usage
duration of appliance a ∈ A does not exceed da. Constraint 7 ensures coherence between
the values of variable xa,l,t and of variable fa. Constraint 8 imposes that the daily energy
consumption of appliance a ∈ A (if activated) is not lower than the daily lower limit wa.
This way, the disaggregation of load curves of appliances such as dishwasher, washing
machine and clothes dryer takes into account the minimum duration of a washing/drying

(2019), 2(Suppl 1): 13
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cycle. Constraint 9 sets variable wm to the last epoch of activity of the washing machine
(if the washing machine is activated during the day). Constraint 10 sets variable cd to the
first epoch of activity of the clothes dryer (if the cloth dyer is activated during the day).
Constraint 11 imposes that the clothes dryer is turned on after the end of the operational
period of the washing machine. Constraint 12 imposes that each appliance belonging to
set Ã works at the highest energy consumption level for at least one time epoch, if acti-
vated during the day. In our formulation, set Ã contains the dishwasher, the washing
machine, and the clothes dryer. The energy consumption profiles of a typical operation
cycle of such appliances normally include one or multiple peak consumption periods, cor-
responding e.g. to water heating or spinning. Therefore, this constraint imposes that at
least one peak consumption epoch is included in the disaggregated consumption profile
of such appliances. Finally, constraint 13 imposes that the sum of the disaggregated energy
consumption profiles does not exceed the total energy usagemeasured by the smart meter
located at the user’s premises.

Parameter training and QPmodel solution

We now discuss how each input set and parameter of the QP model introduced in the
previous subsection is dimensioned.
Set T : the number of epochs depends on the duration of the scheduling horizon and

on the resolution of the aggregated consumption measurements collected by the smart
meters. As an example, assuming that the scheduling horizon is 24 hours and the granu-
larity of consumption measurements is 15 mins, the number of epochs is 96, thus we can
define set T = {1, 2, . . . , 96}.
Set A: the set of main electrical appliances installed in a building. Those appliances may

include: dishwasher, washing machine, clothes dryer, oven, electric vehicle, heat pump,
air conditioner.
Set La: we assume that each appliance can operate at a predefined number of consump-

tion levels. The number of levels and the energy consumption per epoch associated to
each level can be determined by collecting statistics over historical individual consump-
tion data (if available) or over publicly available datasets containing load consumption
curves of the main categories of electrical appliances (see Table 1). Note that set La always
contains the element 0 (corresponding to the appliance off state). In the following, we
report the algorithm we used to extract consumption levels from consumption curves of
individual appliances, when available to be used as training data.

1 Create an histogram by defining a set of energy consumption bins and computing
the number of measurements falling into each bin, where the number of bins is a
predefined system parameter (e.g., 50 bins of width 100 Watt in the range 0-5 kW);

2 Identify the histogram peaks with prominence greater than p measurements, where
p is a predefined system parameter and depends on the total number of available
measurements, i.e. on the temporal window covered by the training dataset.

3 Retrieve the extremes [ blow, bhigh] of the energy consumption bins associated to
the selected peaks, calculate the corresponding energy consumption level as
(bhigh − blow)/2 + blow.

Parameter ct : aggregate energy consumption measurements are collected by smart
meters installed at the users’ premises. Note that, in case disaggregated consumption

(2019), 2(Suppl 1): 13
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measurements collected via smart plugs are available, those are subtracted from ct and
disaggregation is performed excluding the directly monitored appliances from set A.
Parameters ma, da and wa: as for set La, the maximum daily energy consumption and

minimum/maximum duration of the operational period of each appliance can be calcu-
lated either based on historical individual consumption patterns or on publicly available
datasets. In our implementation, maximum and minimum durations were computed by
identifying the epochs of activity of every appliance within the training dataset, comput-
ing the minimum (resp. maximum) number of consecutive activity epochs in the dataset
and setting the values of wa and da accordingly. To set the value ofma, the average energy
consumption caver during the activity epochs was calculated and we setma = caver · da.
Parameter ua,t : this parameter can be used to prevent some appliances from being

turned on at certain time periods. For example, if absence from home is inferred by
motion detectors, the off state of oven, dishwasher, washing machine and clothes dryer
(unless they support automatic deferral of their operational period) can be enforced3.
Parameter αa: the value of the coefficients used to impose piecewise linear behaviour

