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Abstract

Demand Response (DR) facilitates the monitoring and management of appliances in
energy grids by employing methods that, for example, increase the reliability of
energy grids and reduce users’ cost. Within energy grids, Smart Home scenarios can
be characterized by a unique combination of appliances and user preferences. To
increase their impact, a scenario-specific selection of the best performing DR
methods is necessary. As the user faces a multitude of heterogeneous DR methods
to choose from, a complex decision problem is present. The primary goal of this
study is to develop a decision support framework that can determine the best-
performing DR methods. Building on literature analyses, expert workshops and
expert interviews, we identify seven requirements, derive solution concepts
addressing these requirements, and develop the framework by combining the
concepts using a benchmarking process as a template. To demonstrate the
framework’s applicability, we conduct a simulation study that uses artificial
(simulated) data for seven types of households. Within this study, we employ four DR
methods, assume changing appliances over time and cost minimization as primary
objective. The study indicates, that by using the framework and thus by identifying
and using the best DR method for each scenario, the users can achieve further cost
benefits. The application of the framework allows practitioners to increase the
efficiency of the DR method selection process and to further enhance DR-related
benefits, such as cost minimization, load profile flattening, and peak load reduction.
Researchers benefit from guidance for benchmarking and evaluating DR methods.

Keywords: Demand side management, Demand response simulation, Benchmarking
process, Home energy management system

Demand response in the residential context
Technological improvements, changing environmental conditions, altered consump-

tion patterns, and rising pollution levels (e.g., carbon emissions) challenge traditional

energy grids (Lawrence et al. 2017). Renewable, but unstable, energy sources like

photovoltaic (PV), wind power, and hydro power and new appliances such as electric

vehicles (EVs) result in more volatile energy generation and consumption that affect

both the supply side and the demand side (Seidel et al. 2013). Critical peaks,
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contingencies, volatile load profiles, unreliable market performance, and inefficient in-

frastructure use (Siano 2014) can result in blackouts, brownouts, shortages, and a high

spinning reserve and can endanger the reliability of energy grids. The major transfor-

mations in the residential context, in particular through the increased use of EVs and

decentralized energy generation and energy storage, contributes to this problem be-

cause the energy consumed in this sector amounts to more than a third of total con-

sumption (Hu and Li 2013; Jovanovic et al. 2016). One possible solution to the

challenges in this context is the management of appliances in Smart Homes (Koolen

et al. 2017).

Appliance management can be carried out by Demand Response (DR). DR optimizes

consumption patterns by, for example, using external signals (e.g., pricing signals, direct

controlling signals). Optimization is then performed by shifting or managing loads

based on incentive-based or price-based programs (Merkert et al. 2015), the latter are

often realized through dynamic pricing (e.g., time-of-use pricing (TOUP), critical-peak

pricing, real-time pricing (RTP) (Siano 2014; Steen et al. 2012)). DR can also “transform

domestic customers from static consumers into active participants” ((Molderink et al.

2010), p., 109), which especially promotes the implementation of decentralized energy

generation (e.g., PV, storages) in the grid. Nevertheless, since DR is a complex task and

pricing signals may change during the day (cf., RTP), it can hardly be carried out manu-

ally by the users without assistance. Especially the reaction on changing price signals

would require significant user efforts regarding time and participation as consumption

plans need to be adapted on multiple times throughout the day. Therefore, applying

DR in the residential context requires supporting infrastructure, including, for instance,

a Smart Meter and a Home Energy Management System (HEMS) (e.g. (Chaudhari

et al. 2014)).

A HEMS is a system that enables DR applications for residential users (Zhao et al.

2013) by monitoring and automatically managing appliances based on a user-specific

set of requirements (REQs) (e.g., (Hu and Li 2013; Zhao et al. 2013; Han et al. 2014;

Kuzlu et al. 2012)). Thereby, a HEMS can be assigned to a single home or multiple

homes, especially in the latter case forming a microgrid (e.g., (Jiang and Fei 2015)).

REQs are composed of the user-specific scenarios, including living behaviors, appli-

ances, available storage, and energy-generation infrastructures, and consider environ-

mental factors like weather, stock prices, and price signals (Fig. 1).

To address these REQs, various DR methods can be applied that, for instance, differ

regarding their objectives, optimization methods, and communication models (Kosek

et al. 2013). Overviews can be found in (Balijepalli et al. 2011; Al-Sumaiti et al. 2014;

Gerwig et al. 2015). DR methods are here understood as algorithms that are developed

to solve optimization problems in the DR context in light of constraints and desired

goals. However, (Khadar et al. 2017) denotes, that no sophisticated comparison of DR

method performance is done yet. Moreover, to the best of our knowledge, no

approaches have been developed so far that support this comparison and a selection of

best performing DR methods for a user-specific scenario.

Consequently, the development of a solution is required, that assists with the com-

parison of DR methods and with the selection of the best one for a user-specific sce-

nario. As HEMSs have heterogeneous structures and scenarios can change as new

appliances and infrastructure components are developed, the solution should be
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adaptable for all kinds of HEMSs. A framework is suitable for this task, since it can

provide a reusable structure and it can be adapted to fit individual needs (Johnson and

Foote 1988). In this study, we develop a decision support framework that assists in

selecting the best DR method for a user-specific scenario.

The application of the framework allows practitioners to increase the efficiency of the

DR method selection process and to further enhance DR-related benefits, such as cost

minimization, load profile flattening, and peak load reduction. Researchers can use the

framework to compare the effects of existing DR methods in varying scenarios and thus

inform the enhancement of their methods and underlying algorithms.

We proceed by describing related work in Section “Related Work” and the chosen re-

search design in Section “Research Design”. In the next step, we gather seven REQs

based on the literature analyses, expert workshops and expert interviews (Section

“Gathering Requirements”), derive solution concepts (SOCs) (Section “Deriving Solu-

tion Concepts”), and assemble them into a decision support framework (Section “As-

sembling the Framework”). To demonstrate our framework’s applicability, we

implement a software prototype and conduct a simulation study with illustrative exam-

ples extracted from artificial data that build on real-world scenarios (Section “Demon-

stration”). Finally, we discuss our findings and provide an outlook on future research

(Section “Conclusion”).

Related work
Based on an extensive literature analysis (see Appendix 1), we identified a set of contri-

butions to the domain of DR methods that include comparisons, benchmarks, and eval-

uations of DR methods. Although some of these studies perform benchmarking, most

provide evaluations, especially argumentative comparisons of types of methods (e.g.,

(Sianaki et al. 2010)), proofs that a particular method can find an optimum (e.g., (Lab

2018)), evaluations against the status quo (e.g., (Gerwig et al. 2015)), and descriptions

of methods with a variation of different input factors (e.g., (Mohsenian-Rad et al.

2010)). Among these, proving a method’s ability to find an optimum is in many cases

not possible since a complex optimization problem is solved with a heuristic or the

Fig. 1 Smart Home context
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solving process is too complex and time-consuming. Decision support systems are

often used in the energy field (e.g., (Sellak et al. 2017)), but we found no suitable system

or framework that could meet our research goal and no solution in the extant literature

could be discovered.

Moreover, most working groups and research projects that address this topic focus

on the organizational levels and grid levels and do not compare or evaluate DR

methods. For instance, “MOSAIK” (a flexible simulation framework for smart grids

(MOSAIK 2018)), uses a co-simulation approach to simulate methods and scenarios for

a large energy grid with multiple elements like different consumers, decentralized en-

ergy generation and EVs (Schloegl et al. 2015). “DER-CAM” focuses on minimizing

costs by optimizing on-site generation and heat and power systems (Lab 2018) in build-

ings and microgrids, and bases on an optimization problem with multiple objectives.

However, the authors state that the optimization problem must be solved by a heuristic,

a greedy-based solving strategy. So even if the method’s ability to find the optimal solu-

tion is proven, a solution is often found with a heuristic, and the results differ based on

the chosen algorithm. Other projects can be found, such as Smart Grid Algorithm

Engineering, Smart Nord, and D-Flex (Blank et al. 2015), have been addressed, but

none realizes a way to select a DR method for individual scenarios. Besides the litera-

ture search and the analysis of existing projects and research groups, the energy

informatics field might offer helpful insights (Goebel et al. 2014).

Our research aims at increasing energy efficiency by supporting the user-specific se-

lection of DR methods that are used on HEMS in residential buildings (here Smart

Homes) (Goebel et al. 2014). Similar research activities fail to compare, evaluate, and

benchmark DR methods, although they address, for example, distributed and renewable

energy resources (e.g., (Berthold et al. 2017; Dyson et al. 2014)), islanded grids (e.g.,

(Vergara et al. 2018; Ma and Billanes 2016)) or grids in general (e.g., (Steinbrink et al.

2017)), the energy grid in smart cities (e.g., (Masera et al. 2018; Stoyanova et al. 2017)),

security concerns (e.g., (Fulli et al. 2017)), EVs and batteries in general (e.g., (Park et al.

2016; Ma et al. 2010)), energy contracts (e.g., (Basmadjian et al. 2016)), or data and

privacy concerns (e.g., (Cupelli et al. 2018)).

Leaving the immediate field of DR methods, Ketter et al. (Ketter et al. 2016) present

competitive benchmarking, an approach for the comparison of solutions to wicked

problems. For demonstration, they select the topic of sustainable energy and financial

market stability (Ketter et al. 2016) and the Trading-Agent-Competition (TAC) (Ketter

et al. 2011). The TAC, which has several customer models that represent households,

businesses, and so forth, takes a supplier perspective, while the demand perspective is

“fixed”. However, by fixing the demand perspective, the stated research question is not

sufficiently answered, as the focus lies on the Smart Home Context. In this context, the

supplier is the black box and delivers information like a cost function or penalty costs

for high peaks (O’Connell et al. 2014) Although benchmarking is frequently addressed

in the DR field, to the best of our knowledge, the field currently offers no support for

decision-making in our context.

