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Abstract

The integration of decentralized prosumers into current energy systems leads to
continuously increasing complexity in today‘s popular term of the Smart Grid. Since
conventional engineering methods reach their limits when dealing with the challenges
in developing such systems, model-driven approaches like Domain Specific Systems
Engineering (DSSE) gain significant importance. Contributing to the agile development
of such a System of Systems (SoS), the application of the DSSE approach is furthermore
supported by the introduction of the Smart Grid Architecture Model (SGAM) and
Mosaik. However, with both concepts being individual methodologies, their
interconnection is missing specifications. Therefore, this paper proposes the
development of an interface between architecting and simulating a complex Smart
Grid. To achieve this, the concepts of SGAM and Mosaik are analyzed in the first place in
order to set up a suitable architectural model of an energy system and the
corresponding simulation scenario. Subsequently, the applicability of the present
approach is demonstrated by utilizing an excerpt of a real-world case study, the
charging behavior of an Electric Vehicle (EV).

Keywords: Smart grid, Domain specific systems engineering (DSSE), Co-Simulation,
System architecture, Electric vehicles

Introduction
Although first steps have been taken over a decade ago, the transition of the original
power grid towards the so-called Smart Grid is gaining in importance in recent years. This
is mainly encouraged by the recent discussion about the achievement of climate goals as
well as novel technological advances provided by the Internet of Things (IoT). However,
to find a common definition for the term Smart Grid has proven to be rather difficult,
since different standardization bodies propose varying explanations (Greer et al. 2014;
SMB Smart Grid Strategic Group (SG3) 2010; United States Department of Energy 2010).
Nevertheless, especially Farhangi et al. (2010) provide a valuable and detailed illustration
of how a Smart Grid can be distinguished from a conventional power grid. According to
the authors, some characteristics like a digitalized two-way communication, distributed
generation, pervasive control and the possibility to monitor itself are indications for a
power grid to be intelligent. Those features are mainly enabled by combining aspects
from power systems with methods from Communication and Information Technology,
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but they also entail further challenges. For example, through the integration of renewables
or decentralized prosumers, issues like electric storage or demand response management
need to be dealt with. Moreover, by adding a large number of sensors or a wide range of
intelligent agents, efficiency and reliability are secured on the one hand, but on the other
hand the question of how to expand the infrastructure of the grid with the goal to secure
interoperability arises. Taking the interplay of these Smart Grid components into further
consideration, the overall aim needs to be maintaining the energy balance of the complete
power system, which can be achieved by dynamically managing the power demand or by
regulating flexibilities. Thus, due to the huge number of elements within a Smart Grid
and their dynamic behavior, such a system needs to be classified as a complex system
according to the scale introduced in Haberfellner et al. (2015). To further underpin this
statement, in Binder et al. (2019) it is shown that even the further specifying term System
of Systems (SoS) has to be used when describing this kind of system, since it fulfills the
typical traits summarized by the contributions of Maier (1998); Sage and Cuppan (2001);
DeLaurentis (2005).
As apparent from the previous assertions, developing and implementing future energy

systems is a demanding task including numerous considerations. Thus, the authors of this
paper previously introduced an approach for developing Smart Grid applications based
on the Smart Grid ArchitectureModel (SGAM) (CEN-CENELEC-ETSI Smart Grid Coor-
dination Group 2012), called Domain Specific Systems Engineering (DSSE) (Neureiter
2017). By applying the concept of Model-Based Systems Engineering (MBSE) and mak-
ing use of well-known methodologies like Model-Driven Architecture (MDA) (Object
Management Group 2014), the main result of their work is the provision of an adequate
modeling tool going by the name of SGAM Toolbox1. However, regarding the findings
gained through years of utilization in international projects and falling back to the fact of
the Smart Grid being a SoS, unpredictable behaviors contradictory to what is described
in the model become observable. In order to deal with these mostly unpredictable and
usually undesirable effects before implementing the system, a Co-Simulation is con-
sidered to be an appropriate measure for realistically analyzing the behavior of the
components within the Smart Grid during its runtime.
However, modeling and simulating in the Smart Grid are not completely new topics

to discuss about. Several publications deal with Model-Driven Development (MDD) in
this domain (Lampropoulos et al. 2010; Lopes et al. 2011; Andrén et al. 2013), whereas
others propose the possibilty of simulating such a system (Godfrey et al. 2010; Yang et
al. 2013; Palensky et al. 2013). Nevertheless, considering the number of stakeholders and
the wide range of tools when developing an energy system, utilizing one particular tool
would result in loss of information and limit the results. This means, the goal to follow
is to connect specific tools that remain in their intended environment rather than to cre-
ate an all-inclusive solution. Thus, the intention of this paper is to propose an interface
developed for the SGAM Toolbox in order to exchange the model data with the simula-
tion frameworkMosaik2 (Schütte et al. 2011), which has been chosen for its applicability
and suitability towards the Smart Grid. By doing so, the focus is set to faciliate the pro-
cess from modeling to simulating between the mentioned tools in order to enable their
toolchain integration. More precisely, the main contribution of the conducted research

