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Abstract
Surrogate models are used to reduce the computational effort required to simulate
complex systems. The power grid can be considered as such a complex system with a
large number of interdependent inputs. With artificial neural networks and deep
learning, it is possible to build high-dimensional approximation models. However, a
large data set is also required for the training process. This paper presents an approach
to sample input data and create a deep learning surrogate model for a low voltage
grid. Challenges are discussed and the model is evaluated under different conditions.
The results show that the model performs well from a machine learning point of view,
but has domain-specific weaknesses.
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Introduction
As a safety-critical infrastructure, the power grid is not suitable for testing new algorithms
or other technologies. At the same time, there is no test system that is comparable to the
power grid in terms of functionality and behavior (Nieße et al. 2014). Simulation and co-
simulation are therefore key tools for the development and testing of new technologies
and methods to transform the power grid into a smart grid. In general, a distinction is
made between static and dynamic power grid simulation. In the static simulation, a steady
state analysis is performed. In a dynamic simulation, however, transient effects can be
observed. An important factor for simulation systems is the time required for the simu-
lation. Frequent questions include: Does the simulation end in reasonable time? Is a step
computable in real time (or even faster)? In small systems (e.g. a small distribution grid),
runtime may not be a real issue. In larger simulation systems (e.g. the entire German
transmission grid), however, time becomes a critical factor.
A possible solution to the problem are surrogate models, i.e. data-driven approxima-

tions of the system to be simulated. The use of a surrogate model represents a trade-off
between accuracy and runtime of the system.Many components can be involved in power
grid simulation systems, such as photovoltaic (PV) panels, combined heat and power
(CHP) plants, consumers such as households or commercial facilities. In steady state sim-
ulation, some components can be replaced by time series because their behavior is not
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controllable. However, others can reduce or increase consumption or generation to ensure
a stable state of the grid.
In order to simulate a typical low voltage (LV) grid, household models, PV or CHP

models at household level, and models of smaller commercial facilities may be needed
(Papathanassiou et al. 2005). The simulation of such a LV grid can take a while, even if
some components are replaced by time series. The total runtime depends on the time res-
olution and the number of simulation steps. For instance, the simulation system used in
this paper took about 15 min to simulate a year with time steps of 15 min. The next step
for a large-scale simulation is to connect several of those LV grids to a medium voltage
(MV) grid. Then PV or wind farms and larger commercial or industrial facilities are added
(Buchholz et al. 2004). The resulting simulation system may not be simulated in reason-
able time. Replacing individual components with surrogate models is a less promising
approach. The components themselves are not that slow and the time-consuming part is
the need to simulate a large number of components (Koch et al.).
This paper proposes to replace whole LV grids with a single surrogate model built with

a deep neural network. This includes the components connected to the grid. As described
in Balduin (2018), the idea is to integrate domain knowledge and characteristics of the
power grid into the surrogate modeling process. The grid has a large number of inputs
with strong interactions, such as load and generation, which may depend on consumer
behavior or weather conditions. Information about the simulation setup and interdepen-
dencies of the components should be used to reduce the dimensionality of the problem.
The individual components are to be abstracted by a correlation model built from this
information. The contribution of this paper is to provide a benchmark model and evalu-
ation environment. This model is built without domain knowledge. The suitability of the
model is investigated in various simulation experiments, which represent the evaluation
environment.
The rest of this paper is structured as follows: “Related work” section provides a brief

introduction to surrogate models, deep learning, power grid simulation, and power flow
calculations. In addition, related work in the field of surrogate models for the power grid
will be presented. “Methodology” section presents the simulation setup and describes
the construction of the deep learning model. Furthermore, the experimental setup and
hypothesis are defined. In “Building the model” section, sampling and model build-
ing is documented. “Case study” section documents the conduct of the case study and
“Conclusion and outlook” section concludes this paper and presents future work.

