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Abstract
Sensing the number of people occupying a building in real-time facilitates a number of
pervasive applications within the area of building energy optimization and adaptive
control. To ascertain occupant counts, the adoption of camera-based sensors i.e. 3D
stereo-vision and thermal cameras have grown significantly. However, camera-based
sensors can only produce occupant counts with accumulating errors. Existing methods
for correcting such errors can only correct erroneous count data at the end of the day
and not in real-time. However, many applications depend on real-time corrected
counts. In this paper, we present an algorithm named PreCount for accurately
correcting raw counts in real-time. The core idea of PreCount is to learn error estimates
from the past. We evaluated the accuracy of the PreCount algorithm using datasets
from four buildings. Also, the Normalized Root Mean Squared Error was used to evaluate
the performance of PreCount. Our evaluation results show that in real-time PreCount
achieved a significantly lower Normalized Root Mean Squared Error compared to raw
counts and other correction approach with a maximum error reduction of 68% when
benchmarked with ground truth data. By presenting a more accurate algorithm for
estimating occupant counts in real-time, we hope to enable buildings to better serve
the actual number of people to improve both occupant comfort and energy efficiency.
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Introduction
Estimating the number of people in commercial and public buildings with the aid of
pervasive sensors is receiving increasing attention. This is because the permeation of
pervasive computing have prospects in facilitating several building applications. One
application area customary to commercial outlets is in the area of disaster prevention
and management. Most commercial outlets are mandated by government laws to provide
accurate estimates of occupant counts in real-time. Lastly, occupant presence is the major
driving factor for energy consumption in buildings (Chang and Hong 2013; Caucheteux
et al. 2013). Consequently, several approaches for simulating, monitoring and optimiz-
ing energy consumption in buildings including the model based approaches have become
prominent and have received significant research attention (Arendt et al. 2016). A similar
research attention is currently given to the concept of demand response (DR) in com-
mercial buildings for facilitating the control of energy demand (Kjærgaard et al. 2016).
DR leverages on forecasts and real-time data that comprises majorly of occupant counts
to schedule DR events without impeding occupant comfort. Recently, the United States

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42162-018-0016-4&domain=pdf
mailto: fsan@mmmi.sdu.dk
http://creativecommons.org/licenses/by/4.0/


Sangogboye and Kjærgaard Energy Informatics  (2018) 1:12 Page 2 of 22

Department of Energy (US Department of Energy 2017) highlighted that, obtaining very
accurate occupant counts can facilitate a 30% energy savings in buildings and it can enable
building management systems to achieve occupant comfort in-line with the ASHRAE
standard.
A range of sensor methods has been applied for estimating occupant counts. One

line of research has studied reusing common building sensors for occupant counting.
These sensors include CO2 sensors, PIR sensors, energy metering, sensors of HVAC sys-
tems or WiFi access points (Christensen et al. 2014). However, these sensors are very
inaccurate in their estimates. Sangogboye et al. in Sangoboye and Kjærgaard (2016)
highlighted that camera-based counting technologies amongst other sensors are the
state-of-art method for obtaining high quality count estimates in commercial buildings.
Kjærgaard et al. (2016) corroborated this proposition by benchmarking the raw counts
retrieved from both 3D stereo-vision cameras and PIR sensors with manual ground
truth count estimates. The obtained count estimates from both the 3D stereo-vision
cameras and PIR sensors achieved Root Mean Square Errors (RMSE) of 3.3 and 21.7,
respectively.
However, while camera-based count estimates are more accurate than count estimates

from other sensors, these sensor suffers from errors that are accumulated and propagated
over time. For instance, when a camera sensor misses an occupant, this error is propa-
gated until another offsetting error occurs or a correction approach is adopted to remove
the error (Beltran et al. 2013). These errors are a result of several causes such as poor
lighting condition and occlusion. The state-of-art methods for correcting such erroneous
count estimates are only capable of correcting erroneous counts in the past and not in
real-time. This is because, these past correction methods are governed by constraints that
require data until the end of the day. Subsequently, statistics about this data are used to
formulate an appropriate correction model for a day (Sangoboye and Kjærgaard 2016;
Hutchins et al. 2007; Kuutti et al. 2014).
The topic of correcting erroneous count estimates in real-time is to the best of our