1https://sgam-toolbox.org/
2https://mosaik.offis.de/
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is a newly created possibility to simulate an SGAM based model with just a few clicks,
which enhances the design and concept workflow of such systems and also paves the road
for further projects in this area. Thus, the developed interface can be seen as first proto-
type indicating the similarities between SGAM and Mosaik by outlining their respective
differences in defining a Smart Grid at the same time.
To address these aspects, the remainder of this paper is structured as follows:

“Related work” gives a more detailed overview of related work and the background
of DSSE and Co-Simulation. After that, the intended “Approach” is depicted in detail
and the research methodology is outlined in short. The most important implementa-
tion details of the interface are then presented in “Development of the interface”, before
the applicability is tested and evaluated in “Application of the Co-Simulation”, using an
exploratory case study. Finally, the paper is summarized and the conclusion is given in
“Conclusion & future work”.

Related work
This section gives an overview of the related work and the state-of-the-art. As already
mentioned, modeling in the Smart Grid and the simulation of its components during
runtime is no unknown territory. Similar approaches have been in the focus of several
research projects during the last decade. For example, the first steps of utilizing MBSE
to model a power system from a SoS perspective in order to manage its complexity
and address the concerns of different stakeholders has been set by Lopes et al. (2011).
Although being in early stages of research, some proposed concepts find still usage at cur-
rent times, like using planes for structuring a Smart Grid or applying SysML for modeling
the system. Additionally, in Lampropoulos et al. (2010) a methodology specially focused
on modeling the behavior of prosumers in the Smart Grid is introduced. By making use
of simulating Electric Vehicles (EVs), first effects of their individual behaviors towards
the complete power system could be investigated. A few years later, it has been recog-
nized that standards for defining a Smart Grid need to be introduced in order to build a
common foundation, which can exemplatory be seen in the IEC Smart Grid Standards
Map3. Thus, a framework forModel-Driven Engineering (MDE) in the Smart Grid imple-
menting the Common Information Model (CIM), the IEC 61850 as well as the IEC 61499
has been developed by Andrén et al. (2013). However, a more complete approach inher-
iting an underlying architectural framework and introducing an adequate development
process has already been proposed by the authors of this paper (Neureiter et al. 2016).
Moreover, this methodology has been in constant development resulting in the proposal
of DSSE, which is observable by the continously updated SGAMToolbox. Since this paper
deals with further enhancing its functionality by developing an interface to Mosaik, used
technologies like the SGAM and the particularities of this approach itself are described
in more detail in the following, with a short introduction of Co-Simulation in the Smart
Grid.

Smart Grid Architecture Model (SGAM)

The Smart Grid Architecture Model (SGAM), introduced by the European Standard-
ization Mandate M/490, is an architecture model specification that gives an holistic

3http://smartgridstandardsmap.com/
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view on Smart Grid systems (CEN-CENELEC-ETSI Smart Grid Coordination Group
2012). The SGAMprovides capabilities for the comprehensible development of renewable
energy systems. Figure 1 depicts an overview of the model. Based on the NIST Domain
Model (Greer et al. 2014), the automation pyramid and the GWAC Interoperability Stack
(Council 2008), the concepts have been extended to a three-dimensional structure,
including domain-specific viewpoints.
Basically, the power grid can be distinguished into Domains and Zones. Whilst the

SGAM Domain-axis arranges a system on basis of an element’s position in the Smart
Grid, the Zone-axis describes roles of elements with regard to automation possibilities.
In addition to these basic power grid modeling approaches, the SGAM further com-
prises the so-called Interoperabilty Dimension, introducing layers for Business, Function,
Information, Communication and Component aspects. Dependent on the requirements
of a stakeholder, these layers (or viewpoints) can be considered as the entry point for the
development of the aspects of interest.
The SGAMprimarilydelivers a general reference in how to architect Smart Grid systems.

Beyond that, however, for the individual development of Smart Grid applications, DSSE
combines adequate tools with an applicable methodology (Neureiter 2017).

Domain Specific Systems Engineering (DSSE)

Domain Specific Systems Engineering (DSSE) is an approach that arose from the ideas
of MBSE (Wymore 1993). The concepts of MBSE specifically target issues such as deal-
ing with the upcoming complexity during the development of systems. As mistakenly
assumend, models are not the key artifacts of development inMBSE itself, since this deals
as an umbrella term for more specific methodologies. However, they significantly support