Focusing on benchmarking procedures in general, that aim at identification of best

practices and performance improvement (e.g., (Andersen and Pettersen 1995; Camp

2006)), Lugauer et al. (Lugauer et al. 2012) analyze 35 benchmarking frameworks in

terms of the four phases—planning, collecting, analyzing, and improving—based on the
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“plan-do-check-act”-cycle from Deming (Deming 1982). The planning phase is about

what to benchmark, and identifying who and which resources are involved. Afterwards,

in the collecting phase, benchmarking objects need to be analyzed by defining needed

data and measurements. In the analyzing phase, the performance of the benchmarking

objects is compared, and gaps between these performances are identified. During the

improving phase, necessary actions need to be identified, to move, originally the busi-

ness, forward and improve, for example business processes.

Research design
Our research began with the identification of a practical problem. An industry partner

that plans to design and implement a HEMS, asked, what kind of services could be

additionally offered to the customers, based on this HEMS. They state the delivery of

an optimized energy consumption plan to energy-users to be useful, because users can

realize cost benefits. As the HEMS should be used in diverse surroundings, an “opti-

mal” DR method could not be chosen easily. Because of the high individuality of user

scenarios and the variety of DR methods, a decision-making approach must be imple-

mented on these HEMS that supports the ability to select a method that best fits each

scenario. To develop the framework, we carried out a staged research design (Fig. 2)

that consists of gathering REQs (Section “Gathering Requirements”), suggesting SOCs

(Section “Deriving Solution Concepts”), assembling the decision support framework

from these SOCs (Section “Assembling the Framework”), and demonstrating the applic-

ability of the framework by simulating various scenarios (Section “Demonstration”). In

the following, each of these phases is described in detail.

Phase 1: Gathering Requirements

In this phase, REQs are derived from the knowledge base inductively. We build on

existing literature (literature analysis) and expert knowledge (expert interviews) and de-

rive several REQs based on Deming’s general benchmarking approach (Deming 1982).

Phase 2: Deriving Solution Concepts

We suggested SOCs that address each REQ individually by searching for information

in existing research and by interviewing experts. These SOCs are only addressing the

REQs, but still must be combined to realize the decision support framework.

Fig. 2 Staged research design
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Phase 3: Assembling the framework

After gathering REQs and deriving SOCs, we used Deming’s (Deming 1982) bench-

marking process as guidance and matched each SOC to it. We also analyzed informa-

tion flows from both inside and outside the framework and added, for example, event

triggers for changes in the scenario.

Phase 4: Demonstration

For the demonstration, we implemented a software prototype that features four DR

methods and a database suitable for conducting simulations. The aim of this research is

not to evaluate the exemplarily implemented methods but to show that our framework

is feasible and applicable. As the framework should be reusable and adaptable, it is not

HEMS-specific and so is (re-)useable on many kinds of systems. We used artificial data

that have minor disadvantages but are of sufficient quality (Cao et al. 2013) to conduct

meaningful DR simulations. As the simulation is an artificial setting, we impose several

events to simulate changes in the scenario (e. g., additional appliances, defects of appli-

ances, altered user behavior).

Decision support framework
Gathering requirements

This section presents seven REQs for a decision support framework grounded in gen-

eral benchmarking approaches (that follow a plan-collect-analyze-improve cycle

(Lugauer et al. 2012)), a literature analysis, a review of several DR methods (e.g., found

in (Balijepalli et al. 2011; Al-Sumaiti et al. 2014; Gerwig et al. 2015; Barbato and

Capone 2014)), and expert interviews (Behrens et al. 2017).

Inspired by the first benchmarking phase (planning phase) (Camp 2006), we define

the benchmarking objects and benchmarking goals (Heib et al. 1997). Benchmarking

objects reference to the entities to be compared, such as companies, divisions in a com-

pany, or even products, processes, and functions (Heib et al. 1997). In our study, these

benchmarking objects are DR methods. Benchmarking goals are the objectives that the

benchmarking process seeks to achieve, such as improving the energy efficiency of

Smart Homes by selecting the best DR method for a certain situation. However, “best”

depends on how the term is defined. As it relates to DR (Gellings 1985), “best” can be

the method that reduces peak loads and costs or the method that ensures a flattened

load profile. These objectives may differ in different homes or over time according to

the users’ preferences. Consequently:

REQ1—Objective(s) Specification: Provide features that allow users to specify their

individual objectives.

The benchmarking approach requires collecting suitable data. In addition to the indi-

vidual objective, these data comprise the scenario of the user, which can be very hetero-

geneous (Hoogsteen et al. 2016) based on, for example, living behaviors, daily routines,

existing infrastructure, and appliances (Pflugradt 2017). Various data sources, such as

recorded data, simulated data, and predicted data, can be used (e. g., (Monacchi et al.

2014; Behrens et al. 2014; Behrens et al. 2016)). To identify the best method for an
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individual scenario, this specific scenario needs to be represented first—regardless

which data is chosen (e.g., forecasting data, past data, manual data from the user). DR

can be divided into two phases: data acquisition (often broken down to forecasting)

and optimization (Simmhan et al. 2011) (Fig. 3). User-specific data (e.g., deadlines for

finishing appliances and times during which the user cannot run appliances) must be

added in or after the first phase and used in the second.

We need an adjustment between these two phases, for example, to identify the pos-

sible using intervals of appliances (e.g., (Behrens et al. 2017)). This can be done auto-

matically (e.g., by predicting user’s behavior and needs) or manually by the user.

Consequently:

REQ2—Scenario Building: Provide features that allow users to build individual

scenarios.

Another part of collecting data is to ensure its quality, which has been identified as a

problem in DR research (e.g., (Cao et al. 2013; Barta et al. 2014)). Data on energy use is

often recorded in heterogeneous ways, so the data structures are not standardized and

information (e.g., whether an appliance is deferrable) may be missing (Behrens et al.

2016). Moreover, gaps in the data (Monacchi et al. 2014; Barta et al. 2014), such as

missing recordings and zero values that are often caused by a malfunction of the Smart

Meters, occur (Hoogsteen et al. 2016). Regardless of which data is chosen, it must be in

a suitable format and of high quality (Cao et al. 2013). High quality thereby means, that

needed information are given, the recording frequency is adequate, and missing values

can either be predicted or filled without falsifying the data. Thus, data quality needs to

be guaranteed through a suitable preprocessing (cf., (Barta et al. 2014)). Consequently:

REQ3—Data Preprocessing: Provide features that allow the quality of the data to be

ensured.

The second DR phase deals with optimization by DR methods and therefore delivers

data for the analysis (third benchmarking phase). However, not all DR methods have

directly comparable characteristics and therefore additional demarcation is needed. Dif-

ferent characteristics, regarding their functionality and the considered appliances, infra-

structure and constraints (Kosek et al. 2013; Gerwig et al. 2015; Behrens et al. 2017)

need to be addressed. Benchmarking must guarantee that the only methods that are

compared are those that, for example, fulfill the same constraints (Behrens et al. 2017).

The methods themselves and the additional information need to be stored to enable

the HEMS accessing them. Consequently:

Fig. 3 DR phases, data sources, and scenario data
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REQ4—Method Comparability: Provide features that ensure the comparability of DR

methods.

The calculation of assessment criteria is the last step of the data-collection phase.

Assessment criteria like measures of energy consumption and savings must be calcu-

lated and analyzed (Gerwig et al. 2015). However, many possible criteria are offered in

the DR field (e.g., (Balijepalli et al. 2011; Al-Sumaiti et al. 2014)), so the appropriate

choices must be made. Hence, these criteria must be identified in a first step. Based on

these definitions and after the methods calculated their results for a certain scenario,

the assessment criteria need to be calculated. For ensuring a uniform calculation of the

criteria’s measurements and comparability, we need a centralized computation, as the

methods might have a different calculation or might even miss the calculation of single

measurements. The DR methods must transfer the results in a suitable format to our

framework, which—afterwards—calculates all assessment criteria for all comparable

methods. Consequently:

REQ5—Result Calculation: Provide features that allow DR methods to be assessed

based on established criteria.

Analysis, the third benchmarking phase, identifies best practices and performance

gaps to enable improvement (e.g., (Lugauer et al. 2012; American Productivity and

Quality Center 1993)). In the DR context, this means we need a way to identify the best

DR method to enable a decision making. “Best” in this case depends heavily on the

user’s objectives (REQ1) and the user-specific scenario (REQ2). Based on this “objecti-

ve-function” identification, the calculated assessment criteria (REQ6) are interpreted.

As we have multiple criteria, we must add a suitable decision making process (e.g., (Ho

et al. 2010; de Boer et al. 2001)). Multiple criteria are difficult to handle because their

units of measure may differ, their levels of importance may differ, and so on. Conse-

quently, the suitable decision making must be supported by identifying the best DR

method, which can be selected by the user and then be deployed on the HEMS.

Consequently:

REQ6—Decision Support: Provide features that allow the best DR method for a

specified scenario to be identified.

Improving is the last step of the benchmarking approach that especially in the DR

field is needed if changes occur that may impact the effectiveness of the DR method

chosen. Changes can include the addition of a new appliance or a new operating status

(“Appliance Event”) (cf., (Bui et al. 2017)) or changes in the objectives (“Objective

Event”). These changes can occur because of unexpected malfunctions or use patterns

or insufficient forecasts. A monitoring and a suitable reaction mechanism are needed

to facilitate the ability to react to such events. Consequently, the selection needs to be

repeated and is a continuous task, as also stated in the benchmarking phase of

(Lugauer et al. 2012). We need a starting point for the “Initialization”, as no data is set

before. The last requirement therefore faces the challenge of reacting on events to

realize the most beneficial method selection. Consequently:
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REQ7—Event Reaction: Provide features that allow users to react to events.

Deriving solution concepts

We suggest possible SOCs to address the REQs, which are derived inductively from a

literature review and interviews with experts.

SOC1—Let the user select the objectives to be achieved

The user should be presented a variety of options so he or she can choose which objec-

tives are most important. Our literature search identified several DR objectives, shown in

Table 1, each of which can be reached using DR methods and can be provided for

decision-making. The user can select the objective(s) to be reached (Fig. 7 in Appendix 2).