knowledge uncharted and it differs from the previously stated approaches for correcting
counts estimates in the past. Figure 1 illustrates the difference between past correction
and real-time correction. Here, past corrections are computed at end of the day t24:00
and it covers count correction from t24:00 back to the beginning of the day t00:00. Con-
versely, real-time corrections are computed at time tnow and it only covers the current
time of the day. For instance, the past correction algorithm presented in Sangoboye
and Kjærgaard (2016) cannot suffice for real-time correction because they require count
data for the whole day. This count data is used to instantiate the upper bound of the
probability and propagationmatrices that are used in estimating count errors. Table 1 cat-
egorizes these past correction methods into two approaches according to their correction
methodologies and inherent constraints.
From the categorization in Table 1, it can be observed that the naive approach is

insensitive to overestimation in buildings. This problem was highlighted in one of the
building cases presented in Sangoboye and Kjærgaard (2016), where the past count esti-
mates obtained through the naive approach is the same as the erroneous raw count. The
probabilistic approach, on the other hand, achieved high fidelity count estimates com-
pared to ground truth data for all building cases presented in Sangoboye and Kjærgaard
(2016). Secondly, unlike the probabilistic approach which is non-adaptable for real-time
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Fig. 1 Real-time correction versus past correction

correction, the naive approach can be easily adapted for correcting count estimates in
real-time, but it does not provide high accuracy.
In this paper, we present PreCount - an algorithm for estimating count errors in real-

time via a predictive model. This algorithm leverages the accuracy of the probabilistic
correction methods to model erroneous counts in a dataset. Subsequently, it utilizes the
derived model to accurately determine the error estimates in real-time. We make the
following contributions:

1. Formulate the real-time occupant count estimation problem using past corrections
and their corresponding erroneous raw counts.

2. Present the PreCount algorithm, how it trains several correction models and
utilizes the best correction model to estimate count error in time.

3. Present a feature analysis and preparation process that robustly identify count
errors.

4. Present an extensive evaluation result that highlights the overall performance of
PreCount in four building cases. Datasets from the first three building cases were
used to concretize and evaluate our design assumptions. The dataset from the last
building case was used to test and validate these design assumptions. Also, we
evaluate PreCount for different sizes of training data.

Table 1 Approaches for past correction

Methodology Constraints

Naive
approach

1. It subdivides past raw counts into daily
profiles with timestamps {t0, . . . , tn}, where
n is the end of the day.

It assumes that most buildings have periods
during night time where the number of
occupants go to zero.

2. It initializes the first transition of each day
i.e. transition at time t0 to zero.

3. It assigns zero to all negative counts.

Probabilistic
approach

1. It subdivides past raw counts into daily
profiles with timestamps {t0, . . . , tn}, where
n is the end of the day.

1. It requires the observed maximum
number of occupants to formulate and
compute a transition matrix.

2. It corrects each daily profile at time tn
using specific methods proposed in either
Sangoboye and Kjærgaard (2016) and Kuutti
et al. (2014).

2. It requires a complete estimation of the
transition matrix propagation for each day
to accurately correct obtained counts.
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The paper is structured as follows. In the “Related work” section, we present the state-
of-art that highlights the methods for correcting erroneous occupant counts in the past.
In the “PreCount” section, we introduce the PreCount algorithm and its elements. This
“Evaluation” section includes a detailed description of the feature preparation stage and
the correction methods used for correcting erroneous occupant counts in real-time. In
the same section, we present the building cases and datasets used in this paper, the
error patterns in our datasets and we justify the relevant features for identifying count
errors in real-time. In the “Evaluation” section, we evaluate the performance of PreCount
with three evaluation cases and with the datasets from the four building cases. In the
“Discussion” section, we discuss the limitations of this study and propose relevant
improvement opportunities. Finally, we conclude in the “Conclusions” section.

Related work
In this section, we present the State of the art for correcting and estimating occupancy
count in buildings. In the first subsection, we present the state-of-art for correcting count
errors in camera technologies while in the second subsection, we present other related
works for estimating occupant count in buildings.