Fig. 1 The Smart Grid Architecture Model (SGAM), used with permission from CEN-CENELEC-ETSI Smart Grid
Coordination Group (2012)
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the development of systems. Going one step further, model-driven approaches such as
MDE and MDD consider models as key artifacts for system development throughout the
whole development life-cycle. The Object Management Group (OMG) further defined an
even more specialized concept of MDD, the so-called MDA (Object Management Group
2014). Generally, model support encourages an agile development dealing with rapidly
changing requirements (Schmidt 2006).
However, besides to the noted benefits, the authors of Whittle et al. (2014) outline

that domain specific engineering concepts are more successful than general model-driven
engineering approaches. As a result of several years of research Neureiter (Neureiter
2017) therefore outlines an approach for DSSE in the Smart Grid. DSSE introduces an
entire development process for Smart Grid systems. To meet the demand of an agile, sus-
tainable process, DSSE inherits consistent supporting methods for the extensive system
development in different phases of the development life-cycle. By establishing a MDA
process for the Smart Grid, DSSE was initiated by the research of Dänekas et al. (2014).
This research also includes the implementation of the SGAM Toolbox, which especially
supports real world applicability. DSSE and the SGAM Toolbox particularly focus on the
requirement-specific development of Smart Grid applications. On this basis, Neureiter
(2017) recommends an extension of the DSSE approach, to finally reach a SoS “Integra-
tion Toolchain” for Smart Grids, which is depicted in Fig. 2. It includes eight steps of
integration, which will be described in short in the following:

1. GIS data import: The data from the Geographic Information Systems (GIS)
includes power system analysis from an electro technical point of view.

2. Use Case import: Besides to the electrical models, there are also central
community-based Use Case Management Repositorys (UCRMs). The UCRM of
the Oldenburg Institute for Informatics (OFFIS)4 for example makes typical Smart
Grid related use cases centrally available.

3. Reference Architecture import: As a starting point for development, it is
suggested to import a general Reference Architecture, such as the NIST
Conceptual Model (Greer et al. 2014).

Fig. 2 System of Systems “Integration Toolchain” for Smart Grids

4https://www.offis.de/
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4. Architecture Development: Based in the previous imports, the architecture
development of a specific use case is supported by the SGAM-Toolbox. The
authors of Neureiter et al. (2016) describe a standard-based approach for domain
specific modeling of Smart Grid system architectures.

5. Model Evaluation: The architecture development is followed by a model
evaluation, which is based on defined Key Performance Indicators (KPIs). As an
example, the assessment of privacy indicators is outlined in Knirsch et al. (2015).

6. 3D Visualization Tool: The 3D visualization enables the manual evaluation of the
architecture model in interdisciplinary environments. Thus, an appropriate 3D
Visualization Tool has been developed for enabling this (Neureiter et al. 2014).

7. Power System Simulation: In order to evaluate a system’s behavior in a greater
context, for example as part of a SoS, Co-Simulation approaches can offer potential
solutions. Tailored to Smart Grid applications, the Mosaik Co-Simulation
framework offers appropriate tool support.

8. Source Code Generation: The ongoing research in MDE also includes concepts
for the automated generation of source code. The transfer from a detailed
functional description to concrete executable software is aimed. The
service-oriented middleware framework FREDOSAR5 is one of the previous
achievements for supporting the implementation of model-driven or model-centric
software development concepts (Fischinger et al. 2019). However, there is still a
great potential for further research in this area.

The seventh step of the SGAM-based toolchain already gave a brief introduction to the
simulation of power systems. A more detailed insight into Co-Simulation in the Smart
Grid will be given in the following.

Co-Simulation

As MBSE has become more popular for developing Smart Grid applications, approaches
for simulating them needed to arise. Therefore, a collection of suitable tools and methods
has been published by Palensky et al. (2013). However, with most frameworks focusing
on simulating the behaviour of single components and the Smart Grid inheriting SoS
characteristics, the need for Co-Simulation methodologies has become more obvious in
order simulate an energy system on system-level. Thus, first attempts have been proposed
by Godfrey et al. (2010), where the authors simulate Photovoltaic Cells (PCs) and try to
find countermeasures for dealing with a temporary loss of power. Amore generic example
has been introduced in Yang et al. (2013), where a framework for event-driven simulation
of previously modelled Smart Grid components is provided. A specific feature of this
approach is the high degree of freedom in the framework itself, each controller within
the Smart Grid can be simulated according to its inteded functionality by describing its
function block architecture.
Per definition, Co-Simulation is the coordinated execution of two or more models with

different representations and behaviors during execution in the runtime environment
(Steinbrink et al. 2017). In more detail, the underlying modeling paradigm purports that
each model is represented as a differential equation, which is executed during runtime.

5https://www.fredosar.org/
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This causes independent development and implementation of individual models in order
to provide an optimal overall solution. In a Co-Simulation scenario itself, the specific sim-
ulations are considered as black-boxes, which are developed by the teams responsible for
the domain specific systems. The most important engineering domains requiring the uti-
lization of Co-Simulation are automotive, heating and ventilation, robotics, or electricity
production and distribution domain (Gomes et al. 2017).
In order to work properly, a Co-Simulation is composed of at least two simulators and a