Related work
Surrogatemodeling is well documented in the literature, e.g. inMyers et al. (2016); Kleijnen
(2015), or Siebertz et al. (2017). An approximation function y = f (x1, x2, . . . , xk) + ε is
called a surrogate model. The xi are the inputs, y marks an output, and ε is the error
between f and the true but unknown response function. A sample is an arbitrary, but fixed
assignment of the inputs and the corresponding output of the real system. f is built with
a sufficient number of samples, called the training data set. One way to create a surrogate
model is machine learning, e.g. nearest neighbors, support vector machines, or artificial
neural networks (ANN). But there are also other methods and each has advantages and
disadvantages. In the German research project D-Flex (Koch et al.) a large simulation with
ten thousands of simulation models were carried out to compare different approaches
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Fig. 1 Fully connected ANN with three input neurons, two output neurons, and one hidden layer (l.).
Activation functions (r.) from top to bottom: identity, sigmoid and ReLU. In each of the neurons, a weighted
sum is calculated and sent through an activation function as output to the next layer of neurons. The
activation function defines how the output is forwarded (Schmidhuber 2015). Backpropagation is used to
adjust the weights of the network to the current output error (Rumelhart et al. 1988)

for the integration of renewable energy resources. After some benchmarks, parts of the
simulation models were replaced by look-up tables. Only by using these surrogate models
was it possible to complete the simulations in a reasonable time. Nevertheless, thousands
of simulation models were replaced by the same number of surrogate models. Although
this was sufficient for the project, it is not an optimal approach.

Artificial neural networks

With the increasing computational power, ANNs and deep learning can be used to
achieve impressing results on various tasks in different fields1. An ANN is able to
approximate any continuous function (Csáji 2001). The basic idea of an ANN is shown
in Fig. 1.
ANNs have a long history and by now there are many different types. In a feed for-

ward network (Schmidhuber 2015), all connections between neurons are only in forward
direction towards the output layer. A recurrent neural network (Elman 1990) also allows
connections back towards the input layer. This enables the network to memorize earlier
inputs and not just the current input. More recent types of ANNs are the convolutional
neural network (Fukushima 1980), which is often used for image classification and long
short-term memory networks (Hochreiter and Schmidhuber 1997), which are good for
time series predictions. These types are often associated with the term deep learning,
which means that the neural network has many hidden layers (Schmidhuber 2015, p. 7).
Some tools for deep learning are listed in Bridgewater ().

Power system simulation

The simulation of the electrical power system is used for different applications like
long-term generation and transmission expansion planning, short-term operational

1e.g. https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
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simulations, or market analysis. In many cases it is sufficient to assume that the
power grid is in a steady state (Biswas and Das 2011), i.e. transient behavior which
results in frequency changes and similar effects are neglected. These effects are either
too small or happen too fast to consider them during operation planning of the
power grid. The constant-frequency assumption only holds as long as these effects are
under control and therefore the dynamic analysis of the power grid is important, too
(Elrazaz and Sinha 1979). However, this work focuses on the steady state operation of the
power grid.
The main part of steady state analysis is the power flow (PF) analysis. PF is used

to calculate bus voltages, currents, active and reactive power flows on the lines as
well as line and transformer losses. The most common methods to solve PF prob-
lems are the Newton-Raphson (NR) and Gauss-Seidel (GS) methods (Baghaee et al.
2018). Both require an initial guessing of unknown values, which will be iteratively
adapted, until the method converges due to some condition. However, bad guess-
ing can lead to the methods not converging and then the calculation has to be
repeated.
There are various tools for power system simulation on different abstraction levels. The

commercial simulation software PowerFactory of the German company DIgSILENT pro-
vides a broad range of functionality and simulation models, from load flow calculations
used in steady state analysis to frequency analysis and quasi-dynamic simulation. Similar
to PowerFactory is NEPLAN of the Swiss company NEPLAN AG, which also has models
integrated and enables static as well as dynamic analysis of the power grid. MATPOWER
is an open source toolbox for MATLAB and Octave for steady state power system
simulation and optimization. The open-source tool pandapower (Thurner et al. 2018),
a joint development of the University of Kassel and Fraunhofer Institute for Energy Eco-
nomics and Energy System Technology, provides steady state power system modeling,
analysis and optimization with load flow calculations and several predefined benchmark
grids.

Simulation approaches

The simulation of a system like the smart grid raises new requirements, since multi-
ple domains have to be considered. Besides the more traditional power grid simulation
approaches in the previous section, the simulation of the communication system also
has to be considered and there are different approaches to face these challenges. A short
overview of these approaches follows. However, a more detailed discussion is given by
Steinbrink et al. (2017). The idea of multi-domain simulation is to adapt all required sim-
ulators to the system of themulti-domain simulation framework. This is advantageous for
performance assessment, but Steinbrink et al. argue that much effort is required to adapt
or even reformulate the simulator to the target simulation framework. Tools for multi-
domain simulation are the Ptolemy II framework or the Modelica language. Another
approach is the coordinated simulation (co-simulation), where each simulator is executed
in its own runtime environment. The task of a co-simulation framework is to orchestrate
these simulators and enable data exchange between them. The separation of modeling
and simulation is the major benefit of co-simulation according to Steinbrink et al., since
simulation models can be developed by domain experts in environments of their choice
and easily reused by others utilizing co-simulation. Examples for co-simulation tools are
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(again) Ptolemy II and mosaik2, developed at OFFIS in Germany. The third approach is
real-time simulation, which is commonly used when hardware is involved (hardware-in-
the-loop). This allows to test and validate single hardware components without deploying
them in the field.