Occupant count correction methods

Ihler et al. (Ihler et al. 2006) proposes a probabilistic method for correcting past raw
counts obtained from a single sensor system. This method models count data from a
single sensor by formulating a probabilistic model for each sensor, and the model differ-
entiates between usual activity and an unusual burst of occupant count. The models are
trained with six weeks of data. An inhomogeneous Poisson process is used to represent
usual human activity while a hidden Markov process is used to model bursts of unusual
behavior. Hutchins et al. (Hutchins et al. 2007) extends this method to a multi-sensor
environment by linking individual sensor streams to form a multiple-sensor probabilistic
model. This multiple-sensor probabilistic model is represented using a directed graphical
model and it is used for estimating occupant counts in buildings.
On the other hand, Sangogboye et al. (Sangoboye and Kjærgaard 2016) introduces

a training free probabilistic approach for correcting past counts named PLCOUNT.
PLCOUNT takes both occupant transitions and cumulative counts as input to formu-
late an occupant count problem in the form of both a probability and propagation
matrix respectively. Given this formulation, PLCOUNT initializes a probability matrix
by estimating the likelihood that a space is occupied by a specific number of peo-
ple. Subsequently, PLCOUNT computes the remaining time steps until the end of the
day in the probability matrix by estimating the probabilities of measured count transi-
tions. Lastly, PLCOUNT performs a backtracking operation on the propagation matrix
to compute a new count estimate for each time step. PLCOUNT reported an 86% error
reduction when it is compared to raw counts and benchmarked with ground truth
count data.

Occupant count estimation methods

Erickson et al. (Erickson et al. 2011) presented OBSERVE - an occupant count estima-
tion model that utilizes aMarkov chain to model inter-room relationships and to estimate
occupant count in real-time. In this work occupant count data were collected from 16
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node sensor network of cameras (Kamthe et al. 2009). This work proposed two models -
the closed distance Markov chain and the blended Markov chain for model occupant
transitions between states. Erickson et al. evaluated the proposed models using three
evaluation metrics - occupant variation, Jensen Shannon divergence and occupant arrival
and departure rates. The obtained evaluation result indicates that both the blended
Markov chainmodel and the closest distanceMarkov chain achieved similar performance
with the Jensen Shannon metric while the blended Markov chain model achieved better
performance for other metrics.
Beltran et al. proposed ThermoSense (Beltran et al. 2013) for estimating occupant

counts with PIR sensors and thermal based sensing. The PIR sensor is used to determine
the presence of occupants in rooms while the thermal based sensing is used to detect
the thermal footprint of occupants for deriving the count of occupants in a room. The
PIR sensor also helps to reduce the amount of energy used by the thermal-based sensor
and other components of the sensing system. To facilitate the count of people in a room,
ThermoSense firstly creates a thermal map when a room is unoccupied. This map is con-
tinually updated using the lowest temperature during times when the room is occupied or
every 15 min when no movement is discovered in a room. Secondly, ThermoSense con-
verts a measured 8X8 grid temperature values to create three feature vectors for training
and comparing three different prediction methods – Artificial Neural Network (ANN),
K-Nearest Neighbor (KNN) and Linear regression. The three feature vectors include the
total active points, number of connected components and size of the largest compo-
nent. Subsequently, an average filter is applied to the obtained raw occupancy estimate.
The comparative result obtained shows that the KNN classifier achieved the least NRMSE

value of 25%.
Erickson et al. (2009) deployed a wireless camera sensor network (Kamthe et al. 2009)

for facilitating the estimation of occupant mobility patterns in a large multi-function
university building. This work uses two predictive models for learning and estimating
occupant counts. The first model - a multivariate-gaussian method learns and predict the
count estimate of an occupant in a building. While the second model - an agent-based
model simulates the mobility patterns of occupants. The multivariate model partitions
occupant count data from several locations in a building into hourly slots and compute
the mean and standard deviate for each slot. These estimates with probability distribu-
tion function and some expert assumptions from ground truth observations are used for
randomly and collectively draw occupant distribution for each location. The agent-based
model, on the other hand, is used to simulate each occupant’s movement by modeling
itineraries, path choice, and walking behavior. The evaluation result of both models
shows similar performance and indicates that the multivariate model achieved an average
NRMSE of 42.6% while the agent-based model achieved an average NRMSE of 43.3% for
two rooms respectively.
Ekwevugbe et al. (2013) proposed an occupant estimation method that utilizes