master algorithm, which orchestrates the simulators and manages data exchange or time
synchronisation. A simulator is a software package or a tool that consits of a model and a
solver. However, in the case of a power system simulation, a model contains physical ele-
ments and their interconnections. The simulator’s job is to take these descriptions of the
system and transform them into equations that can be processed by the solver. Thereby,
output variables of one simulator become the input of one or more other simulators and
vice versa (Palensky et al. 2017). This leads to a dynamic coupling of the different simu-
lators that compose the Co-Simulation. To synchronize the outputs of the different time
resolutions, fixed exchange times are defined depending on each simulation scenario,
which are defined as steps. To integrate continuous output values, they are treated as
fixed stepped output values with a low step range. Combining different fixed step sizes or
variable stepped output values, the tool that manages the synchronization must support
the possibility to skip simulators at certain steps. This is different for the integration of
event driven simulators, where an event can only be handled in the next step. In case of
the occurrence of inexact results, a reduction of the step size or the implementation of a
roll-back function may improve the outcome of the Co-Simulation.
A practical example of such a Co-Simulation framework is Mosaik. Tailored to the

Smart Grid, the open source tool is written in Python and integrates a specific power
grid simulator like PyPower. To address all aspects a Co-Simulation has to consider,
Mosaik is constituted of four main components. In its core, the Sim Manager is respon-
sible for processing the simulators and their interconnection, while the Scheduler tracks
the dependencies between the simulators and performs simulation steps. Additionally,
for developing a simulation scenario, the Scenario-API is connected to the core and can
be addressed with python code, defined as the Scenario Script. Finally, for enabling the
communication between the simulators andMosaik, a Sim-API is provided by the frame-
work. Thereby, a designated Component Interface is implemented in order to manage the
communciation over plain network sockets via JSON encoded messages.

Approach
With regard to systems engineering in the Smart Grid, the insight into current state-
of-the-art research showed that many questions have already been answered. Especially
the DSSE methodology and the Co-Simulation approaches with Mosaik offer promising
solutions for their problems. Furthermore, the SGAM-Toolchain introduced a general
process for the integration of Smart Grid based applications. However, aspects like agility
and the development in rapid iterations combined with Co-Simulation have not been
covered yet. To completely fulfill this idea of the SGAM-Toolchain, a seamless transi-
tion between the model of a system and the simulation is needed. On these grounds,
the research of this paper aims the implementation of an appropriate interface between
the SGAM Toolbox and the Mosaik framework. To give a short overview, the overall
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purpose of this contribution is to clarify the following three points: (1) development of
a system architecture and proper Co-Simulation scenarios in the Smart Grid, (2) spec-
ifying the corresponding toolchain between the model and the simulation as well as
developing its interface and (3) identifying the limitations of the interface. To inves-
tigate these research questions, a suitable case study representing a typical energy
system example has been created. Therefore, this section gives an overview of the cho-
sen research methodology and outlines the development approach for the intended
interface.
As the further development of the Smart Grid and related supporting tools is strongly

driven by joint, distributed research activities, an agile research approach is recom-
mended. The Agile Design Science Research Methodology (ADSRM) therefore offers
a possibility for application-related, scientific research and development (Conboy et al.
2015). To undermine certain achievements from research and development, the ADSRM
orientates to exploratory case studies. Therewith, the applicability and the reasonableness
of application-related research can be evaluated. Hence, the methodology of this paper is
based on the ADSRM.
According to these considerations, the ADSRM offers various so-called research entry

points. For the present research, the question for agility and rapid development combined
with Co-Simulation is the favored research entry point. More precisely, the implementa-
tion of an applicable interface between the SGAM-Toolbox and Mosaik is aimed. Hence,
the interface will be finally evaluated according to its applicability. This will be based on
an exploratory case study, making use of a typical contemporary Smart Grid example.
Thus, in this case an electrical power grid including 50 households is used for the

simulation scenario. Additionally, 30 EVs and 30 PCs are randomly assigned to the house-
holds, resulting in different kinds of consumers and/or producers operating none or at
least one EVs as well as PCs. In order to establish the link between the architectural
model and the Co-Simulation, in this specific example the charging behavior of each EVs
is exported from the model and embedded into the simulation scenario. However, the
detailed application of the case study itself in order to evaluate the predefined interface
is given in “Application of the Co-Simulation”. Beforehand, an overview of the detailed
procedure to implement the intended interface is outlined as follows.
Themain goal of the aspectsmentioned above is the possibity to allow a quick repetition

between the problem definition and the generation of code. A simple illustration of the
aimed Simulation approach on SGAMmodels is therefore given in Fig. 3.
Regarding emergent behavior in SoS, for the simulation of Smart Grid related appli-

cations, especially functional aspects play an important role. Hence, the Co-Simulation
in this study is purposefully centered to detailed functional models out of the SGAM
Function Layer. For now, these models are available in the form of Enterprise Architect
(EA)6 Activity Diagrams within the SGAM-Toolbox. These detailed functional models
are used to generate partial aspects of a software artifact. Then, specially prepared soft-
ware templates, which are customized for the Mosaik target platform, are used to solve
the suitability problem of the generated code. Thereby, the artifacts from the code gen-
eration are embedded in the ready-made Mosaik templates. Finally, the resulting code
artifacts are well prepared to be part of a Co-Simulation “within” the Mosaik engine.