As the “welfare” objective is difficult to measure but important for users (cf., (Jovanovic

et al. 2016)), we consider it a given. The user can state his or her preferences based on

usage patterns during scenario-building (REQ2) or select an automated way to predict

preferences, for example, via forecasting based on historical data.

SOC2—Provide energy consumption data and let the users specify their energy consumption

profile

The framework should provide several options for the user with which to select their

energy composition: a predefined dataset (e.g., the last day or similar households),

where only single loads are adapted to the user’s habits (e.g., an EV is added or the use

intervals are changed); an empty dataset to build a scenario and add all appliances, plus

additional information “bottom up”; past data recorded from the HEMS; or forecasted

data. This step might be done manually (by the user) or automatically when the user

gives a starting point and the framework then uses forecasting data. As privacy and

data security are important topics (for example due to the general data protection regu-

lation), data must not leave the HEMS. Based on the data provider, the user-specific

scenario can be built (e.g., (Hoogsteen et al. 2016)). Besides selecting the data, additional

user-specific information regarding the user’s welfare is needed, but defining the user’s wel-

fare is not easy, so a utility function is often used in the DR context (e.g., (Li et al. 2012;

Table 1 DR objectives derived from the literature
# DR objective Source (e.g.)

Ob1 Cost minimization for a (single) participant (savings in
electricity bills) or even market-wide (e.g., through more effi-
cient use of the infrastructure).

(Balijepalli et al. 2011; Albadi and El-Saadany 2008; Aghaei
and Alizadeh 2013; Abdollahi et al. 2012; Gkatzikis et al.
2013)

Ob2 Minimization of peak loads in the consumption profile, to
reduce the need of high spinning reserves, etc.

(Balijepalli et al. 2011; Conejo et al. 2010; Raza et al. 2013;
Gyamfi et al. 2010)

Ob3 Load profile flattening by shifting demand, thereby reducing
the cost of producing electrical energy.

(Conejo et al. 2010; Raza et al. 2013)

Ob4 Ensuring reliability to reduce the risk of outages and ensure
the ability to react to contingencies by holding a spinning
reserve.

(Abdollahi et al. 2012; Conejo et al. 2010; Raza et al. 2013;
Zakariazadeh et al. 2014; Wang et al. 2013)

Ob5 Maximization of market performance by allowing consumers
to affect the market, thereby reducing price volatility in the
spot market.

(Albadi and El-Saadany 2008)

Ob6 Maximization of users’ utility (often also called welfare), to
maximize the users comfort and preferences.

(Conejo et al. 2010)

Ob7 Efficiency of infrastructure usage to save external kWh. (Balijepalli et al. 2011; Aghaei and Alizadeh 2013; Raza
et al. 2013)
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Samadi et al. 2012; Mas-Colell et al. 1995)), for example known from the microeconomics

context. A questionnaire can be used to derive a utility function (Jovanovic et al. 2016).

However, no standard has been defined for measuring the user’s welfare in a real use-case

yet, so we let the user define the times when an appliance may run (e.g., the EV must be

charged in the morning or the washing machine must be finished by 6:00 p.m.) (e.g., (Jova-

novic et al. 2016)).

SOC3—Sample the data, fill gaps, and reject unreliable data

To provide appropriate data, gaps and data-quality issues (e.g., time resolution) must

be addressed. Most DR methods use a fifteen- or thirty-minute cycle to optimize load

positioning (Abdulla et al. 2017), as cycles of less than 1 minute or continuous record-

ings are not required (and are difficult to achieve). We suggest a down-sampling with a

frequency of 1 minute (e.g., (Hoogsteen et al. 2016) or (Palensky and Dietrich 2011))

for 1440 recording points over 24 h, which is suitable for most DR methods. The gaps

can be divided into two dimensions: the number of gaps for a certain day and the num-

ber of (completely) missing days in the data. These gaps can be filled by writing in zero

values or approximating the missing values (Cao et al. 2013). However, if too many

values are missing to interpolate these values or by filling with zero values the data

would be too much impure, the data is insufficient for the next steps and sorted out.

SOC4—Add metadata to the methods and form groups

Suitable metadata for DR methods must be identified in terms of its classification and

characteristics. DR methods can be classified by two dimensions: Place of

decision-making and used communication (Kosek et al. 2013). The loads addressed and

constraints met must also be determined, as, for example, methods that do not con-

sider the same constraints cannot be compared (c.f., (Behrens et al. 2017)). Every

method must be comparable with other methods from the same “class” and suitable for

the scenario. Therefore, we add additional data (metadata) based on the DR method’s

classification (Kosek et al. 2013), the compliances addressed and the constraints consid-

ered (Behrens et al. 2017). The methods themselves must be available in a repository,

either locally on the HEMS or in the cloud.

SOC5—Establish measurements and provide needed data

To provide the indicators, measurement information, and DR objective, assignments

needed to rate the methods, we analyzed literature reviews on several DR methods

(found in the literature reviews of (Balijepalli et al. 2011; Al-Sumaiti et al. 2014; Gerwig

et al. 2015)). The criteria we derived with which to rate the methods consisted of one

or more DR objective, an indicator, and a measurement unit (Table 2). Additional infor-

mation, such as a cost function, is also needed. Energy consumption is needed and

must be transferred in a suitable format to the framework to calculate the indicator, so

an interface must be designed. Other information, such as PV or battery use, could also

be required. Our literature analysis showed that one indicator can represent multiple

objectives, so we enabled the user to state criteria for each stated objective and support

a “default criteria” (underlined objective in Table 2).
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SOC6—Identify the best method(s) based on user objectives and scenarios

To support decision-making, we rank the DR methods based on their results (SOC5)

and the stated user objectives (SOC1). As we may have multiple criteria and objectives,

we match a multi-objective function with multiple criteria. Additional difficulties occur

because individual objectives might be weighted differently when their importance to

the users differs. Hence, three cases are derived: only a single objective is selected, mul-

tiple objectives with different weights are selected, and multiple objectives are selected

but no weights are given. To make the results comparable, a single number from the

criteria (e.g., (Charnes et al. 1978; Cooper et al. 2006)) using one of three strategies is

formed:

� If the user selects only a single objective, since we enable only one measure for each

objective, we can directly compare the criteria with each other.

� If the user selects two or more objectives and weights for each objective, a

combined value with the formula ∑Criteriai ∗Weighti for each DR method can be

calculated.

� If the user selects two or more objectives but no weights, equal weights are

supposed and calculate the comparative value as in the second strategy.

SOC7—React to events by repeating the decision support process

Reacting to events—here, “Appliance Events” and “Objective Events”—requires two ac-

tions: implementing a monitoring strategy and implementing a suitable reaction strat-

egy. The monitoring determines whether changes, such as a new appliance being added

or a change in the infrastructure (e.g., because of a malfunction) occurred. The frame-

work repeats the selection process if the user changes the objectives (“Objective Event”)

but the process can jump to data collection phase and rebuild the database if the event

is an “Appliance Event.” When the process is run for the first time, an “Initialization” is con-

ducted, meaning that the process starts at the beginning with the user stating his or her ob-

jective(s). In the monitoring phase, while the DR method is used, the framework receives

Table 2 Assessment criteria derived from literature (underlined objective number = default)
Indicator and description Unit Source (e.g.) Objective

Peak-to-Average-Ratio (PAR): Highest peak from the average
(positive or negative) over the day.

[kWh] (Soliman and Leon-Garcia 2014; Song et al.
2014; Fathi and Gholami 2012; Verschae
et al. 2014)

Ob2,
Ob4,
Ob5

Mean-Squared-Error (MSE): The arithmetic middle of the
squared error during the day; often also indicted as Root-
Mean-Squared-Error (RMSE).

[kWh2] (Verschae et al. 2014; Javed et al. 2012) Ob3,
Ob4,
Ob5

Normalized MSE (NMSE): The normalized MSE regarding the
status quo (no DR); often used to quantify consumption-
flattening.

[kWh] (Verschae et al. 2014) Ob3,
Ob4,
Ob5

Costs: How much has to be paid? Cost function or pricing
scheme needed.

[€],[$] (Atabay et al. 2013; Ali et al. 2012; Alam et al.
2013)

Ob1

Savings: How much savings can be realized compared to
no DR in either percentage or money?

[%] or
[€]

(Maqbool et al. 2012; Bassamzadeh et al.
2014)

Ob1

Infrastructure use: How good is the infrastructure used? That
is, how much of the generated energy is used to reduce
external kWh?

[kWh] (Mohamed et al. 2012; Beaude et al. 2012;
Bashash and Fathy 2013; Keerthisinghe et al.
2014)

Ob7

Utility: Is the user’s utility increased by using DR? No unit or
standardization was found here.

[/] (Behrens et al. 2016; Alam et al. 2013; Yang
et al. 2012)

Ob6

Behrens et al. Energy Informatics  (2018) 1:53 Page 11 of 28



event triggers and additional information from the HEMS. After receiving such an event, a

specific phase is called and the information (e.g., the load profile of the new appliance) is

handed over.

Assembling the framework

The next step in developing the decision support framework is to assemble and embed the

SOCs to the framework and into the HEMS and into the environment. Next, we describe

how we assembled the framework and how the framework interacts with the HEMS and

the environment.

Assemble the Solution Concepts

The REQs and SOCs are inspired by the benchmarking phases of (Lugauer et al. 2012),

so the framework is divided into four phases (see Fig. 4 for a visualization of the

process and Table 3 for an overview of the REQs and SOCs): The first phase, Planning,

involves SOC1, the specification of the objective. The second phase, Demand Response,

involves collecting data, including building the scenario (SOC2), preparing the data

(SOC3), ensuring the comparability of methods (SOC4), and the calculating the mea-

sures (SOC5). We divided this second phase into two sub-phases: data acquisition

(SOC2 and SOC3) and optimization of the consumption plan (SOC4 and SOC5). The

third phase, Decision and Deployment, identifies the best DR method based on the col-

lected data, stated objectives, and so forth (SOC6), which is then deployed on the

HEMS. In the last phase, Monitoring, the framework reacts to events that occur during

the DR method’s use. If an event occurs, the framework guides either the HEMS (auto-

mated) or the user (manual) back to the planning phase or the demand response phase

(SOC7). When the decision process is first run, it begins with SOC1 (objective

specification).