multi-sensory data from CO2, sound level, device case temperature and motion sen-
sors to estimate occupant number in an open-plan office. This method utilizes a
symmetrical uncertainty analysis for feature selection and a genetic based search
to evaluate the optimal sensor combination for estimating occupant counts. Also,
ground truth data are obtained using a thermal camera system to train and test an
ANN estimation model. The evaluation results from the proposed model indicate
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a minimum and maximum accuracy and RMSE of 67% and 1.01 and 75% and
0.77 respectively.
Ken et al. (Christensen et al. 2014) investigated three tiers of implicit occupant estima-

tion that reuses existing infrastructure in buildings. The first tier involves the sole use
of existing infrastructure such as Dynamic Host Control Protocol (DHCP) and Address
Resolution Protocol (ARP) of network infrastructures to determine occupant counts.
The second tier involves the augmentation of existing building infrastructure with an
additional software component. For example, the Simple Network Management Proto-
col (SNMP) can be used to extract occupant activities such as typing. Also, additional
software can be installed on host devices to obtain occupant location by laterating the
signal strength of multiple Access points (AP). The third tier involves both the addition
of dedicated sensors and software to existing building infrastructure. Ken et al. compared
the accuracies of two implicit sensing - PC activity and DHCP with occupant estimates
from PIR sensors to estimate occupant vacancy and presence. Overall, the PIR sensor, PC
activity, and DHCP achieved a 91, 89 and 59% accuracy respectively.

PreCount
In this section, we propose the PreCount algorithm for accurately correcting raw counts
in real-time. One approach to achieving real-time error correction from raw counts is
to continuously learn the patterns and trends of count errors using machine learning
approaches. We introduce the following definitions and notations to distinguish the types
of datasets used in this work:

Transitions (�C) represents the difference between the entries and exits for each time-
step in a dataset.

Occupant Count (CC) is the cumulative sum of �C from the first time-step of a given
day to the last time-step of that day.

We differentiate�C andCC for raw counts in the past, raw count corrections in the past
and raw counts in real-time with subscripts r, p and rt respectively. Hence, we compute
the errors of the transitions and occupant counts in our past datasets as follows:

�Ce = �Cp − �Cr (1)

CCe = CCp − CCr (2)

PreCount employs a supervised machine learning approach to correct counts in real-
time with the assumption that CCe and error rates are repeatable over time. We validate
this assumption in later subsections. To achieve this aim, PreCount applies a number of
steps that are highlighted in Fig. 2, and we refer to the elements in the figure using their
respective numbers. The rounded rectangles in the figure are the elements applied to the
presented datasets, and the squared rectangles represent data. PreCount is comprised of
both a training and a correction phase, and it assumes that counting cameras are avail-
able to provide real-time count data (CCrt) for the correction phase. In the training phase,
PreCount assumes that a training dataset comprising of both CCr and their correspond-
ing CCe are available in a repository. In the case where there are no CCe datasets, the past
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Fig. 2 Overview of the PreCount algorithm

correction method introduced in Sangoboye and Kjærgaard (2016) is used to generate
CCp dataset, and it is subsequently used to compute CCe as specified in Eq. 2 (1). Subse-
quently, the feature preparation stage transforms the calendar and weather datasets into
feature sets. This transformation is done alongside the CCr dataset and the CCe dataset
to formulate a training feature matrix (2). We provide a definition and justification of the
calendar and weather feature sets in later subsections. After the feature preparation stage,
PreCount deploys a number of regression algorithms for correcting CCrt . These regres-
sion algorithms are trained and evaluated with the training featurematrix from the feature
preparation stage, and the best performing regression model is adopted as the correction
model (3). In the correction phase, PreCount retrieves CCrt from the installed count-
ing cameras (A) and it applies the same feature preparation step in the training phase to
obtain the test feature matrix (B). The selected correction model derived from (3) is used
to estimate the inherent count errors in CCrt . Lastly, we use the resulting error estimates
to correct CCrt (C).
In the following subsections, we present the details of the individual elements in the

proposed algorithm. Here, we proceed with a particular focus on the feature prepara-
tion stage and the description of the regression algorithms deployed in PreCount. In
subsequent subsections, we firstly introduce the datasets used in this work. Secondly,
we provide the justification for employing a machine learning approach to correct count
errors in real-time. Lastly, we highlight the rationale for including both the calendar and
weather features to formulate a feature matrix.