Applications of surrogate models in the energy domain

Various applications of surrogate models in the energy domain can be found. Some of
them do not use machine learning. Patsalides et al. presented a simplified distribution
grid model (SDGM) to investigate voltage variation and PV capacity in a distribution
grid (Patsalides et al. 2015). The SDGM makes use of Thevenin equivalent circuits
(TEC), which consist of a voltage source and impedance according to Thevenin’s theorem
(Brittain 1990). The authors used the TEC to replace a medium voltage grid. Several
regulation algorithms were applied to their model to evaluate penetration of distributed
generation. Cha et al. replaced parts of the Bornholm power system (Cha et al. 2012).
The authors used the frequency dependent network equivalent method to build a generic
model for real time dynamic simulation. Their model achieves high accuracy in several
simulations. Model order reduction (MOR) is done to reduce the dimensionality of dis-
tribution grid simulations. Li et al. developed a state-space model of a distribution grid
for the MOR application (Li et al. 2013). The model was evaluated in several simulations
using a the CIGRE benchmark low voltage grid. The authors showed, that their model can
compete with other similar approaches, namely the modified nodal analysis.
Other authors used machine learning to build surrogate models. Fikri et al. (2018)

compare traditional (i.e. numerical) methods to solve PF calculations with an artificial
intelligence method using ANNs. The authors used one ANN each for voltage magni-
tudes and voltage angles. They conclude that errors between numerical methods and
the ANNs are very small on the IEEE 14 bus system, which was used as benchmark. A
more comprehensive study is done by Baghaee et al. (2018), who compared even more PF
methods with a radial basis function ANN. The authors aim to not only provide a compar-
ison regarding accuracy and performance, but also regarding authenticity and robustness.
Both works present promising results and especially for large-scale simulation it is impor-
tant to reduce the time for PF calculations and increase their robustness. However, the
load-flow calculation may not be the only critical factor in large-scale simulations.
The classification of feasible schedules for the flexibility provision in a virtual power

plant can be done for single components individually. But Fröhling (2017) proposed a
method to solve this problem for coalitions of components utilizing correlations between
the components. The idea of forming coalitions of components can be found in other
works, too. Blank (2015) used coalitions of renewable power units to access their relia-
bility for the provision of ancillary services. Using the notion of coalitions is a promising
approach for combining several models together with a power grid simulation. The first
steps towards this approach is presented in the following chapters.

Methodology
The research in this paper is done in the context of the steady state analysis of a power
grid (see Fig. 2) and is part of a PhD project (Balduin 2018). Therefore, the approaches

2https://mosaik.offis.de/
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Fig. 2 The general setup for the research in this work. Different components are involved, not all of which
have been considered in this paper. However, these are still important for future work

presented are quite basic and serve as experimental platform and proof-of-concept for
future work. The leading questions for this part of the research are:

1 How much runtime performance gain can be expected when a surrogate model
replaces a low voltage grid?

2 How accurate is a surrogate model that replaces a low voltage grid?

The work done aims to answer these questions and serve as a reference for future work.
This section describes the experiments, starting with the simulation setup. This is fol-
lowed by a description of the neural network architecture. The section concludes with
experimental design and hypothesis.

The simulation setup

The first step is the selection of a power grid model and simulator. The python package
pandapower is a static power grid simulator and provides several pre-configured grids
with different voltage levels. One of those grids is the CIGRE low voltage benchmark grid
(Papathanassiou et al. 2005), shown in Fig. 3.
The grid consists of 3 areas: a residential subgrid, an industrial subgrid, and a com-

mercial subgrid. This work will mainly focus on the residential subgrid. Nonetheless, the
other areas are also modeled and may be considered in future work. In the residential
subgrid, the grid has 5 loads (at bus bars R11, R15, R16, R17, R18), which are either res-
idential consumers or apartment buildings. These households are modeled by different
time series taken from the German research project Smart Nord3. In the current version,
the models take a value from the time series assigned to them at each step and forward it.
The industrial and commercial grids function in the same way, but are initially only sup-
plied with data from reference years for different commercial buildings. The data and can
be downloaded for free on openei.org4. The overall load and the proportions of residential
and commercial loads are shown in Fig. 4.