Fig. 4 Decision support framework for DR methods with the SOCs addressed

Behrens et al. Energy Informatics  (2018) 1:53 Page 12 of 28



Embed the Framework

The framework requires inputs from the HEMS, the users, and the environment, so the

framework must interact with those three entities. Both the inputs and the interactions

are specified for each phase of the framework. In the Planning phase, users state their

objectives, potentially on the HEMS’ (graphical) user interface (e.g., (Han et al. 2014;

Khadar et al. 2017; Yener et al. 2017)), as this interface is a suitable way to enable the

user to transport his or her objectives into the framework. This phase occurs either on

the initial use of the DR method or when an “Objective Event” occurs. In the Demand

Response phase, the framework provides suitable data to the user for the purpose of

scenario-building, again, potentially using the HEMS’ interface, and the user specifies

individual appliances, intervals, etc. The HEMS can transfer these data to the frame-

work. Even if an automated process of scenario-building (e.g., through forecasting) is

chosen, the user can monitor and alter the scenario. In the third phase, Decision and

Deployment, the framework shows the ranked DR methods in the HEMS’ interface

based on their results and the users’ stated preferences. Then either the user chooses

his or her favored method, or the framework performs this choice automatically. The

method is then deployed on the HEMS. Finally, in the Monitoring phase, the deployed

method is used on the HEMS, and any change events that occur are reported to the

framework, as well as additional information (e.g., new objective given, new appliance

installed). If an “Objective Event” occurs, for example because the user changes the ob-

jectives in the HEMS’ interface, these altered objective(s) need to be reported to the

framework. If an “Appliance Event” occurs, the altered appliance(s) need to be re-

ported, for example the consumption profile of the (new) appliance. The framework

then continues with the decision process and delivers the new information.

Demonstration
To demonstrate the framework’s feasibility and applicability, we conducted several sim-

ulations. We instantiated the SOCs (Section “Instantiation of Framework”) and de-

signed an illustrative scenario (Section “Demonstration Case”). The instantiation

consists of the framework itself (visualized with a graphical user interface, simulating

the HEMS interface) and four DR methods, each of which follows the same

optimization problem and fulfills the same constraints (for the description of the

Table 3 Derived REQs and SOCs (overview)
#REQ Name #SOC Solution concept Framework phase Benchmarking

phase

REQ1 Objective(s)
Specification

SOC1 Let the user decide the objectives to be achieved. Planning Plan

REQ2 Scenario-Building SOC2 Provide data and let the users select their energy
composition.

Demand
Response

Collect

REQ3 Data Preprocessing SOC3 Sample the data, fill gaps, and reject unreliable data. Demand
Response

Collect

REQ4 Method
Comparability

SOC4 Add metadata to the methods and form groups. Demand
Response

Collect

REQ5 Result Calculation SOC5 Establish measurement and provide needed data. Demand
Response

Collect

REQ6 Decision Support SOC6 Identify the best method(s), based on user
objectives and scenarios.

Decision and
Deployment

Analyze

REQ7 Event Reaction SOC7 React to events by repeating the decision support
process.

Monitoring Improve
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optimization problem and the constraints, see Appendix 4). We exemplarily imple-

mented two solving strategies with two variations per strategy: greedy-based (min and

max) (Sianaki et al. 2010) and multi-agent-system-based (with and without communi-

cation) (Mohsenian-Rad et al. 2010) (for additional information see Appendix 3).

We have chosen an artificial setting for the demonstration scenario. Consequently,

events are triggered manually and the users’ objective(s), appliances, and so on are simu-

lated. To consider multiple homes and the effects of a method selection, we simulated a

microgrid consisting of several homes. We included different home configurations (e.g.,

varying appliances, usage patterns, etc.). To simulate changes, we introduce two appli-

ances events, namely the consideration of an EV with regular, domestic (AC) charging

and furthermore, the installation of corresponding fast-charging infrastructure (DC).

Instantiation of framework

We implemented the software prototype in Java so we could use common libraries to

visualize the results or read out data. At the beginning of the decision process, the user must

select the objectives to be achieved (SOC1). In our demonstration case, we use cost

minimization, represented by savings, as measurement (see Fig. 7 in Appendix 2). As for the

user-specific data for the selection process (SOC2), we use artificial data, for example, for use

intervals. We use a TOUP, and as no storage or generation infrastructure is in the demon-

stration scenario, these data are not added (see Fig. 8 in Appendix 2). The data itself must be

in a suitable format (SOC3), so we choose a 15-minute interval to match the proposed DR

methods. As the data are simulated, there are no gaps. Each DR method has a meta file that

provides additional metadata (SOC4). Once optimized, the resulting consumption plan is

sent to the framework. Next, the indicators are calculated and written into an output file for

documentation, and the measurements are calculated with the information given (SOC5).

With these criteria and based on the objectives from SOC1, a ranked list of methods is cre-

ated (SOC6), and the results are displayed (see Fig. 9 in Appendix 2). The selected method is

deployed on the HEMS (see Fig. 10 in Appendix 2). Afterwards, the framework switches to

the monitoring phase (SOC7), where two events occur, and the analysis is repeated.

Demonstration case

To build a suitable foundation for this test case, appropriate data must be selected and

prepared (SOC2 and SOC3). At the beginning, we used recorded data from naturalistic

homes (analyzed, for example, in (Monacchi et al. 2014; Behrens et al. 2016)), which

cover existing scenarios of real users, so no assumptions needed to be made (cf. (Barta

et al. 2014)). However, we had to add information about, for example, the time of use

of certain appliances, so we added artificial data using the LoadProfileGenerator (LPG) (Pflu-

gradt 2017) to ensure sufficient data quality (cf., (Cao et al. 2013; Hoogsteen et al. 2016)).

LPG has several predefined load profiles and uses a behavior model to simulate the data.

We used seven predefined households from the LPG as a demonstration case. House-

holds’ inhabitants differ in terms of their ages, jobs, habits, and daily routines. Conse-

quently, the consumption amounts and patterns in these households differ.

Basic scenario details

We built the following scenario (SOC2) of seven homes:
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1. A couple (male, age 40; female, age 35), both of whom work outside the home,

with three children (male, age 13; male, age 6; female, age 4), requires 4001.24

kWh throughout the year (min (day): 0.16 watts, max (day): 8914.97watts).

2. A working woman (age 30) with two children (males, ages 11 and 7) requires

3277.88 kWh throughout the year (min: 0.16 watts, max: 7364.95 watts).

3. A multigenerational home with a working couple (male, age 40; female, age 32), two

children (female, age 15; male, age 4), and two seniors (male, age 70; female age 68)

requires 8279.49 kWh throughout the year (min: 0.50 watts, max: 13,624.86 watts).

4. A working woman, age 25, requires 1778.51 kWh throughout the year (min: 0.16

watts, max: 8644.84 watts).

5. A working man, age 26, requires 1512.73 kWh throughout the year (min: 0.16

watts, max: 7208.11 watts).

6. A working couple (male, age 25; female, age 23) requires 2448.96 kWh throughout

the year (min: 0.16 watts, max: 6370.82 watts).

7. A couple (working man, age 45; female homemaker, age 43) with two children

(male, age 20; female, age 14) requires 4112.76 kWh throughout the year (min:

0.16 watts, max: 10,643.47 watts).

Deferrable appliances within the homes are washing machines, dryers, and dishwashers.

The duration, time, and quantity of appliances, which depend on the life styles and behavior

of the residents, are provided. We added the following information, that are visualized in

Fig. 5:

� The deferrable appliances may not run between 12 a.m. and 7 a.m.

� The working residents leave at 7 a.m. and return at 6 p.m., thus an EV cannot be

charged in between.

� Our test case uses a TOUP. The price from 0:00–06:00 and 22:00–24:00 is €0.24 per

kWh, and the price from 06:00–22:00 is €0.36 per kWh.

Scenario variations

Events can call for adjustments to the chosen DR method. For initialization, the user

first states objectives to be achieved. In our scenario, we choose cost minimization as

the only goal, which means that we have just one objective. Measuring this, the savings

are considered as criteria—this means, how much cost (in percent) from not perform-

ing DR can be saved. In the second step, we assemble the scenario details, which mean

the user adds the appliances and usage patterns (e.g., intervals) to the scenario. In the

demonstration case the predefined consumption plans are used. After the implemented

DR methods calculated an optimized consumption plan, a ranked order is derived, and

the users deploy the favored method on the HEMS. As a starting point, we assume that

our users have no EVs. Later, they will buy an EV (we assume a Volkswagen e-Up) and

charge it with 3.6 kW (AC) (Appliance Event 1). The alteration is monitored by the

HEMS. If changes occur in a Smart Home or microgrid (here events, see for example

(Bui et al. 2017)) the scenario needs to be re-analyzed, ensuring that still the best

method is selected. Correspondingly, the decision process starts from the second phase

and the scenario must be adjusted. Later on, a fast charging station is installed
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(Appliance Event 2). As a result, we have three variations of our scenario, caused by

two Appliance Events (see Table 4 for a summarized scenario description).