6https://www.sparxsystems.de/
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Fig. 3 Simulation approach based on SGAMmodels

The illustrated approach serves as a basis for the concrete implementation of the
interface. To go into more detail, the most important implementation achievements are
outlined in the following section.

Development of the interface
As previously mentioned, the goal of creating an interface between SGAM and Mosaik
is addressed by utilizing the respective programming interfaces in order to transmit the
information from the architecture to the simulation. Hence, suitable technologies and
frameworks need to be used for developing a software appealing to these specifications.
An example of such a tool for modeling current and future energy systems is the SGAM
Toolbox. Through years of development and application in international projects it has
established itself as a technology driver in this area. Since the SGAM Toolbox is avail-
able for free, is offering various functionalities and is easy to adapt, it is the tool of
choice for implementing an additional method realizing the interface between SGAM
and Mosaik. To specify this in more detail, the toolbox introduces features concerning
usability and automation of recurrent modeling processes. One of these features is the
provision of a domain-specific modeling language. This so-called Domain Specific Lan-
guage (DSL) targets the application domain and physical world of the Smart Grid by
inheriting domain-specific elements, which are represented by stereotypes and meta-
classes derived from the Unified Modeling Language (UML). Therefore, the first step is
to extend this DSL in order to consider the information that is needed for simulating the
interconnection of elements within an architectural model. For example, a new element
called MosaikSimulatorConfig is added. As the name assumes, this element deals with
providing configuration data for adjusting the exported simulators in Mosaik. By doing
so, it is derived from the UMLmetaclassArtifact and extends it with additional attributes
for placing the configuration values, which are explained in more detail in the following:

• fileName: This attribute is provided by the metaclass Artifact and is used to save the
path to the simulator executable file. According to the implementation of the
simulator, this file is either a Java or a Python type.

(2019), 2(Suppl 1): 20
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• confKey: In this attribute the connection type for the simulator is described. The
simulator could be connected in-process, started and executed in an own thread or
linked to another running simulator.

• confValue: The information needed for starting the simulator is stated here.
Depending on the connection type, it could be a Python class, a terminal command
or the IP address and the port to a running simulator.

• isModeled: This Boolean value is set if the simulator is generated out of the model. If
it is true, the functional description in the Primary Use Cases are used to generate
code for a simulator. If isModeled is set to false, the simulator itself already exists and
only has to be connected to the Co-Simulation.

• models: Additionally, if the attribute isModeled is true, all ID’s of assigned Primary
Use Cases and additional model information are taken for use, which are stored in
this attribute.

• stepSize: The number of steps that elapse till the simulator is executed again are
represented in this attribute. When generating code from the model, currently only a
fixed step size is able to be stored, which cannot be changed during runtime.

Simulator configuration

A specific user interface is designed to ensure the easy usage of the Co-Simulation integra-
tion within an SGAM-based architectural model. Themain intention of this interface is to
enable the possibility to configure the previously mentioned attributes and provide addi-
tional model information like contained Primary Use Cases and links to their respective
behaviors. Therefore, the user interface is divided into two parts. On top general Co-
Simulation settings can be found and at the bottom the particular settings are stated for
those simulators, which are generated based on the architectural model. As seen in Fig. 4,

Fig. 4 Simulator Configuration User Interface
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the interface additionally ensures that all inputs are correct, applying them for usage in
the subsequent code generation.
In more detail, the settings on top of the user interface are general settings for the simu-

lator like the start type, the start command, the step size, the link to the simulator file, and
a check box to generate the simulator based on the model. Those values can be stored for
later usage for each simulator separately. However, if the simulators need to be generated
from the SGAM model, the bottom area has to be considered. In the left window all Pri-
mary Use Cases that are related to the current instance of the simulator configuration are
listed. By shifting them to the window on the right-hand side, their behavior is exported to
the Co-Simulation. Additionally, by double-clicking on each Use Case, this behavior can
be viewed in more detail. Usually, an activity diagram is taken for use in order to precisely
model sequence of events. Beyond these windows, the detailed configuration of a single
simulator model is given by introducing five settings. The model name titles the model
as it is represented in the Co-Simulation, whereas the init values contain the initialization
parameters passed to the simulation model at the instantiation. The input and output val-
ues on the other side define the variables that can be passed to a simulator model during
its runtime. The last setting deals with specifying the root activity by selecting a primary
activity in the drop-down menu.