3https://smartnord.de
4https://openei.org/datasets/files/961/pub/
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Fig. 3 The CIGRE LV benchmark grid, inspired by: https://github.com/lthurner/pandapower/blob/v1.3.0/
doc/pics/cigre_network_lv.png

Since every household has its own time series, no matter if it is residential or part
of the apartment, these loads need to be aggregated somehow. Therefore, an aggre-
gation model is integrated in the simulation setup. This model adds up all loads
connected to it and forwards the aggregated values to their associated bus bar of
the power grid model. Additionally, for each consumer a reactive power value Q is

Fig. 4 The total load is shown in the top. In the bottom left, the aggregated residential load is shown and in
the bottom right, the aggregated commercial load is shown. All data have a 15-min resolution
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calculated with Q = P · tanϕ, assuming a constant cosϕ = 0.9 for simplification
(Schulz et al. 2010).
All models are plugged together using the co-simulation framework mosaik. The co-

simulation approach enables to cheaply extend the setup by other simulators as well as to
use the surrogate model instead of the grid and other models. The whole setup is shown
in Fig. 5.
On the output side, every information that pandapower provides regarding the trafos,

buses, lines and loads is collected. Since not all of this information is required for the
experiments, only the relevant outputs bus voltage magnitudes per unit (vm_pu) are
selected for the surrogate model.

The deep neural network architecture

There are many possibilities to configure a neural network like number of layers and neu-
rons per layer as well as modifications for the training process like training epochs or
batch size. Additionally, there are different types of layers and activation functions. For
this work, a rather simple architecture is chosen.
Only dense (i. e. fully connected) layers and the rectified linear unit (ReLU) as activation

function are used, since the main goal is a proof-of-concept. The number of hidden layers
and training epochs will be optimized using a random search cross validation approach.
The definition of the number of neurons per layer is not directly part of the cross val-
idation. They are rather calculated depending on the number of layers. There is no
general rule for the number of neurons per layer, only rules-of-thumb and recommenda-
tions. Heaton (2008) recommended to start with a number of hidden neurons somewhere
between the number of input neurons and the number of output neurons. Following this
recommendation, the number of neurons nk of hidden layer k is calculated depending on
the number of input neurons nin, the number of output neurons nout , and the number of
hidden layers hl using the following formula assuming at least one hidden layer:

nk = �nin + nout − nin
hl + 1

· k�, with hl > 0 (1)

Fig. 5 The simulation setup. The time series are connected to simple household models, which are
connected via aggregator models to the power grid. All the communication is handled by mosaik.
Everything in the dashed box is to be replaced by a surrogate model
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In Fig. 6 an example architecture is shown. For higher number of hidden layers, for-
mula 1 results in more hidden neurons than recommended. Nonetheless, cross validation
will find a suitable architecture.

Experimental setup

A simulation study with domain-independent as well as domain-specific experiments
is conducted to answer the research questions from the beginning of this section. The
following subsections describe how the experiments are conducted.

Domain-independent experiments

The first experiments cover the general capabilities of the surrogate model as regressor
for the simulation model under study. The first criteria of interest is the performance
gain. Therefore, the time required for the simulation is measured for both the simulation
model and the surrogate model. As shown in Fig. 5, the surrogate model also substitutes
some of the connections that require data exchange in the original setup. Since the focus
is on the total time of the simulation, this is used as an additional advantage.
The second criteria is the accuracy of the model. The accuracy will be measured with

the normalized root mean squared error (NRMSE) between the real y and the predicted
output ỹ over all outputs n. First, the RMSE is calculated according Eq. 2 and then
normalized with the range of the real output (see Eq. 3).

RMSE (ỹ, y) =
√
√
√
√

1
n

·
n

∑

i
(ỹ − y)2 (2)

NRMSE (ỹ, y) = RMSE (ỹ, y)
ymax − ymin

(3)

The normalization allows the error to be expressed as a percentage value. According to
Forrester (2008), a good surrogate model has an NRMSE < 10%, which will be used as
benchmark.