Results of the demonstration case

After we built the demonstration case, the implemented DR methods calculate the

new consumption plans and transfer them to the framework. The measurements

are calculated, and the best method is identified based on the selected objective, in

this case, cost savings (see Fig. 6). The results indicate that the performances of

the particular DR method depends on the scenario. Without an EV, the best

methods are the two greedy methods. This changes, if an EV is considered, as this

shifts load to the morning hours which flattens the load profile. At this point, the

greedy (max) is most beneficial, but after the households switch to DC fast char-

ging, the greedy (min) generates the most savings. Each event (integrating EVs and

changing the charging mode) requires adjustments in the grid; if the methods were not

re-selected after the events occurred, we would have a loss of 3.1% (event 1) respectively

0.7% (event 2) in savings. The overall savings for performing DR at all are much higher (up

to 34.2%). Therefore, we generated additional savings of about €1.00 each day just by

Fig. 5 Summarized consumption of all households, EV charging times, and TOUP borders

Table 4 Scenario Description
# Description

Basic scenario
details

Homes: (1) working couple, 3 children; (2) working woman, 2 children; (3) multigenerational family (working
couple, 2 children, 2 seniors); (4) working woman under age 30; (5) working man under age 30; (6) working
under age 30; (7) couple with 2 children, man at work.
Appliances: washing machine (1, 2, 3, 4, 5, 6, 7); dryer (1, 7); dishwasher (1, 2, 3, 7).
Cost function: We assume that we have a TOUP from the supplier.
Infrastructure: No generation or storage data were added.
Additional Information: No appliances may run between 24:00 and 07:00; an EV is added to each household
and regarded as a deferrable load; the residents leave at 07:00 and return at 18:00, so the EV cannot be
charged between these times.

Variation 1 No EV

Variation 2 (Event
1)

EV (Volkswagen e-Up) with 3.6 kW charging (AC)

Variation 3 (Event
2)

EV with fast-charging infrastructure (DC)
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selecting the best method over the second best. Comparing the best to the worst methods,

we save 1.6% in scenario 1, 14.2% in scenario 2, and 0.8% in scenario 3. While these savings

may not sound significant, they are realized on top of the savings created by using the

“wrong” DR method and just because we re-selected the method with our framework (see

Appendix 5 for more detailed results).

Conclusion
This study focusses on the Smart Home context, which has several challenges.

To address these challenges, we gathered a set of REQs for a decision support

framework for DR methods in the residential context, derived SOCs to fulfill the

Fig. 6 Results of method benchmarking. Without EV (top), EV charged with 3.6 kW (middle), and EV
charged with DC (bottom). The best method for each is highlighted (in light gray). Values = Savings [%] of
each method. (For more detailed results see Appendix 5)
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REQs, and assembled them into a framework. To demonstrate the framework’s

feasibility and applicability of this framework, we implemented a software proto-

type and conducted simulations with different scenarios. The results indicate that

our framework supports the identification of the best DR method for a

user-specific scenario and thus allows a decision making. The developed frame-

work thereby aims at increasing the efficiency of DR method usage in Smart

Homes and thus allows to realize DR related objectives such as improving grid

reliability, minimizing energy costs, and reducing peak loads. To do so, the deci-

sion process is structured to enable a systematic and scenario-specific selection.

To support this decision process, the framework contains valuable advice for

(technical) implementation(s) on different HEMS, derived from literature and

experts.

From a research perspective, our results can be used for supporting the manage-

ment of complex energy structures in changing scenarios and for investigations of

whether such a framework can increase user acceptance by encouraging more sus-

tainable behavior and consumption. Moreover, researchers can compare DR

methods in specific scenarios (e.g., to compare methods they develop to other

methods). Making an evaluation with benchmarking datasets possible increases the

comparability of methods.

For practice, the integration of the framework in a HEMS can support the management

of increasing complexity in the Smart Home context and in urban infrastructures (e.g.,

Smart Cities). Consequently, new appliances and new infrastructure can be used more ef-

ficiently; for example, a PV panel can be combined with energy storage when the best

method can be selected more efficiently. Moreover, user acceptance may increase, as the

user can see his or her advantages by performing DR as well as choosing the best per-

forming DR method and that his or her preferences (welfare) are considered.

The demonstration case aims at showing the frameworks feasibility and applicability

in answering the research question by identifying the best DR method for a specific

situation. It thereby covers only a limited choice of all possible scenario specifications.

Other microgrid consumptions, cost functions, and infrastructures would deliver other

DR method results. However, the decision process remains the same and will also sup-

port the selection of the best performing DR method.

Moreover, as intelligent energy management systems, especially HEMS, have not seen

a wide implementation, a demonstration and evaluation with real-world data was not

possible. Consequently, as the rarely available (real) data lacks in addition on informa-

tion, we relied on artificial data and their corresponding limitations such as insufficient

event integration, abrupt changes in user behavior, etc.

The developed framework focusses on the residential context. Other contexts,

discussed in the literature, are industrial and commercial contexts (Gellings and

Chamberlin 1987). Future research can apply our framework to these contexts to

investigate its applicability there. For example, available DR methods will differ,

appliances might have other restrictions and available infrastructure is more di-

verse. In general, we assume that our approach is capable of supporting a deci-

sion support in other contexts as well. Most aspects of these contexts are similar

to the residential context, such as objectives and criteria. However, changes to

the REQs might be necessary. For example, other constraints or variations like
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deadlines (e.g., production deadlines) would have to be taken into account in a

more detailed way (e.g., because the supply chain needs more precise planning or

because machines can switch among multiple modes (Behrens et al. 2017)).

Moreover, pricing schemes might differ from the residential context, and flexibil-

ity might alter, as machines react differently to changes compared to a private

user.

Real data lack on additional information, for example usage times, deadline of

single appliances, etc. Since recording the additional information required from the

user is difficult, we plan to design and implement a tool that enables users to

transfer user-specific data, such as behavior patterns and preferences. To increase

user acceptance and penetration, consumers who have no knowledge in the field

should also use the framework, supported by an assistant, guiding the user.

Our approach can be combined with the TAC, from (Ketter et al. 2011). Ket-

ter et al. (Ketter et al. 2016) called the entire field a “wicked problem.” As the

TAC is a “system within a system,” the users in the TAC might change their

strategy when they have such benchmarking as decision support. Therefore, the

users react to external factors like price signals as well as events. A challenge,

then, would be to implement agents not only on the supplier side but also on

the consumer side to reach the best result for both sides or to deal with

decision-making on the supplier side. Agents on the supplier side would then

benefit from our framework and the improved decision making (selecting the

best performing DR method).

DR objectives are manifold and differ on indicators and dimensions. The con-

sideration of multiple indicators with various dimensions and no predefined

weightings thereby can impede the decision process. One method that can be

used in this case (multiple indicators, various dimensions, no predefined weights)

is the Data-Envelopment Analysis (e.g., (Charnes et al. 1978; Vine et al. 1994;

Suganthi and Samuel 2012)). So far, our framework can only consider a single ob-

jective respectively indicator or multiple ones, if the user defines weights or there

are equal weights for each objective. It seems possible to consider efficiency as

well, so not only the quality of a method’s result can be considered but also the

effort needed to achieve these results.

Appendix 1
To identify current approaches for supporting the selection of DR methods we started

with conducting a cross-database literature search with Google Scholar, IEEE Xplorer and

AISeL, based on the methodology of (Vom Brocke et al. 2009). Afterwards, existing re-

search projects and research groups are analyzed as well as the energy informatics field

and nearby research contexts. Used search items for conducting the first literature search

were: “Demand Side Management”, “Demand Response”, “Evaluation”, “Comparison”,

“Benchmark” and “Selection”. Demand-Side-Management is included, because it is often

used as synonym to DR (Barbato and Capone 2014), even it is the superordinate concept

and thus includes DR. We further included evaluation, comparison and benchmark as

search items because we discovered during the iterative search that these items are rele-

vant to the DR method selection process.
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Appendix 2

Fig. 7 Defining the objectives (schematic drawing)

Fig. 8 Composition of a user-specific scenario (schematic drawing)
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Fig. 9 Analysis of the results (schematic drawing)

Fig. 10 Monitoring and event reaction (schematic drawing)
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Appendix 3

All four methods use the same optimization model, with an objective function aiming

at cost reduction, as this was selected by the user in our demonstration scenario. Both

greedy based methods are classified as direct control. This means, the centralized

HEMS is gathering the data from all seven households and shifting the loads afterwards

by sending a controlling signal. However, the data is not leaving the HEMS and the

utility company does not receive any user-specific data. MAS with communication

means, that each household has an agent, which monitors and controls its own appli-

ances. Each agent can be considered as a HEMS. Consolidation is then achieved by

communicating the summarized load profiles to the other agents. As the agents are

communicating with each other, this might result in less created peaks. Contrary to this

approach, the MAS without communication do not communicate with the other

agents. Therefore, artificial and new peaks might be derived, because all agents or

HEMS shift their load to the same time.

Appendix 4
Based on (Behrens et al. 2017; Behrens et al. 2014) we derived a mathematical model.

Let N be all considered living units and An be all the appliances of living unit n ∈N and

ω be the sample rate of the discrete model (number of time periods) over one day.

Moreover, let xh ¼ P
n∈N

X
a∈An

hhn;a with h∈Z ¼ f0; 1;…;ωg be the sum of all appliances

a ∈An of all living unit n ∈N in the timeslot h.

Let lkn;a be the load profile in a local time interval k∈Tl ¼ f0; 1; ::; δn;ag; ln;a ¼
X
k∈Tl

lkn;a the load sum and δn, a the length of load a ∈ An. In doing so, we can transform a

given horizontal and inseparable load profile from its local time interval Tl to the global

one T (C1) through shifting the whole Tl by an appropriate constant mn, a, i.e., hk = k +

mn, a with 0 ≤mn, a ≤ ω − δn, a.

Table 5 Description of the chosen methods

Classification Method Procedure

Direct Control Max Greedy Start Take maximum/minimum load

02 Search the cheapest place for the load

03 Calculate consumption – generation

Direct Control Min Greedy 04 Find lowest result

05 Place the load at this place

End Take the next load and start again

Transactional Control MAS with comm. Start Select agent and hand over consumption plan

02 Agent places its loads (Max Knapsack)

03 Agent commits overall consumption plan

End Select next agent

Autonomous Control MAS without comm. All agents place their loads simultaneously

Agents commit individual consumption plans
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Furthermore, let γh; min
n;a be the min and γh; max

n;a be the max borders for a load xhn;a with

h ∈ T, a ∈An so we can specify, in which borders the intensity of load a can be shifted,

i.e., γh; min
n;a ≤xhn;a≤γ

h; max
n;a (C2). We note that the given load profiles have to satisfy the in-

equality γh; min
n;a ≤ lhkn;a≤γ

h; max
n;a for all k ∈ Tl to get a feasible solution.