Feature preparation

The feature preparation stage entails the representation of all features sets analyzed in the
feature analysis stage alongside CCr , CC, and CCrt . This representation is used to obtain
a feature matrix comprising of both an input feature sets and a target feature sets. The
feature matrix is formulated as a multi-label and multi-output problem where each label
in the input feature set and the target feature set can assume a real value.
The feature preparation stage assumes that all count datasets i.e. the CCr , CC, and

the CCrt datasets have the same temporal resolution. Given that this requirement is
met, these datasets are subdivided into daily profiles dj such that they are comprised of
{d0, . . . , dm} days and each day dj is comprised of time slots {s0, . . . , sn}. Given this formu-
lation, the CCr , CCe and the CCrt datasets are transformed into matrices with axes (d, s).
Algorithm 1 differentiate the feature preparation process for the training phase, and the
correction phase and in the following, we present the input feature sets and target feature
sets for both the training and correction phase.
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Algorithm 1 PreCount Feature Preparation
Input: Cumulative count dataset CCr and CCp or CCrt
Output: Feature matrix
1: Determine calendar features for CCr or CCrt
2: Obtain all daily profile dj in CCr or CCrt and features

3: day name dnj =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, ifdj == Sunday

1, ifdj == Monday

. . . ,

6, ifdj == Saturday

4: day type dtj =
⎧
⎨

⎩

0, ifdj == Weekday

1, ifdj == Weekend

5: holiday hj =
⎧
⎨

⎩

0, ifdj == Holiday

1, ifdj == Nonholiday

6: seasons wej =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, ifdj == Winter

1, ifdj == Spring

2, ifdj == Summer

3, ifdj == Autumn
7: Determine period-of-day features for CCr or CCrt
8: Obtain the timeslots st in each dj and feature

9: period-of-day pd(dj ,st) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ifst == Dawn

1, ifst == Sunrise

2, ifst == Noon

3, ifst == Sunset

4, ifst == Night
10: Formulate feature matrix
11: Determine the current time slot sk
12: if Training phase then
13: Determine count error CCe = CCp − CCr
14: Derive input feature set = {dnj, dtj, hj,wej} ∪ {pd(dj ,s0), . . . , pd(dj ,sk)} ∪
15: {CCrdj ,s0 , . . . ,CCrdj ,sk }
16: else if Correction Phase then
17: CCe = unknown
18: Derive input feature set = {dnj, dtj, hj,wej} ∪ {pd(dj ,s0), . . . , pd(dj ,sk)} ∪
19: {CCrtdj ,s0 , . . . ,CCrtdj ,sk }
20: end if
21: Derive target feature set = {CCedj ,s0 , . . . ,CCedj ,sk }
22: Return feature matrix = {Input feature set} ∪ {Target feature set}

Input feature set

The input feature set of the feature matrix is comprised of the calendar feature, the period
of feature and all the raw count data i.e. CCr in the training phase or CCrt in the cor-
rection phase. The time slots of the obtained raw count data range from the first time



Sangogboye and Kjærgaard Energy Informatics  (2018) 1:12 Page 9 of 22

slot of the current day till the current time slot. The input feature set is formulated
as follows:

1. determine the values of all calendar feature such as day name (dn) - {Sunday,
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday}, day type (dt) -
{Weekday, Weekend}, holiday (hj) - {holiday, non-holiday} for each dj in CCr or
CCrt . These features are represented as follows: {0, 1, 2, 3, 4, 5, 6 }, {0, 1} and {0, 1}
respectively.

2. determine the period of day features (pd) of each time slot
(
dj, st

)
in CCr or CCrt

to obtain the values
{
pdd0,s0 , . . . , pddm,ss

}
where each pddj ,st can be one of these five

values {Dawn, Sunrise, Noon, Sunset and Night}. To further differentiate the
period of day features according to seasons, we include the seasonal values (we) of
each day dj in CCr or CCrt . We differentiate for all the seasons of the year {Winter,
Spring, Summer, Autumn} and we represent these features as follows: {0, 1, 2, 3, 4}
and {0, 1, 2, 3} respectively.

Given this formulation, the input feature set is comprised of all the aforementioned
features and, raw count data

({
CCrdj ,s0 , . . . ,CCrdj ,sk

}
or

{
CCrtdj ,s0 , . . . ,CCrtdj ,sk

})
. Where

sk is the current time slot, and s0 is the time slot at the beginning of the day.