Code generation

After setting up the configuration details for all simulators used in the simulation sce-
nario, they have to be exported from the model and imported in Mosaik. This is done
by developing an additional method to the SGAM Toolbox. Hence, by clicking on the
Co-Simulation function, at first all considered simulators are collected from the model.
After choosing a suitable configuration duration in single steps, the behavioral UML
diagrams deal as base for the future code generation. Technically speaking, in Mosaik
each simulator consists of three Java classes. Consequently, each modeled activity dia-
gram needs to be transformed into those three classes. Since exporting class diagrams as
XML-files is a difficult task, templates of Java classes are created in the first place. The
export scenario makes use of these templates and replaces or adds each used code snip-
pet during its application. An easy way of dealing with this is provided by the framework
StringTemplate, which enables to set markers in template files and replace those with gen-
erated code. Utilizing this method, the init, input and output values originating of each
simulator configuration as well as the behavioral code described in UML are applied to
generate the needed Java classes. However, the generation of functional code based on
behavioral diagrams in EA has some restrictions, which have to be considered. First, all
behavioral diagrams have to be a child element of the respective class. Secondly, addi-
tional Activities are not allowed to be a child element of an Activity. This means that all
Activities that should be considered for the code generation have to be a direct child ele-
ment of the respective class. To work around these restrictions, the Add-In deals with
moving and copying elements within the model, so that the structure is in the right order
for each simulator to be exported correctly. Furthermore, the behavioral diagrams need
to be represented as classes themselves since code generation is restricted to this type of
UML diagram. Nevertheless, after exporting the Java classes, an executable .jar file is gen-
erated and placed in the Mosaik folder. At this place Mosaik itself is able to access the Java
code and utilize it during its Co-Simulation run.

(2019), 2(Suppl 1): 20
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Application of the Co-Simulation
To evaluate the dependencies of the conceptual interface between the architectural model
and the Co-Simulation framework, a typical case study is applied. As already mentioned,
this work therefore makes use of a representative modern energy-related example, in par-
ticular of an EV charging system. By doing so, this specific scenario consists of three steps,
realizing an excerpt of the whole toolchain. First, the system itself, including all involved
components, is modelled according to the specifications of SGAM and with the help of
the associated toolbox. Additionally, the EVs and their charging behavior are also added
to the model. In a further step, the functionality of the interface itself is examined by
exporting the Co-Simulation settings and the EV behavior from the model. As follow-up,
Mosaik is configurated accordingly and the EVs are instantiated as well as embedded in
the simulation environment. In the last step the Co-Simulation is applied.
According to these considerations, the Business Layer contains three major actors,

Distribution Service Operators (DSOs), Energy Service Providers (ESPs) and Private
Customers. Each of these actors is connected to a Business Use Case (BUC) to fulfill the
Business Goals. However, those use cases themselves are realized by High Level Use Cases
(HLUCs) such as provide energy, consume energy and provide grid stability, to mention
some examples. Being the result of the system analysis, the last part of the Computation
Independent Model (CIM) is to define requirements, which are derived from the HLUCs.
Those requirements deal as a base for the functional description of the system. Therefore,
a model transformation between the CIM and the Platform Independent Model (PIM)
takes place, where the Business Actors are traced into Logical Actors and Primary Use
Cases (PUCs) are developed to describe the sequence of events realizing a requirement’s
dynamic behavior. To emphasize the overall purpose of the case study of simulating EVs,
this example makes use of the PUCs consume energy, grid stability measures and user
interactions. The detailed refinement of these use cases via activity or sequence diagrams
are the main source of Mosaik to receive the different behaviors of an EV. Considering
this in more detail, the charging behavior of the EV is depicted in Fig. 5, where it describes
the processes of the PUC consume energy. The depicted process represents one step of the
charging cycle and is triggered by the “plug-in”-event of the EV. Hence, the goal of the first
action is to receive the current price of electricity within the power grid. The next step
is to check the charging state of the battery for querying whether it is at 100% or not. If
the battery does turn out to be fully charged, the charge cycle is completed. If the battery
however is anything below 100%, it is forwarded to the next step. Thereby, the maximum
price at which the EV is allowed to charge is determined. If the price is within the range
of the EV to be allowed to charge, another activity realizing the actual charging procedure
is called. Subsequently, the overall process representing the charging strategy is finished.
However, if the price is too high, the charging process will not be triggered resulting in an
immediate completion of the step.
As the Function Layer deals with the functional description of the system, the

Component Layer indicates the physical representation. This is initiated by transform-
ing the functional elements and logical actors from the PIM to physical components on
the Platform Specific Model (PSM). However, this connection is realized by tracing one
logical actor to one or many components or vice versa, many to one. By doing so, in
this example the logical actor flexible load is traced to an EV and an EV controller in
the actor mapping model. As explained in “Development of the interface”, this physical
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Fig. 5 Activity diagram of EV charging behavior

representation of the EV contains important information for setting up the Co-Simulation
scenario, which is exported and applied with the interface proposed in this work. Addi-
tionally, the resulting physical elements can be aligned to the corresponding SGAM pane
in order to satisfy the architectural restrictions. This means, since the process zone is
representing the energy flow from producing to consuming energy, the EV is placed on
the right-hand side in the customer premises field. The purpose of the upper zones is to
process the physical element’s data. While the Component Layer deals with the phyisi-
cal representation, information handling is done in the Communication and Information
Layer. Hence, the Information Layer deals with specifying which data is send and the
underlying standards while the Communication Layer specifies the protocols or interfaces
for transmitting the data. This information is used to interconnect the single simulators
with each other in the following Co-Simulation scenario.