Let αn, a be the starting and βn, a be the ending time slot of a load for an appliance a,

then we can restrict time interval T to [αn, a, βn, a] (C3). We note that the interval

length between αn, a and βn, a has to be at least the length of the load profile δn, a. to

get a feasible solution, i.e., βn, a − αn, a ≥ δn, a.

To turn constraint i on and off the for each appliance a let cia∈f0; 1g be a binary vari-

able that shows if a constraint is turned on (cia ¼ 1) or not (cia ¼ 0).

The objective function describes the total cost of the given load profiles, while

the cost in a time slot h is a function depending on h and the total load xh i.e.,

ch = c(h, xh) ∗ xh. Generally, c is a concave function with regard to the load xh,

which means that the optimal load profile is smoothed. The resulting mathematical

model that minimizes the energy costs and holds the constraints can be formulated

as follows.

minc
xhn;a

¼
Xw
h¼0

ch ¼
Xw
h¼0

c h; xh
� � � xh ð1Þ

Xw
h¼0

xhn;a ¼ ln;a ∀n∈N ; a∈An ð2Þ

xhkn;a−l
k
n;a

� �
� c1a ¼ 0 ∀k ¼ 0;…; δn;a; ∀n∈N ; a∈An ðC1Þ

xhn;a−γ
h; max
n;a

� �
� c2a≤0

γh; min
n;a −xhn;a

� �
� c2a≤0

9=
;∀n∈N ; a∈An ðC2Þ

Xβn;a
h¼αn;a

xhn;a−ln;a

0
@

1
A � c3a ¼ 0 ∀n∈N ; a∈An ðC3Þ

xhn;a≥0; c
i
a∈ 0; 1f g ∀h∈T ; n∈N ; a∈An; i ¼ 1; 2; 3 ð3Þ
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Abbreviations
API: Application Programming Interface; DR: Demand Response; DSR: Design Science Research; EV: Electric Vehicle;
HEMS: Home Energy Management Systems; kWh: Kilowatt hour; LPG: LoadProfileGenerator; MAS: Multi-Agent-System;
PV: Photovoltaic; REQ: Requirement; SOC: Solution Concept; TAC: Trading-Agent-Competition; TOUP: Time-of-Use
Pricing

Availability of data and materials
The data used is simulated by the LoadProfileGenerator from (Pflugradt 2017).

Authors’ contributions
DB conceived, designed and performed the experiments and implemented the prototype; DB and TS mainly wrote
the paper and derived the framework. DB, TS and SB revised the manuscript. SB and RK contributed by overall
suggestions through the research steps and contributing by co-authoring the motivation and outlook section. All au-
thors read and approved the final manuscript.

Authors’ information
Dennis Behrens—Dennis Behrens is research assistant and PhD student at the department of Enterprise Modeling and
Information Systems at the University of Hildesheim, Germany. His research interests focus on sustainability, demand
side management, and green business modelling. Especially Demand Response is in his focus.
Thorsten Schoormann—Thorsten Schoormann is research assistant and PhD student at the department of Enterprise
Modeling and Information Systems at the University of Hildesheim, Germany. His research interests focus on business

Appendix 5
Table 6 Results from the simulation
Method Criteria No EV 3.6 kW DC

No DSM Mean [kWh] 0.632 1.993 1.993

PAR 2.182 6.281 51.901

MSE [kWh2] 34.243 731.601 4607.545

RMSE [kWh] 5.852 27.048 67.879

Costs 20.034 56.780 70.997

savings 0.000 0.000 0.000

Greedy Min Mean [kWh] 0.632 1.993 1.993

PAR 1.942 3.774 14.251

MSE [kWh2] 26.718 291.121 1030.782

RMSE [kWh] 5.169 17.062 32.106

Costs 19.275 50.218 46.717

savings 0.038 0.116 0.342

Greedy Max Mean [kWh] 0.632 1.993 1.993

PAR 1.942 3.774 13.443

MSE [kWh2] 26.302 370.660 969.994

RMSE [kWh] 5.129 19.253 31.145

Costs 19.275 48.449 47.616

savings 0.038 0.147 0.329

MAS without communication Mean [kWh] 0.632 1.993 1.993

PAR 1.942 4.511 19.300

MSE [kWh2] 24.542 361.142 1206.356

RMSE [kWh] 4.954 19.004 34.733

Costs 19.446 56.473 46.888

savings 0.029 0.005 0.340

MAS with communication Mean [kWh] 0.632 1.993 1.993

PAR 1.942 3.725 11.876

MSE [kWh2] 25.154 308.974 884.948

RMSE [kWh] 5.015 17.578 29.748

Costs 19.716 48.693 47.158

savings 0.016 0.142 0.336

Behrens et al. Energy Informatics  (2018) 1:53 Page 24 of 28



modelling approaches as well as business process modelling languages and supporting tools (e.g., business model
development tools) that contribute to the creation, representation, and assessment of sustainability in such models.
Especially carsharing (e.g., with electric vehicles) is in the focus of his research.
Sebastian Bräuer—Sebastian Bräuer works as a postdoctoral research assistant at the department of Enterprise
Modeling and Information Systems at the University of Hildesheim, Germany. His main research interests comprise
innovative services, especially in the context of electric vehicles, including aspects of service engineering, value
networks, and product-service systems. Previous to his work at the institute, he received his doctoral degree at the
University of Münster, Germany and worked at the European Center for Information Systems (ERCIS).
Ralf Knackstedt—Ralf Knackstedt is Full Professor of the Institute for Economics and Information Systems, department
for Enterprise Modelling and Information Systems at the University of Hildesheim, Germany. His research areas include
reference modelling, product-service systems, conceptual modelling, and business process management. Before his
work at the institute, he received his doctoral degree and his habilitation at the University of Münster, Germany and
worked at the European Center for Information Systems (ERCIS). His work has been published in leading academic
journals and conferences such as Business Information Systems Engineering, IEEE Transactions on Engineering Manage-
ment, Communications of the AIS, Scandinavian Journal of Information Systems and Enterprise Modelling, and Infor-
mation Systems Architectures.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 15 May 2018 Accepted: 17 September 2018

References
Abdollahi A, Moghaddam MP, Rashidinejad M, Sheikh-El-Eslami MK (2012) Investigation of Economic and Environmental-

Driven Demand Response Measures Incorporating UC. IEEE Trans Smart Grid 3:12–25. https://doi.org/10.1109/TSG.2011.
2172996

Abdulla K, Steer K, Wirth A et al (2017) The importance of temporal resolution in evaluating residential energy storage.
Proceedings of the IEEE Power and Energy Society General Meeting

Aghaei J, Alizadeh M-I (2013) Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids
considering demand response programs and ESSs (energy storage systems). Energy 55:1044–1054. https://doi.org/10.
1016/j.energy.2013.04.048

Alam MR, St-Hilaire M, Kunz T (2013) Cost optimization via rescheduling in smart grids: A linear programming approach. 2013
IEEE International Conference on Smart Energy Grid Engineering (SEGE), pp 1–6

Albadi MH, El-Saadany EF (2008) A summary of demand response in electricity markets. Electr Power Syst Res 78:1989–1996.
https://doi.org/10.1016/j.epsr.2008.04.002

Ali SQ, Maqbool SD, Ahamed TPI, Malik NH (2012) Pursuit Algorithm for optimized load scheduling. 2012 IEEE International
Power Engineering and Optimization Conference Melaka, Malaysia, pp 193–198

Al-Sumaiti AS, Ahmed MH, Salama MMA (2014) Smart Home Activities: A Literature Review. Electr Power Compon Syst 42:
294–305. https://doi.org/10.1080/15325008.2013.832439

American Productivity and Quality Center (1993) Benchmarking Management Guide, Subsequent. Productivity Press,
Cambridge

Andersen B, Pettersen P-G (1995) Benchmarking Handbook, 1995 edition. Springer
Atabay D, Herzog S, Sänger F et al (2013) Self-adapting building models and optimized HVAC scheduling for demand side

management. 22nd International Conference and Exhibition on Electricity Distribution (CIRED2013), pp 1–4
Balijepalli VSKM, Pradhan V, Khaparde SA, Shereef RM (2011) Review of demand response under smart grid paradigm.

Innovative Smart Grid Technologies (ISGT) - India, pp 236–243
Barbato A, Capone A (2014) Optimization models and methods for demand-side management of residential users: a survey.

Energies 7:5787–5824. https://doi.org/10.3390/en7095787
Barta N, Kelly J, Parson O et al (2014) NILMTK: An open source toolkit for non-intrusive load monitoring. 5th International

Converence on Future Energy Systems, pp 265–276
Bashash S, Fathy HK (2013) Optimizing demand response of plug-in hybrid electric vehicles using quadratic programming.