Target feature set

The target feature set in the training phase is comprised of the CCe dataset{
CCedj ,sk−q

, . . . ,CCedj ,sk

}
where k is the current time slot and q is the number of time-

steps to the past. Correcting CCrt from k − q time slot to k is based on the rationale that
the occupant count at each time slot is partially dependent on the occupant counts from
previous time slots (Sangogboye and Kjærgaard 2017).
In this paper, we have varied the value of q based on the temporal granularity of a

dataset. The value of q is computed as specified in Eq. 3. In this equation, the param-
eter horizon is the recommended estimation look-ahead for an occupant model with a
default value of 180 min as specified in Sangogboye and Kjærgaard (2017). In the correc-
tion phase, the values ofCCe is unknown (?), and it is the value we seek to determine using
the selected correction model in the training phase.

q = horizon
temporal granularity

(in minutes) (3)

Table 2 presents an example feature matrix that is comprised of both an input feature set
and a target feature set. In the example feature matrix, the CCrt dataset is represented in
feature vector dj = Today. The remaining prior feature vectors are the training feature
vectors.

Table 2 Example of a PreCount feature matrix divided into input and target feature sets

Days Input feature set Target feature set

Calendar Period of day Raw count Count error

dj dnj dtj wej hj pddj ,s0 pddj ,s1 . . . pddj ,sk CCrdj ,s0 . . . CCrdj ,s1 CCrdj ,sk CCedj ,sk−10
CCedj ,sk−9

. . . CCedj ,sk
2016-08-28 0 0 3 0 0 0 . . . 3 0 . . . 57 12 0 -12 . . . 11

2016-09-01 1 1 3 0 0 4 . . . 3 -2 . . . 65 32 -7 0 . . . 2

2016-10-18 2 1 0 1 0 4 . . . 4 5 . . . 88 25 4 2 . . . 23

Today 3 1 0 1 0 4 . . . 3 -3 . . . 53 27 ? ? . . . ?
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Correction methods

In this section, we present two regression algorithms for estimating count errors in CCrt .
These regression algorithms include Random Forest (RFR) and AdaBoost Decision Tree
(ADR). Both regression algorithms are trained using the derived featurematrix comprising
of both the input and target feature sets. Subsequently, a regression model for predicting
count error CCe in CCrt is derived from the training process. In the following, we provide
the rationale for selecting these methods.

RFR

RFR is an ensemble method that utilizes decision trees as its primary estimators. This
ensemblemethod sub-samples the presented training featurematrix into equal partitions,
and for each partition, it fits an estimator. Given a test sample, each of the trained models,
is used to produce some target estimates. Subsequently, all target estimates are averaged
to produce the final target estimate. One essential tuning parameter for RFR is the number
of estimators it utilizes to fit the training feature matrix. In this paper, we have utilized
ten estimators to fit the training feature matrix. This is the same number of estimators
specified in Pedregosa et al. (2011a). This number of estimators is assumed to avoid over-
fitting issues and to achieve model generalization.

ADR

An AdaBoost regressor is a meta-estimator (Pedregosa et al. 2011b) that fits multiple
instances of the same regression algorithm to a training dataset. This is achieved by first
fitting a single regression method to the entire dataset, and subsequently, it fits addi-
tional regression methods on the same dataset where the previous regression method
are less accurate. Similar to RFR, AdaBoost ensemble enables the declaration of the num-
ber of estimators to be used in the learning procedure. However, unlike the RFR where
all of the declared estimators are fitted to a subset of the training dataset, ADR performs
incremental training that terminates when there is a perfect fit. Hence, the specified num-
ber of estimators only provides an upper limit of the number of estimators that can be
used before the learning procedure is terminated. In this paper, we have chosen the same
decision tree method as the base estimator for the AdaBoost meta-estimator hence the
acronym ADR. Also, we have utilized the default number of estimators of 50 presented in
Pedregosa et al. (2011b) to fit the training feature matrix.
Lastly, the rationale for choosing the decision tree regression method as the base esti-

mator is based on its ability to discover complex dependencies between features and its
strength in modeling both linear and non-linear relationships in a feature matrix. Also
given that the problem of correcting the count errors CCe in the obtained real-time count
CCrt is formulated as a multi-label regression problemwhere each target label can assume
a real number, these correction models are utilized in this form to predict and correct the
values of these labels. These labels, will enable a varying number of CCrt tuples to be cor-
rected as against the case of a single-label regression problem, where users are constrained
to a single output.