Fig. 6 Example ANN architecture with input size nin = 8, output size nout = 2 and two hidden layers. The
hidden layer sizes are calculated using formular 1
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Summarized, the objectives of the first experiment are a) to gain insight into possible
speed-up factors in this (simple) setting, b) to determine the influence of the duration of
the simulation – in this case the number of simulated days – on the speed-up and c) to
measure the regression capabilities of the surrogate model according to the NRMSE. For
the first two objectives, following hypotheses will be tested against a significance level of
α = 5%:

Hypothesis 1 (Simulation time comparison): The average time t̄surrogate the surrogate
model needs to simulate is significantly shorter than the normal runtime t̄sim (without the
surrogate model).

• H0: t̄surrogate ≥ t̄sim
• H1: t̄surrogate < t̄sim

Hypothesis 2 (Speed-up comparison): The speed-up si for i simulated days is signifi-
cantly different from the speed-up sj for j simulated days.

• H0: si = sj with i �= j
• H1: si �= sj with i �= j

Both, the simulation model and the surrogate model, are run for different numbers of
simulated days repeatedly. The speed-up for each number of simulated days is calculated.
The third objective will be discussed on the basis of the NRMSE at each bus and overall.

Hypothesis 3 (Normalized RMSE): The error of the surrogate model a) for each bus
NRMSEi and b) overall NRMSEall is less than 10%.

• H0: a) ∃i : NRMSEi ≥ 0.1 b) NRMSEall ≥ 0.1
• H1: a) ∀i : NRMSEi < 0.1 b) NRMSEall < 0.1

The two parts a) and b) of hypothesis 3 will be considered separately later.

Domain-specific experiment

In the second experiment, a domain-specific accuracy analysis is done. From an opera-
tional view, the nominal voltage UN should be maintained depending on the grid level.
The European standard EN 50160 allows a deviation of the actual voltage U of ± 10%,
from which 4% is intended for the MV grid, 2% for the MV-LV transformer and another
4% for the LV grid. Exceeding these limits can damage electrical devices, which must be
avoided in any case. During load forecasting, voltage limit violations must be detected
in order to avoid them in the real grid. Assuming that the simulation model is able
to detect such critical situations, the surrogate model should be able to detect these
situations, too.
The detection of critical situations can be seen as classification problem. A critical situ-

ation is regarded as positive outcome, but it could also be the other way round. A common
metric for such tasks is the confusion matrix (Visa et al. 2011), seen in Fig. 7. Each pre-
diction of the model can classified as exactly one of 4 outcomes: true positive (TP), true
negative (TN), false positive (FP) and false negative (FN).
The confusion matrix is basis for the following measures: accuracy (Eq. 4), precision

(Eq. 5), recall (Eq. 6), and F1-score (Eq. 7).
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Fig. 7 Confusion matrix for two classes true and false. The result of each classification task can be classified in
one of these 4 categories. The results for each category are summed up for further calculations

Accuracy = TP + TN
TP + TN + FP + FN

(4)

Precision = TP
TP + FP

(5)

Recall = TP
TP + FN

(6)

F1-score = 2 · Precision · Recall
Precision + Recall

(7)

The accuracy takes into account all 4 classes and is an indicator for the overall classifica-
tion capabilities. However, the accuracy requires both classes to be balanced in the actual
data. The precision measures the quality of the predictions with class true, i.e. which part
of true predictions actually were true. The recall measures the quality of the model not
to miss any true class. The decision between precision and recall depends on how critical
false positives respectively false negatives are. If both are considered equally important,
the F1-score can be used, which is the harmonic mean of precision and recall.
From a domain point-of-view, false negatives (not detecting a critical situation) are

worse than false positives (classifying a situation as critical which is not critical). There-
fore, the objective for the second experiment is tomeasure the capabilities of the surrogate
model to detect critical situations according to the recall measure. Nonetheless, the
results of the other measures will be provided, too. As concrete use case the bus R18 of
the CIGRE LV grid is investigated as well as the buses on the path to bus R1. In Fig. 8 the
annual voltage curve of bus R18 is shown.
From this figure it can be seen that there are several critical situation at Bus R18. How-

ever, compared to the total amount of steps, very few critical situations exist. Both models
will be compared not only at bus R18, but also on at the other buses on the path to R1 and

Fig. 8 Voltage curve of bus R18 for one year. The dotted lines are the voltage boundaries ±4%
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Fig. 9 Histogram with 200 bins showing the distribution of one household’s load over one year. Like the
other households in the dataset, this household has a low mean value (0.38 kW) and a high maximum value
(22.92 kW). Every value above 2 or 3 kW can be considered as peak load event. Using a normal or even uniform
distribution increases the likelihood of peak loads in any household. This also increases the probability of
peak loads occurring in many households at the same time. The result would be an overload of the grid

the task is, to correctly classify, if a situation is critical. For this first attempt the model
should achieve a recall of 75% to be significantly better than random guessing5.