2013 American Control Conference, pp 716–721
Basmadjian R, Botero JF, Giuliani G et al (2016) Making data centres fit for demand response: introducing GreenSDA and

GreenSLA contracts. IEEE Trans Smart Grid
Bassamzadeh N, Ghanem R, Kazemitabar SJ (2014) Robust scheduling of smart appliances with uncertain electricity prices in

a heterogeneous population. Entergy Build 84:537–547
Beaude O, Lasaulce S, Hennebel M (2012) Charging games in networks of electrical vehicles. Network Games, Control and

Optimization (NetGCooP). IEEE, pp 96–103
Behrens D, Gerwig C, Knackstedt R, Lessing H (2014) Selbstregulierende Verbraucher im Smart Grid: Design einere

Infrastruktur mit Hilfe eines Multi-Agenten-Systems. Proceedings of the Multikonferenz Wirtschaftsinformatik 2014

Behrens et al. Energy Informatics  (2018) 1:53 Page 25 of 28

https://doi.org/10.1109/TSG.2011.2172996
https://doi.org/10.1109/TSG.2011.2172996
https://doi.org/10.1016/j.energy.2013.04.048
https://doi.org/10.1016/j.energy.2013.04.048
https://doi.org/10.1016/j.epsr.2008.04.002
https://doi.org/10.1080/15325008.2013.832439
https://doi.org/10.3390/en7095787


Behrens D, Schoormann T, Knackstedt R (2016) D Datensets für Demand-Side-Management – Literatur-Review-Basierte
Analyse und Forschungsagenda. In Mayr, HC and Pinzger, M (Eds.): Lecture notes in informatics (LNI) (INFORMATIK 2016),
Gesellschaft für Informatik e.V., pp. 1301–1315

Behrens D, Schoormann T, Knackstedt R (2017) Towards a taxonomy of constraints in demand-side-management-methods
for a residential context. Proceedings of the 20th International Conference on Business Information Systems (BIS),
Poznan, Poland. Lecture Notes in Business Information Processing (LNBIP). Springer, p 283

Berthold A, Diekerhof M, Gross S et al (2017) Requirements for flexible districts to provide smart grid demand side services.
PowerTech, 2017 IEEE Manchester. IEEE, pp 1–6

Blank M, Gandor M, Nieße A et al (2015) Regionally-specific scenarios for smart grid simulations. Power Engineering, Energy
and Electrical Drives (POWERENG), 2015 IEEE 5th International Conference on. IEEE, pp 250–256

Bui V-H, Hussain A, Kim H-M (2017) Optimal operation of microgrids considering auto-configuration function using
multiagent system. Energies 10:1484. https://doi.org/10.3390/en10101484

Camp RC (2006) Benchmarking: the search for industry best practices that lead to superior performance. Productivity Press,
University Park, Il

Cao HÂ, Beckel C, Staake T (2013) Are domestic load profiles stable over time? An attempt to identify target households for
demand side management campaigns. IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society,
pp 4733–4738

Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2:429–444.
https://doi.org/10.1016/0377-2217(78)90138-8

Chaudhari RB, Dhande DP, Chaudhari AP (2014) Home energy management system. Int J Adv Electron Commun Syst 3:
1417–1425.

Conejo AJ, Morales JM, Baringo L (2010) Real-time demand response model. IEEE Trans Smart Grid 1:236–242. https://doi.org/
10.1109/TSG.2010.2078843

Cooper WW, Seiford LM, Tone K (2006) Data Envelopment Analysis: A Comprehensive Text with Models, Applications,
References and DEA-Solver Software: A Comprehensive Text with Models, 2nd ed. 2007. Springer, New York

Cupelli LJ, Schutz T, Jahangiri P et al (2018) Data center control strategy for participation in demand response programs. IEEE
Trans Ind Inform

de Boer L, Labro E, Morlacchi P (2001) A review of methods supporting supplier selection. Eur J Purch Supply Manag 7:75–89.
https://doi.org/10.1016/S0969-7012(00)00028-9

Deming WE (1982) Quality, productivity, and competitive position. Massachusetts Institute of Technology, Center for
Advanced Engineering Study, Cambridge

Dyson ME, Borgeson SD, Tabone MD, Callaway DS (2014) Using smart meter data to estimate demand response potential,
with application to solar energy integration. Energy Policy 73:607–619

Fathi M, Gholami M (2012) Localized demand-side management in electric power systems. Iranian Conference on Smart Grids, pp 1–4
Fulli G, Masera M, Covrig CF et al (2017) The EU electricity security decision-analytic framework: status and perspective

developments. Energies 10:425
Gellings CW (1985) The concept of demand-side management for electric utilities. Proceedings of the IEEE, pp 1468–1470
Gellings CW, Chamberlin JH (1987) Demand-side management: concepts and methods, 2nd ed. Prentice Hall, Lilburn
Gerwig C, Behrens D, Lessing H, Knackstedt R (2015) Demand side management in residential contexts - a literature review.

In: Lecture Notes in Informatics, pp 93–107
Gkatzikis L, Koutsopoulos I, Salonidis T (2013) The role of aggregators in smart grid demand response markets. IEEE J Sel Areas

Commun 31:1247–1257. https://doi.org/10.1109/JSAC.2013.130708
Goebel C, Jacobsen H-A, del Razo V et al (2014) Energy Informatics - Current and Future Research Directions. Bus Inf Syst Eng 6:25–31
Gyamfi S, Krumdieck SP, Brackney L (2010) Pattern recognition residential demand response: an option for critical

peak demand reduction in New Zealand. Univ Canterb Res Repos
Han J, Choi C, Park W et al (2014) Smart home energy management system including renewable energy based on ZigBee

and PLC. IEEE Trans Consum Electron 60:198–202. https://doi.org/10.1109/TCE.2014.6851994
Heib R, Daneva M, Scheer A-W (1997) Benchmarking as a controlling tool in information management. In: Modelling

techniques for business process re-engineering and benchmarking. Springer, Boston, pp 298–309
Ho W, Xu X, Dey PK (2010) Multi-criteria decision making approaches for supplier evaluation and selection: a literature review.

Eur J Oper Res 202:16–24. https://doi.org/10.1016/j.ejor.2009.05.009
Hoogsteen G, Molderink A, Hurink JL, Smit GJM (2016) Generation of flexible domestic load profiles to evaluate Demand Side

Management approaches. 2016 IEEE International Energy Conference (ENERGYCON), pp 1–6
Hu Q, Li F (2013) Hardware Design of Smart Home Energy Management System With Dynamic Price Response. IEEE Trans

Smart Grid 4:1878–1887. https://doi.org/10.1109/TSG.2013.2258181
Javed F, Arshad N, Wallin F et al (2012) Forecasting for demand response in smart grids: An analysis on use of anthropologic and

structural data and short term multiple loads forecasting. Appl Energy 96:150–160. https://doi.org/10.1016/j.apenergy.2012.02.027
Jiang B, Fei Y (2015) Smart Home in Smart Microgrid: A Cost-Effective Energy Ecosystem With Intelligent Hierarchical Agents.

IEEE Trans Smart Grid 6:3–13. https://doi.org/10.1109/TSG.2014.2347043
Johnson RE, Foote B (1988) Designing Reusable Classes. J Object-Oriented Program 1:22–35
Jovanovic R, Bousselham A, Bayram IS (2016) Residential Demand Response Scheduling with Consideration of Consumer

Preferences. Appl Sci 6:16. https://doi.org/10.3390/app6010016
Keerthisinghe C, Verbič G, Chapman AC (2014) Evaluation of a multi-stage stochastic optimisation framework for energy management

of residential PV-storage systems. 2014 Australasian Universities Power Engineering Conference (AUPEC), pp 1–6
Ketter W, Collins J, Reddy PP, Flath CM (2011) The Power Trading Agent Competition. Social Science Research Network, Rochester
Ketter W, Peters M, Collins J, Gupta A (2016) Competitive Benchmarking: An IS Research Approach to Address Wicked

Problems with Big Data and Analytics. Manag Inf Syst Q 40:1057–1080
Khadar A, Khan JA, Nagaraj MS (2017) Research Advancements Towards in Existing Smart Metering over Smart Grid. Int J Adv

Comput Sci Appl IJACSA 8:84–92. https://doi.org/10.14569/IJACSA.2017.080511
Koolen D, Sadat-Razavi N, Ketter W (2017) Machine Learning for Identifying Demand Patterns of Home Energy Management

Systems with Dynamic Electricity Pricing. Appl Sci 7:1160. https://doi.org/10.3390/app7111160

Behrens et al. Energy Informatics  (2018) 1:53 Page 26 of 28

https://doi.org/10.3390/en10101484
https://doi.org/10.1016/0377-2217(78)90138-8
https://doi.org/10.1109/TSG.2010.2078843
https://doi.org/10.1109/TSG.2010.2078843
https://doi.org/10.1016/S0969-7012(00)00028-9
https://doi.org/10.1109/JSAC.2013.130708
https://doi.org/10.1109/TCE.2014.6851994
https://doi.org/10.1016/j.ejor.2009.05.009
https://doi.org/10.1109/TSG.2013.2258181
https://doi.org/10.1016/j.apenergy.2012.02.027
https://doi.org/10.1109/TSG.2014.2347043
https://doi.org/10.3390/app6010016
https://doi.org/10.14569/IJACSA.2017.080511
https://doi.org/10.3390/app7111160


Kosek AM, Costanzo GT, Bindner HW, Gehrke O (2013) An overview of demand side management control schemes
for buildings in smart grids. 2013 IEEE International Conference on Smart Energy Grid Engineering (SEGE)

Kuzlu M, Pipattanasomporn M, Rahman S (2012) Hardware Demonstration of a Home Energy Management System for
Demand Response Applications. IEEE Trans Smart Grid 3:1704–1711. https://doi.org/10.1109/TSG.2012.2216295

Berkeley Lab (2018) Distributed Energy Resources Customer Adoption Model (DER-CAM) | Building Microgrid. https://
building-microgrid.lbl.gov/projects/der-cam. Accessed 2 Jan 2018

Lawrence TM, Watson RT, Boudreau M-C, Mohammadpour J (2017) Data Flow Requirements for Integrating Smart
Buildings and a Smart Grid through Model Predictive Control. Procedia Eng 180:1402–1412. https://doi.org/10.
1016/j.proeng.2017.04.303

Li X, Zang C, Liu W et al (2012) Metropolis Criterion Based Fuzzy Q-Learning Energy Management for Smart Grids.
TELKOMNIKA Indones J Electr Eng 10:1956–1962. https://doi.org/10.11591/telkomnika.v10i8.1626

Lugauer W, Gann T, Puchan J (2012) Benchmarking-Methoden: Bestandsaufnahme, Synopse und Entwicklungspotentiale. E-J
Pract Bus Res. https://doi.org/10.3206/0000000046

Ma Z, Billanes JD, others (2016) The island smart energy system and market. In: Power and Energy (PECon), 2016 IEEE
International Conference on. IEEE, pp 369–400

Ma Z, Callaway D, Hiskens I (2010) Decentralized charging control for large populations of plug-in electric vehicles. Decision
and Control (CDC), 2010 49th IEEE Conference on IEEE, pp 206–212