Building cases and datasets

In this study, we have obtained datasets from four commercial building cases. We utilize
the datasets from three of the building cases to concretize PreCount’s design assumptions,
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training, and evaluation. The dataset from the last building case is used to test and vali-
date PreCount. The four building cases are a university teaching building (UNIVERSITY),
a public library (LIBRARY), a shopping mall (MALL) and a research building (OFFICE).
The datasets obtained from these buildings cover different ways commercial buildings
are occupied and used by people. Each dataset contains both �C and CC of both the
raw counts and their corresponding past corrections respectively. The raw count correc-
tion data in the past are obtained through the probabilistic method in Sangoboye and
Kjærgaard (2016).
We have obtained 1-year worth of dataset from the first three building cases and

6-month worth of dataset from the OFFICE building. The evaluation of PreCount is
done with this 1-year datasets. The evaluation uses the past correction data from the
probabilistic approach as ground truth data. This is because of the cumbersome pro-
cess involved in manually collecting ground truth data, especially in large commercial
buildings. More so, the potency of obtaining high fidelity count estimates through the
probabilistic approach provides a viable alternative for benchmarking subsequent meth-
ods such as a method for correcting erroneous count estimates in real-time (Sangoboye
and Kjærgaard 2016). However, it should be noted that these datasets are only used for
analysis, training and evaluation purposes and not for testing and validation. Additional,
we have obtained 1-day of manually collected ground truth data from the OFFICE build-
ing. The 6-month past count data from this building and the manually collected ground
truth data are used to validate and test PreCount. In the following, we provide a detailed
description of the four building cases.
The UNIVERSITY is an 8000m2 building that records an average of 800 to 900 occu-

pants on normal weekdays. The building is primarily a teaching building with some office
spaces. The types of room in this building are comprised mainly of classrooms, study
zones, offices, and restrooms. To obtain the raw count of occupants in this building, 17
Stereo-vision cameras are installed to cover all transitions between all entrances and exits.
The cameras installed in this building are manufactured by Xovis. All the datasets from
the UNIVERSITY are obtained at a temporal granularity of 1 min.
The MALL is a 36,000m2 building containing 80 commercial spaces or shops. To obtain

the raw counts of occupants in this building, 22 Xovis Stereo-vision cameras are installed
to cover all transitions between the entrances and exits of the building. This building
records an average of 4500 to 5000 occupants on weekends and 3500 to 4500 occupants
on weekdays. All the datasets from the MALL are obtained at a temporal granularity of
15 min.
The LIBRARY is a 60,000m2 building that accommodates a library and business spaces.

It records an average of 800 to 1000 occupants on weekdays and 400 to 600 occupants on
weekends. To obtain the raw count of occupants in this building, 7 network cameras are
installed to cover all transitions between the entrances and exits of the building. The cam-
eras installed in this building are manufactured by AXIS communications and are coupled
with a software module namely Cognimatics TrueView People Counter to dynamically
recognize people entering and exiting the building. All raw counts are publicly available in
Jensen (2016), and the datasets from this building are obtained at a temporal granularity
of 1 h.
The OFFICE is a 2500m2 building that records an average of 70 to 80 occupants on

normal weekdays. The building is primarily an office building that hosts a number of
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university researchers. Thus it is mainly comprised of offices, laboratories, meeting rooms
and restrooms. To obtain the raw count of occupants in this building, 4 Stereo-vision cam-
eras are installed to cover all transitions between all entrances and exits in the building.
Also, the cameras installed in this building are manufactured by Xovis. All the datasets
from OFFICE are obtained at a temporal granularity of 1 min.

Error patterns in raw occupant counts

In this section, we utilize datasets from the first three building cases to present our inves-
tigation of the error pattern in raw counts. As stated earlier, if there exists a consistent
and repeatable error pattern, this will provide the basis for adopting a machine learning
approach to accurately estimate count errors in real-time. To investigate the assumption
that an error pattern exists, we reiterate the following proposition from Ihler et al. (2006),
Hutchins et al. (2007), and Sangoboye and Kjærgaard (2016).

Proposition 1 The rate of count errors in counting sensors is directly proportional to the
rate of transitions in the spaces they are deployed.