Co-Simulation execution

Before a simulation run can be executed, Mosaik needs to be configured properly. A
designated configuration file defines how each simulator is connected to the scenario.
Since this information is exported from the model, this file is generated dynamically from
the interface described in this contribution. Furthermore, the component interface, an
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additional file inheriting all meta data like input and output variables for each simulator
model, is created in the same step. More detailed, a simulator model consists of its own
model and an integrated solver. In this example, the exported EV represents the model
and the charging process deals as solver for its model. However, during its runtime, mul-
tiple of those models are connected to Mosaik via a specifically designed socket and the
help of an Application Programming Interface (API). This API deals with initiating and
stopping the simulator as well as passing or requesting information. Consequently, all
simulators and the surrounding environment is are interconnected in the main scenario
script of the Co-Simulation, the so-called “world-file”. This control algorithm sets up the
simulation by reading all configuration files and instantiating the simulators, as well as
defining a scheduler for executing those simulators. The output of the web visualization
displaying the stored HDF5 data is visible in Fig. 6.
In this specific example, a total of 30 EVs with the previously defined charging strategy

are connected to the scenario. To provide a typical Smart Grid environment, additional
50 households, as each one would operate an EV, and 30 photovoltaic cells are included
together with a price generation simulator. After defining the overall execution time of 24
hours and the step sizes for each instantiated simulator, more detailed three minutes for
the EV and 15minutes for other components as well as the price generator being executed
every minute, the Co-Simulation scenario is ready for application.
Summarized, the previously defined environment is depicted by 50 nodes, which are

represented by grey outlining and connected via power lines. The red ring displays the
reference bus and represents the transformation station to the upper grid level. Further-
more, a household simulator, demonstrating the consumption of one household, and an
EV simulator are connected to each node, indicated by the blue surroundings. To round

Fig. 6 Mosaik overall consumption
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off the visualized power grid, each of the 30 photovoltaic cells is connected randomly
to one of the nodes. At the bottom of the figure the whole energy consumption over to
coarse of one day is depicted. As seen, the energy shortage due to the high demand of the
households just before noon is superseded by a surplus caused by the high production
originating from the photovoltaic cells. However, to consider the energy consumption
caused by a single EV simulator, the exported JAVA code is executed within the scenario.
The code executed in this example is depicted in Listing 1.

i f ( c h a r g eS t a t eP e r c < 100) {
i f ( a c t P r i c e <= s t a r t P r i c e ) {
actCharg ingPower = maxChargingPower ;
c h a r g e S t a t e += maxChargingPower / 4 ;
c h a r g eS t a t eP e r c = cha r g e S t a t e / c a p a c i t y ∗100 ;

i f ( c h a r g eS t a t eP e r c > 100) {
actCharg ingPower = 0 ;
ch a r g e S t a t e = c a p a c i t y ;
c h a r g eS t a t eP e r c = 100 ;
}
}
e l s e { actCharg ingPower = 0 ; }
}
e l s e { actCharg ingPower = 0 ; }

}
Listing 1 Generated EV battery charging algorithm

The delineated code is based on and automatically generated from the previously mod-
eled activity diagram and allows the EV only to charge at decent price. Consequently, this
results in an exemplatory charging cycle depicted in Fig. 7. There are three periods charg-
ing uptimes with the maximum consumption of 2000W needed for the battery to be fully
charged. More detailed, the car is charged in the night during low overall consumption,
before noon and in the afternoon, where the PCs are producing energy.

Fig. 7 Mosaik exemplatory EV consumption
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Findings

The applied case study described in this section has been utilized in order to evaluate
the functionality of the previously developed interface. As this link between the SGAM
and Mosaik does not represent an out-of-the-box solution but rather can be consid-
ered as a first prototype on the way to establishing an integrated engineering toolchain
for the SGAM Toolbox, a special focus on answering the research questions defined in
“Approach” is set. Since the way to investigate these research questions is the applica-
tion of typical energy system use case, the chosen evaluation method is observational
based, as introduced by Hevner and Chatterjee (2010). In an observational based evalua-
tion, the designed artifact is studied using a case study in a certain business environment.
Therefore, the artifact created in this work is the concept and implementation of an inter-
face between the previously mentioned tools in order to provide a solution for simulating
architectures of energy systems with a single click. By developing the case study and
applying it to this interface, the following findings have been observed.
Developing system architectures according to SGAM has been relieved significantly

with the introduction of the SGAM Toolbox. As this tool is broadly accepted and widely
used, efforts for describing the architecture of the case study have been kept to a mini-
mum, since similar examples are already existing. As far as Mosaik is concerned, this tool
entails several advantages. In detail, it implies a solid documentation, it is freely available,
it was developed especially for the application in the Smart Grid, it is relatively easy to use
and provides a Java and Python API. As this framework implements a main scenario file
per default, the addition of external simulators for usage in the simulation scenario can be
managed quite simple. Thus, the next question deals with how the relevant information
is exported and provided for the Mosaik API to be further processed.
Due to these insights, the concept for the interface follows two main objectives. The