Maqbool SD, Ahamed TPI, Ali SQ et al (2012) Comparison of pursuit and ε-Greedy algorithm for load scheduling under real
time pricing. 2012 IEEE International Conference on Power and Energy (PECon), pp 515–519

Mas-Colell A, Whinston MD, Green JR (1995) Microeconomic Theory, New. Oxford Univ Pr, New York
Masera M, Bompard EF, Profumo F, Hadjsaid N (2018) Smart (Electricity) Grids for Smart Cities: Assessing Roles and Societal

Impacts. Proc IEEE 106:613–625
Merkert L, Harjunkoski I, Isaksson A et al (2015) Scheduling and energy – Industrial challenges and opportunities. Comput

Chem Eng 72:183–198. https://doi.org/10.1016/j.compchemeng.2014.05.024
Mohamed A, Salehi V, Mohammed O (2012) Real-Time Energy Management Algorithm for Mitigation of Pulse Loads in

Hybrid Microgrids. IEEE Trans Smart Grid 3:1911–1922. https://doi.org/10.1109/TSG.2012.2200702
Mohsenian-Rad A-H, Wong VW, Jatskevich J et al (2010) Autonomous demand-side management based on game-theoretic

energy consumption scheduling for the future smart grid. IEEE Trans Smart Grid 1:320–331
Molderink A, Bakker V, MGC B et al (2010) Management and Control of Domestic Smart Grid Technology. IEEE Trans Smart

Grid 1:109–119. https://doi.org/10.1109/TSG.2010.2055904
Monacchi A, Egarter D, Elmenreich W et al (2014) GREEND: An Energy Consumption Dataset of Households in Italy and

Austria. IEEE International Conference on Smart Grid Communications (SmartGridComm)
MOSAIK (2018) mosaik — A flexible Smart Grid co-simulation framework. https://mosaik.offis.de/. Accessed 2 Jan 2018
O’Connell N, Pinson P, Madsen H, O’Malley M (2014) Benefits and challenges of electrical demand response: A critical review.

Renew Sustain Energy Rev 39:686–699. https://doi.org/10.1016/j.rser.2014.07.098
Palensky P, Dietrich D (2011) Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads.

IEEE Trans Ind Inform 7:381–388. https://doi.org/10.1109/TII.2011.2158841
Park Y-G, Kim C-W, Park J-B (2016) MILP-Based Dynamic Efficiency Scheduling Model of Battery Energy Storage Systems. J

Electr Eng Technol 11:1063–1069
Pflugradt N (2017) LoadProfileGenerator. In: LoadProfileGenerator http://www.loadprofilegenerator.de/. Accessed 2 Jan 2018
Raza MQ, Haider MU, Ali SM et al (2013) Demand and Response in Smart Grids for Modern Power System. Smart Grid Renew

Energy 04:133. https://doi.org/10.4236/sgre.2013.42016
Samadi P, Mohsenian-Rad H, Schober R, Wong VWS (2012) Advanced Demand Side Management for the Future Smart Grid

Using Mechanism Design. IEEE Trans Smart Grid 3:1170–1180. https://doi.org/10.1109/TSG.2012.2203341
Schloegl F, Rohjans S, Lehnhoff S et al (2015) Towards a classification scheme for co-simulation approaches in energy systems.

Smart Electric Distribution Systems and Technologies (EDST), 2015 International Symposium on. IEEE, pp 516–521
Seidel S, Recker J, Vom BJ (2013) Sensemaking and Sustainable Practicing: Functional Affordances of Information Systems in

Green Transformations. Manag Inf Syst Q 37:1275–1299
Sellak H, Ouhbi B, Frikh B, Palomares I (2017) Towards next-generation energy planning decision-making: An expert-based

framework for intelligent decision support. Renew Sustain Energy Rev 80:1544–1577. https://doi.org/10.1016/j.rser.2017.07.013
Sianaki OA, Hussain O, Tabesh AR (2010) A Knapsack problem approach for achieving efficient energy consumption in

smart grid for endusers’ life style. IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity
Supply, pp 159–164

Siano P (2014) Demand response and smart grids—A survey. Renew Sustain Energy Rev 30:461–478. https://doi.org/10.1016/j.
rser.2013.10.022

Simmhan Y, Aman S, Cao B et al (2011) An Informatics Approach to Demand Response Optimization in Smart Grids.
University of Southern California

Soliman HM, Leon-Garcia A (2014) Game-Theoretic Demand-Side Management With Storage Devices for the Future Smart
Grid. IEEE Trans Smart Grid 5:1475–1485. https://doi.org/10.1109/TSG.2014.2302245

Song L, Xiao Y, van der Schaar M (2014) Non-stationary demand side management method for smart grids. 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 7759–7763

Steen D, Le T, Bertling L (2012) Price-Based Demand-Side Management For Reducing Peak Demand In Electrical Distribution
Systems – With Examples From Gothenburg. Chalmers Publication Library (CPL)

Steinbrink C, Lehnhoff S, Rohjans S et al (2017) Simulation-Based Validation of Smart Grids–Status Quo and Future Research
Trends. International Conference on Industrial Applications of Holonic and Multi-Agent Systems. Springer, pp 171–185

Stoyanova I, Gümrükcü E, Monti A (2017) Modular modeling concept and multi-domain simulation for smart cities. Innovative
Smart Grid Technologies Conference Europe (ISGT-Europe), 2017 IEEE PES. IEEE, pp 1–6

Suganthi L, Samuel AA (2012) Energy models for demand forecasting—A review. Renew Sustain Energy Rev 16:1223–1240.
https://doi.org/10.1016/j.rser.2011.08.014

Vergara PP, Rey JM, Shaker HR et al (2018) Distributed Strategy for Optimal Dispatch of Unbalanced Three-Phase Islanded
Microgrids. IEEE Trans Smart Grid

Behrens et al. Energy Informatics  (2018) 1:53 Page 27 of 28

https://doi.org/10.1109/TSG.2012.2216295
https://building-microgrid.lbl.gov/projects/der-cam
https://building-microgrid.lbl.gov/projects/der-cam
https://doi.org/10.1016/j.proeng.2017.04.303
https://doi.org/10.1016/j.proeng.2017.04.303
https://doi.org/10.11591/telkomnika.v10i8.1626
https://doi.org/10.3206/0000000046
https://doi.org/10.1016/j.compchemeng.2014.05.024
https://doi.org/10.1109/TSG.2012.2200702
https://doi.org/10.1109/TSG.2010.2055904
https://mosaik.offis.de
https://doi.org/10.1016/j.rser.2014.07.098
https://doi.org/10.1109/TII.2011.2158841
http://www.loadprofilegenerator.de
https://doi.org/10.4236/sgre.2013.42016
https://doi.org/10.1109/TSG.2012.2203341
https://doi.org/10.1016/j.rser.2017.07.013
https://doi.org/10.1016/j.rser.2013.10.022
https://doi.org/10.1016/j.rser.2013.10.022
https://doi.org/10.1109/TSG.2014.2302245
https://doi.org/10.1016/j.rser.2011.08.014


Verschae R, Kawashima H, Kato T, Matsuyama T (2014) A distributed coordination framework for on-line scheduling and
power demand balancing of households communities. 2014 European Control Conference (ECC), pp 1655–1662

Vine EL, Eto J, Shown L et al (1994) Evaluation of Commercial Lighting Programs: A DEEP Assessment. 1994 ACEEE Summer
Study Energy Effic Build Meas Eval 8:235

Vom Brocke J, Simons A, Niehaves B et al (2009) Reconstructing the giant: on the importance of rigour in documenting the
literature search process. 17th European Conference on Information Systems (ECIS 2009), Proceedings, pp 2206–2217

Wang Q, Wang J, Guan Y (2013) Stochastic Unit Commitment With Uncertain Demand Response. IEEE Trans Power Syst 28:
562–563. https://doi.org/10.1109/TPWRS.2012.2202201

Yang P, Tang G, Nehorai A (2012) Optimal time-of-use electricity pricing using game theory. 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 3081–3084

Yener B, Taşcıkaraoğlu A, Erdinç O et al (2017) Design and Implementation of an Interactive Interface for Demand Response
and Home Energy Management Applications. Appl Sci 7:641. https://doi.org/10.3390/app7060641

Zakariazadeh A, Jadid S, Siano P (2014) Stochastic multi-objective operational planning of smart distribution systems
considering demand response programs. Electr Power Syst Res 111:156–168. https://doi.org/10.1016/j.epsr.2014.02.021

Zhao Z, Lee WC, Shin Y, Song K-B (2013) An Optimal Power Scheduling Method for Demand Response in Home Energy
Management System. IEEE Trans Smart Grid 4:1391–1400. https://doi.org/10.1109/TSG.2013.2251018

Behrens et al. Energy Informatics  (2018) 1:53 Page 28 of 28

https://doi.org/10.1109/TPWRS.2012.2202201
https://doi.org/10.3390/app7060641
https://doi.org/10.1016/j.epsr.2014.02.021
https://doi.org/10.1109/TSG.2013.2251018

	Abstract
	Demand response in the residential context
	Related work
	Research design
	Phase 1: Gathering Requirements
	Phase 2: Deriving Solution Concepts
	Phase 3: Assembling the framework
	Phase 4: Demonstration

	Decision support framework
	Gathering requirements
	Deriving solution concepts
	SOC1—Let the user select the objectives to be achieved
	SOC2—Provide energy consumption data and let the users specify their energy consumption profile
	SOC3—Sample the data, fill gaps, and reject unreliable data
	SOC4—Add metadata to the methods and form groups
	SOC5—Establish measurements and provide needed data
	SOC6—Identify the best method(s) based on user objectives and scenarios
	SOC7—React to events by repeating the decision support process

	Assembling the framework
	Assemble the Solution Concepts
	Embed the Framework


	Demonstration
	Instantiation of framework
	Demonstration case
	Basic scenario details
	Scenario variations

	Results of the demonstration case

	Conclusion
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Abbreviations
	Authors’ contributions
	Authors’ information
	show [App5]
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	References