Hypothesis 4 (Detection of critical situations): The surrogate model is able to cor-
rectly classify critical situations with a recall of at least 75%.

• H0: recall < 0.75
• H1: recall ≥ 0.75

This experiment will not be repeated. All components are deterministic and the outputs
only change with different inputs.

Building themodel
A surrogate model must be built as a prerequisite for both experiments. The first step in
this process is to generate training data. Simulation data that could be used for training is
limited. Therefore, it would be better to have a sampling function to generate any number
of samples. In general, a good first approach is to identify all relevant inputs of the sys-
tem and their valid value ranges. Then, input combinations can be drawn using sampling
designs such as Monte Carlo or Latin Hypercube. These inputs are fed to the system to
generate the corresponding output. In the following, this approach will be referred to as
pure random sampling. However, initial attempts using pure random sampling resulted
in the PF calculation of pandapower not converging.
There are several reasons why this did not work for the current case. Pure random

sampling assumes to have uniformly or even normally distributed input data. Figure 9
shows an example of the simulation data for a consumer (a household). The data of this
consumer are neither uniformly nor normally distributed. Data from other households
are similarly shaped. Therefore, such distributions do not represent the input data.
Instead of finding a suitable distribution for the inputs a kernel density estimation

(KDE) is applied. The python library scipy provides Gaussian KDE which uses Scott’s rule
of thumb (Scott 1992, p. 55) to automatically determine the bandwidth. The KDE function

5Random guessing would result in a recall of ≈ 50%. The precision, however, would be worse.
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is computed for each input individually. Samples are now drawn from the KDE function.
This makes it possible to draw any number of samples as training data. Figure 10 shows
the KDE and samples from KDE for the household from Fig. 9.
Using KDE, 50,000 samples were taken and used as training data. However, the model

was not able to detect critical situations at all. As a workaround, 25,000 KDE samples were
used and another 25,000 samples from the time series (the last ≈ 260 days of the year)
were added to the training data for the final model. The remaining 100 days were left as
test data. Five-fold cross-validation was applied on the training data, i.e. 40,000 samples
were used as training data and 10,000 as validation data in each run.
During the training process, 2 hyperparameters were optimized: hidden layers and

training epochs. The random search algorithm could chose between 1 and 15 layers
and between 6 and 12 epochs. The training took about 10 hours on dedicated hard-
ware including random search and cross-validation. The final architecture of the neural
network consists of 14 hidden layers (see Fig. 11) and was trained for 11 epochs.

Case study
In a case study, the simulation model (Fig. 5) and the surrogate model (described in
the previous section) were compared. Three domain-independent experiments were
conducted and are presented in the following. All experiments were carried out on aWin-
dows 10 machine with an Intel Core i7-7820HQ 2.90 GHz CPU and 16 GB RAM. The
domain-dependent experiment is documented at the end of this section.

Simulation time comparison

In the first experiment (hypothesis 1), both models are repeatedly run for 10 simulated
days. Table 1 shows the experiment summary and the analysis of variance (ANOVA).
The average runtime of the simulation model is t̄sim = 22.2 seconds. For the surrogate
model, the average runtime is t̄surrogate = 7.7 seconds. This results in a speed-up of 22.2s

7.7s =
2.88. Furthermore, t̄sim and t̄surrogate are apparently different. ANOVA shows that this

Fig. 10 Gaussian KDE (green line) applied to household data (blue dotted line). Samples for one year drawn
from the KDE function (orange dashed line). The area between 0.0 and 0.75 kW is smoothed a bit too much.
Overall, however, the estimate seems to fit
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Fig. 11 Architecture of the neural network after the training process with random-based hyper parameter
tuning and cross validation. The model consists of fourteen hidden layers. The 76 inputs are all P-Q pairs for
the loads. Outputs are voltage values for 44 buses

difference is significant: p = 1.82 · 10−36 < 0.05 = α. Therefore, the null hypothesis
t̄surrogate = t̄sim can be rejected.