first part deals with the generation of simulators based on the functional description in
the model, which is addressed by applying code generation based on activity diagrams.
Whereas not all information required for the Co-Simulation is contained in the archi-
tectural model, an additional artifact has been added to the DSL of the SGAM Toolbox.
By executing the function for code generation, these artifacts can be instantiated. This
means, in this case any number of EVs making use of different charging algorithms can
be generated and prepared for simulation with Mosaik. The second part of the concept
addresses the scenario definition of the Co-Simulation based on the architectural model.
As SGAM itself does not provide any possibility to define these values, they need to be
added to the previously created artifact. More precisely, during the instantiation of sim-
ulators, additional information like their start, instantiation values, connection and data
exchange is passed on to Mosaik with the help of this domain-specific element.
With the experience gained in the implementation and utilization of the interface some

limitations have anteceded. For example, code generation in EA has some restrictions
like missing error outputs. This can lead to problems, if mistakes in activity diagrams
occur, the code is not generated and no warning is displayed. Another limitation of the
implementation arises from the initialization of simulators. Special initializations like
random values have to be added manually to the generated code. This means, the cre-
ation of different Co-Simulation scenarios for the same architecture could be a problem
at the moment. One way to solve this could be an additional artifact to define multi-
ple scenarios. However, a major concern is the possibility to describe communication
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architectures in SGAM, but Mosaik does not provide a solution for treating this. Thus,
accounting this in the present example would exceed the scope of this work. As soon as
Mosaik offers the possibility to apply a communication simulation, this has to be con-
sidered and added to the interface. Hence, the current implementation has been tested
with a superficial use case. In a future work more sophisticated use cases are needed
to evaluate the interface in more detail and find room for improvements. Nevertheless,
the current implementation indicates the direction to follow by providing an overview of
the advantages and disadvantages of this approach, described in the following in more
detail:

• One benefit of this approach is the special focus on usability. Code can be generated
dynamically from the model and provided to the simulation with just a few clicks.
Since changes in the model are most likely to occur in such an agile domain, the way
to simulate those models has been considerably improved.

• Another advantage is the consistent traceability between the model, the simulation
and the actual implementation of single SGAM components. This enables
furthermore the possibility to apply round-trip engineering within the DSSE
toolchain.

• A disadvantage to mention deals with the integrability. Due to the integration of
more tools in order to fulfill the toolchain, several trade-offs needed to be induced in
order to keep mutual dependencies, as explained earlier.

• Another drawback entails constrictions in modeling the power system. In order to
work properly with Mosaik, a lot of different aspects need to be considered in the
model, otherwise the code generation is likely to produce errors. However, this can
be solved with implementing correspondence rules or model checkers into the
SGAM Toolbox.

Conclusion & future work
Due to several domains involved in the Smart Grid and the amount of components that
are statically or dynamically connected, the Smart Grid can be defined as SoS. In order
to develop such a critical infrastructure inheriting considerable complexity, suitable engi-
neering techniques like the DSSE approach need to be applied. Moreover, introducing a
DSL, a suitable tool-support and the corresponding toolchain, the introduced method for
architecture evaluation is Co-Simulation. However, due to missing specifications of link-
ing the architectural model with a Co-Simulation, there is a gap appearing between the
two concepts. Therefore, the conducted research contributes by providing an interface
in order to simulate previously designed Smart Grid system architectures. The creation
of this interface is described in “Development of the interface” in more detail. Firstly,
the behavior of the component to simulate is exported from the model and realized
by a solver in the respective simulator. The second part is to export the information
for setting up the whole Co-Simulation environment according to the architectural model.
Building up on the generated code, the simulation scenario is executed, as described in
“Application of the Co-Simulation”. Again, falling back on the complexity of such a sys-
tem, a suitable simulation method needs to be utilized. Hence, the right way to approach
this issue is applying a Co-Simulation scenario such as implemented by the Mosaik
framework.
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Future work

However, even if the presented concept demonstrates a possible way on how to develop
an interface between SGAM andMosaik, it does not claim to be a “ready to use” method-
ology, but rather can be seen as a first step on the way to establishment. One of the
most important tasks to improve this approach will be the complete scenario defini-
tion in the architectural model. This means, all simulators, the surrounding simulation
environment and other aspects are directly generated from the model for immediate exe-
cution without using pre-defined settings. Afterwards, a more sophisticated case study
needs to be utilized for evaluating this complete implementation. Additionally, to increase
the interoperability to other Co-Simulation frameworks and to foster the reusability of
simulators standards like Functional Mock-up Interfaces (FMIs), the System Structure
and Parameterization (SSP) or the Distributed Co-Simulation Protocol (DCP) need to
be considered and implemented in future versions. However, the last step in complet-
ing the DSSE toolchain is the generation of code to use in real software. Therefore, the
approach proposed in this work can contribute to this goal by preparing and evaluating
the model-generated code and prepares it for utilization in frameworks like FREDOSAR.
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