of the consumption curve was tuned depending on the appliance type and time gran-
ularity. For appliances that exhibit pronounced energy consumption fluctuations even
in realtively short time intervals (e.g. washing machines and dishwashers, depending on
the phase of the washing cycle such as water heating, spinning), αa is set to 0, whereas
for appliances that do not show abrupt variations during the charging period (e.g., the
recharge of an electric vehicle, especially if the charger does not support multiple charg-
ing rates) αa is set to a higher positive value. Moreover, the coarser the time granularity,
the lower the value of αa, since consumption variations during consecutive time periods
are more frequently expected (e.g., if the measurements granularity is 30 mins, a wash-
ing machine that runs a washing program of 1 hour duration is expected to have a lower
consumption during the initial 30 mins of the cycle and a higher consumption during the
next 30 mins, when the spinning typically occurs, but if the granularity is 5 min, then
we can reasonably expect a piece-wise linear consumption along time epochs). Moreover,
as the main objective is the minimization of the quadratic error, weights were chosen
so that the term

∑
t∈T ,a∈A αa · ya,t was at least one order of magnitude lower than the

term
∑

t∈T (ct − ∑
a∈A,l∈La l · xa,l,t)2 (i.e., if multiple solutions minimizing the objective

function exist, the one ensuring minimum value of
∑

t∈T ,a∈A αa · ya,t is selected).

Performance assessment
We trained and validated our algorithm using the UK-DALE 2015 dataset (see Table 1)
containing consumption measurements of 6 houses for different time periods. Three out
of those (building 3, 4 and 6) were monitored for a period shorter than two months, thus
we excluded them from our analysis. For the remaining 3 buildings, we considered the
following periods: building 1 from April 1, 2013 to May 31, 2013, building 2 from May 1,
2013 to June 30, 2013, building 5 from July 1, 2014 to August 31, 2014.
In the numerical assessment, we considered a scenario where performed the disaggre-

gation of the 5 top consuming appliances, which are identified beforehand based on the
individual consumption during the training period. Note that the type of such appliances

3As in the dataset used for our numerical assessment no information on presence/absence of house dwellers was
included, ua,t was set to 1 by default.

(2019), 2(Suppl 1): 13
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may vary from household to household, but is generally restricted to a subset of the fol-
lowing list: dishwasher, washing machine, fridge, freezer, electric oven, cloth dryer, air
conditioner, space heater.
The performance of the disaggregation algorithm described in the previous Section,

referred to as ILP in the following, is compared to that obtained by two state of the art
disaggregation approaches implemented in the publicly available NILMTK framework by
Batra et al. (2014). The first one is based on Combinatorial Optimization (CO), the second
one on a Factorial Hidden Markov Model (FHMM) (see (Batra et al. 2014) for further
details on their implementation and on the choice of their input parameters). The training
of these two algorithms and of our algorithm was performed using as training set the first
month of disaggregated measurements for each of the three buildings we selected from
the UK-DALE dataset.
The CO and FHMM models are implemented in Python, whereas the ILP model has

been implemented in AMPL and solved with the Gurobi solver, running on a Linux
machine with 2 × Intel Xeon E5-2620 v4 2.1GHz (20/32 cores have been allocated) and
16 GB of RAM. A computational time limit of 180 seconds per instance was imposed.

Performance metrics

The following performance metrics, proposed in (Batra, et al., 2014), have been used to
compare the performance of the three disaggregation algorithms: The Fraction of Total
Energy Assigned Correctly (FTEAC), defined as:

FTEAC =
∑

a=1...A
min

( ∑T
t=1 ẑa,t∑A

a=1
∑T

t=1 ẑa,t
,

∑T
t=1 za,t∑A

a=1
∑T

t=1 za,t

)

where the estimated consumption of appliance a at time t in the case of the ILP algorithm
is computed as ẑa,t = ∑

l∈La xa,l,t · l, whereas in the case of the CO and FHMM algo-
rithms is obtained as output of the NILMTK implementation. Conversely, za,t is the true
consumption of appliance a ∈ A at time t ∈ T obtained from the UKDale dataset.
The Normalized Error in Assigned Energy (NEAE) for each appliance a, defined as:

NEAEa =
∑T

t=1 |za,t − ẑa,t|∑T
t=1 za,t

The Root Mean Square Error (RMSE) for each appliance a, defined as:

RMSEa =
√√√√ 1

T

T∑

t=1
(za,t − ẑa,t)2

The True/False Positive Rate (TPR/FPR) for each appliance a, defined as:

TPRa = TPa
TPa + FNa

; FPRa = FPa
FPa + TNa

;

Where:

TPa =
T∑

t=1
(za,t > 0 ∧ ẑa,t > 0); TNa =

T∑

t=1
(za,t = 0 ∧ ẑa,t = 0)

FPa =
T∑

t=1
(za,t > 0 ∧ ẑa,t = 0); FNa =

T∑

t=1
(za,t = 0 ∧ ẑa,t > 0)

(2019), 2(Suppl 1): 13
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The Accuracy (ACC) and Precision (PRE) for each appliance a, defined as:

ACCa = TPa + TNa
TPa + TNa + FPa + FNa

; PREa = TPa
TPa + FPa

Testing and validation

In Fig. 1 we report seven different performance indicators obtained by validating the
three algorithms on the UK-DALE dataset, for different epoch granularities ranging from
5 to 60 min. As the appliances belonging to the top consuming set differ from build-
ing to building, global metrics are computed by averaging the results obtained for the 5
appliances belonging to each building.
It can be noted that the fraction of energy consumption correctly assigned by the ILP

algorithm to the top 5 consuming appliances is slightly lower than that assigned by the CO
and FHMM algorithms. However, the normalized error achieved by the ILP algorithm
is always consistently smaller than the one obtained by the two benchmark algorithms,
while the root mean square error achieved by the ILP algorithm is slightly lower than that
obtained by CO and FHMM.
The true positive rate of the ILP algorithm remains lower than that of the CO and

FHMM algorithms, with FHMM outperforming CO. However, an increase in the true
positive rate of the ILP algorithm is observed at coarse granularities (45 and 60 min
epochs). The relatively poor performance of the ILP in terms of true positive rate is com-
pensated by the very low false positive rate, which is much smaller than that achieved by
the benchmark algorithms. This means that, though the ILP algorithm sometimes does
not detect some activity periods of the appliances, it almost never fails in detecting off
periods, whereas the CO and FHMM algorithms often incorrectly turns on appliances).
Overall, the ILP algorithm achieves accuracy and precision ranges comparable to those of
the benchmarks, slightly outperforming the benchmarks and showing remarkably smaller
interquantile ranges at coarse measurement granularities4.
While there is not a single algorithm that clearly dominates the other ones, the low

false positive rate and the relatively good precision and accuracy seems to be features of
some importance when feedback is provided to real users, as higher false positives might
eventually reduce the user confidence in the algorithm output.

Conclusions
In this paper we have described a novel algorithm for the disaggregation of the overall
energy consumption pattern of a household into the single end-uses of each appliance.
The proposed algorithm is based on the solution of a quadratic programming problem
with mixed integer constraints. In this paper we report the training and the validation
of the algorithm on one well known publicly available dataset and its performance has
been evaluated for different granularities of the aggregated energy consumptionmeasure-
ments, showing that graceful degradation of the disaggregation results is achieved and
that still accurate results can be obtained also in the case of data with 15 min resolution,

4Note that the basic version of the algorithm in (Piga et al. 2016) achieves lower accuracy than the ILP algorithm with
the considered dataset, mainly because the too coarse granularity of the measurements above 15 min resolution violates
the assumption of piecewise linearity of consumption measurements required in (Piga et al. 2016) and because the
fraction of energy consumed by unknown appliances (which are not modelled in (Piga et al. 2016)) is erroneously
attributed to the top 5 consuming appliances.
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(a)

(b) (c)

(d) (e)

(f) (g)
Fig. 1 Comparison of the performance of the three NIALM algorithms. a Fraction of correctly assigned energy
b Normalised error c Root mean square error d False positive rate e True positive rate f Accuracy g Precision
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that is a common data temporal resolution available in most commercial smart-metering
solutions, where submetering devices are not or cannot be installed.
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