Speed-up comparison

In the next experiment (hypothesis 2), both models are run for 1, 5, 10, 50, 100, and
250 simulated days in a row 10 times repeated. This is done similar to the previous
experiment. The speed-up is calculated for each element in one group, i. e. with the
same number of simulated days. This results in one 100 samples (= speed-up values)
per group. Table 2 shows the simulation summary and the ANOVA. The average speed-
ups are between 2.54 and 2.76 and the overall average is 2.65 with standard deviation of√
0.033825 ≈ 0.18. There is only a weak correlation between speed-up and the num-

ber of simulated days (Pearson correlation is 0.28). However, the ANOVA shows that the
differences between speed-ups are statistically significant: p = 2.85 · 10−24 < 0.05 and
therefore the null hypothesis can be rejected.

Table 1 Comparison of the simulation time in seconds with and without surrogate model in the
upper table

Summary

Groups Number Sum Mean Variance

Simulation 20 443.567603 22.178380 1.442116

Surrogate 20 153.807383 7.690369 0.117840

Overall: 40 597.374986 14.934375 53.255594

Analysis of variance

Source SS DF MS F-value p-value

Between groups 2099.024621 1 2099.024621 2556.576532 1.82 · 10−36

Within groups 31.199119 38 0.821029

Total 2130.223740 39

In the lower table, the results of the analysis of variance is shown. The abbreviations are: sum of squares (SS), degree of freedom
(DF) and mean sum of squares (MS)
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Table 2 Summary of the speed-ups is shown in the upper table

Summary

Groups Number Sum Mean Variance

Speed-up-1 100 255.134832 2.551348 0.115163

Speed-up-5 100 267.596656 2.675967 0.007037

Speed-up-10 100 265.386557 2.653866 0.003593

Speed-up-50 100 275.678268 2.756783 0.007731

Speed-up-100 100 254.676551 2.546766 0.023649

Speed-up-250 100 271.793003 2.717930 0.008681

Overall: 600 1590.265867 2.650443 0.033825

Analysis of variance

Source SS DF MS F-value p-value

Between groups 3.709457 5 0.741891 26.570567 2.85 · 10−24

Within groups 16.585400 594 0.027922

Total 20.294856 599

The average speed-up is displayed in themean column. In the lower table, the results of the analysis of variance is shown. The
abbreviations are: sum of squares (SS), degree of freedom (DF) and mean sum of squares (MS)

Normalized RMSE

In the last domain-independent experiment (hypothesis 3), the accuracy of the models
was evaluated. The first 3 months of the year (the part of the data not used for training)
were uses as test period. The outputs of the simulation model and the surrogate model
were compared with the NRMSE for each bus individually and in total. Table 3 shows the
results. Of 44 error values, 13 are> 10%, 10 of which are in the commercial and industrial
subgrids. This is a good result for the residential subgrids, which is the focus of this work.
Nevertheless, part a) of the null hypothesis cannot be rejected. The overall error of 7.5% is
lower than the presumed 10% for part b) of the hypothesis. Therefore, the null hypothesis
b) can be rejected and the model regarded as good. In particular, the error values of the
buses R0 to R10 and R18 indicate that the model is good enough for the domain-specific
experiment.

Table 3 Normalized RMSEs for all buses

Bus NRMSE Bus NRMSE Bus NRMSE Bus NRMSE

Bus 0 0.020327 Bus R10 0.025055 Bus I2 0.089070 Bus C10 0.014274

Bus R0 0.021396 Bus R11 0.046005 Bus C0 0.029595 Bus C11 0.219697

Bus R1 0.042764 Bus R12 0.102897 Bus C1 0.149972 Bus C12 0.035338

Bus R2 0.037121 Bus R13 0.072116 Bus C2 0.106782 Bus C13 0.047134

Bus R3 0.028933 Bus R14 0.130667 Bus C3 0.062973 Bus C14 0.028559

Bus R4 0.019384 Bus R15 0.157927 Bus C4 0.022989 Bus C15 0.019662

Bus R5 0.024973 Bus R16 0.067271 Bus C5 0.029488 Bus C16 0.205025

Bus R6 0.029275 Bus R17 0.048545 Bus C6 0.047864 Bus C17 0.220514

Bus R7 0.038882 Bus R18 0.068012 Bus C7 0.036441 Bus C18 0.214199

Bus R8 0.034689 Bus I0 0.147835 Bus C8 0.022996 Bus C19 0.194261

Bus R9 0.032964 Bus I1 0.105823 Bus C9 0.021337 Bus C20 0.189540

Overall: 0.075240

As normalizer, the range of the simulation results (0.100073) was used
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Detection of critical situations

The last experiment (hypothesis 4) examines the surrogate model’s ability to predict crit-
ical situations. Simulation model and surrogate model are compared for 8640 simulation
steps (3 simulated months or 90 simulated days). Only the buses R0 to R10 and R18 are
considered. Whenever the simulation model outputs a value between 0.96 and 1.04 for a
time step, the network state is uncritical (negative event). All other values are considered
critical (positive event). In particular, the surrogate model must correctly predict these
critical values. The confusion matrix and derived measures are shown in Table 4.
The accuracy of the model achieves very high values (> 0.99). However, since bus volt-

ages are not critical in most cases (true negatives), the accuracy metric is a poor indicator
of model quality. Precision measures the proportion of critical situations identified from
the surrogate model that were actually critical. The total precision is ≈ 18%, which indi-
cates a high false positive rate. Especially the result of bus R18 is bad, because not a single
critical situation was detected there. More important than precision is recall, which quan-
tifies the rate of undiscovered critical situation. The surrogate model has a total recall
rating of ≈ 31%, which is even worse than random guessing. Therefore, the null hypoth-
esis cannot be rejected. For illustration the simulation results of one day with critical
situations for the buses R5, R10, and R18 are shown in Fig. 12.

Conclusion and outlook
In this paper an approach was presented to replace an entire low voltage grid includ-
ing the connected components. A deep neural network was used as the surrogate model.
Challenges in sampling inputs for the grid were discussed. The capabilities of the surro-
gate model were evaluated domain-independently in experiments to runtime, speed-up,
and accuracy according to the (normalized) RMSE. It has been demonstrated that a) the
surrogate model is faster than the simulation model with an average speed-up factor of
2.65 and b) the speed-up factor varies when changing the duration of the simulation and
c) the forecasts of the surrogate model show an error of 7% when using the NRMSE. In a
domain-specific experiment, the model’s ability to detect critical situations in which the
bus voltage exceeds certain limits was investigated. The task was formulated as a classifi-
cation task. The model should have as low a false negatives rate as possible to detect any
critical situation. Therefore, the recall metric was applied to the output of bothmodels for

Table 4 Summary of the domain-specific experiment

Bus TP TN FP FN Accuracy Precision Recall F1-score

Bus R1 0 8630 10 0 0.99884 0.00000 0.00000 0.00000

Bus R2 0 8630 10 0 0.99884 0.00000 0.00000 0.00000

Bus R3 0 8640 0 0 1.00000 0.00000 0.00000 0.00000

Bus R4 0 8636 4 0 0.99954 0.00000 0.00000 0.00000

Bus R5 1 8637 0 2 0.99977 1.00000 0.33333 0.50000

Bus R6 4 8611 25 0 0.99711 0.13793 1.00000 0.24242

Bus R7 7 8578 55 0 0.99363 0.11290 1.00000 0.20290

Bus R8 4 8631 1 4 0.99942 0.80000 0.50000 0.61538

Bus R9 0 8627 0 13 0.99850 0.00000 0.00000 0.00000

Bus R10 10 8617 10 3 0.99850 0.50000 0.76923 0.60606

Bus R18 0 8605 0 35 0.99595 0.00000 0.00000 0.00000

Overall 26 94842 115 57 0.99819 0.18440 0.31325 0.23214
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Fig. 12 Simulation results for buses R5, R10, and R18. Visually, the match between simulation model and
surrogate model at buses R5 and R10 is quite good. The third graph reveals that the surrogate model has
fundamental problems to reproduce the results for bus R18, which could be a reason for the bad recall rating

certain buses of interest. The recall rating for these buses was 31%, which is worse than
random guessing.
The results lead to the following conclusions. The general capabilities of the surrogate

model are quite satisfactory for a first approach with only a simple architecture. One task
for future work will be how the model performs when changing the size of the power
grid and when adding distributed energy resources such as PV and CHP generation. In
particular, the impacts on runtime, speed-up and accuracy are of interest. However, the
domain-specific capabilities were not sufficient and the reasons for this can be assumed
in the sampling procedure. One approach would be to usemore “real” load data to capture
their behavior, but this is not always feasible. A more promising approach would be to
model the grid inputs as distributions like it is done for probabilistic load flow calculations
(Chen et al. 2008). Load dependencies have also not yet been taken into account. The
derivation of a correlation graph from the interdependencies between these inputs and
the provision as additional information for the model is the goal and part of the future
work.
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