One imminent effect when the transition rate in a space increases is occupant occlusion.
More specifically, it is well established that counting cameras generally have signifi-
cant challenges in separating occupants that are occluded and this usually results in
undercount errors. Sangogboye et al. (Sangoboye and Kjærgaard 2016) investigated this
proposition by correlating �Cr and �Ce. The resulting correlation indicates a linear rela-
tionship between �Cr and �Ce. This linear relationship implies that a general increase in
�Cr will usually result in an increase in �Ce. Similarly, in this paper, we correlate the rate
of �Cr with �Ce for the first three building cases, and the obtained results show similar
patterns as specified in Sangoboye and Kjærgaard (2016).
Figure 3 highlights the correlation results for the UNIVERSITY building case. From this

figure, it can be observed that in the x-axis, we correlated transition bins instead of the
ordinary �Cr against �Ce. We borrowed this concept of binning from histogram charts,
and this enables us to group the sparse range of transition events in buildings. Here, we
apply a bin size of 10 which implies that bin 0 contains all absolute transitions ranging
from 0 to 9 while bin 1 contains all absolute transition events ranging from 10 to 19 and
so on. The Pearson correlation coefficient for both variables is 0.9, and this corroborates
the linear relationship observed in Sangoboye and Kjærgaard (2016).
The result from Fig. 3 corroborates the finding in Sangoboye and Kjærgaard (2016) that

count errors follow a linear pattern. The repeatable patterns. Provide the basis for training
a machine learning task.

Feature analysis

The adoption of a machine learning methodology for any given task requires the iden-
tification of well-defined feature sets that can characterize both the explicit and implicit
patterns within a problem domain. Within the contest of real-time error correction, such
feature sets should represent the factors that influence the propagation of count errors.
In the following, we present our investigation of two categories of feature sets namely the
calendar and weather feature sets that influences the propagation of CCe in buildings. We
justify the inclusion of these feature sets because of the high variability they display with
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Fig. 3 Correlation between transition bins (bin width = 10 counts) and absolute transition errors

regards toCCe Sangoboye and Kjærgaard (2016) and Shan et al. (2003). These variabilities
were investigated by correlating count datasets with the values of these feature sets.

Calendar features

Occupant patterns in buildings vary across different types of days. Figure 4 highlights the
occupant pattern on weekends and weekdays for the UNIVERSITY dataset. These patterns
were derived by computing the mean of all daily profiles in CCp with a 95% confidence
interval. Following the proposition in 1, the magnitude difference in both occupant pat-
terns indicates that the error rates associated with these patterns will vary significantly.
Also, we hypothesize that since each day of a weekmay be characterized by different occu-
pant schedules and that more patterns may exist for other day types such as holidays, we

Fig. 4 Occupant pattern on weekends vs weekdays
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argue that the features set for correcting CCe in real-time should include such calendar
features to navigate the different occupant patterns that may arise thereof.

Weather features

Stereo-vision, thermal and other camera technologies are significantly susceptible to poor
lighting conditions (Shan et al. 2003). For instance, (Shan et al. 2003) indicated that this
may be as a result of the predominant high luminance during summer and spring seasons,
and the predominant poor luminance during autumn and winter seasons for the standard
European weather condition. We utilize two independent datasets namely the period of
a day and seasonal variation to investigate how the varying luminance conditions affect
counting cameras.
To quantify the influence of the period of the day on count errors, we extract �Cp and

�Ce datasets associated with the five (5) periods of the day namely:

Sunset periods between the time in the evening when the sun is about to disappear below
the horizon, and the time it disappears

Noon periods between the time when the sun is at its highest point and the beginning of
sunset

Sunrise periods between the time in the morning when the top of the sun breaks the
horizon and the beginning of noon

Dawn periods between the time in the morning when the sun is at a specific number of
degrees below the horizon and the beginning of sunrise

Night periods between the astronomical dusk of one day and the astronomical dawn of
the next

The period of day dataset was obtained using a Python library given in Kennedy (2010),
and these datasets are obtained at the same resolution as the count datasets and for the
same coverage period.
To obtain a unified view of how both the�Cp and�Ce datasets that are associated with

each period of the day, we compute the following normalization.

ˆ�Ce(a) =
∑m

j=1
∣
∣xaj

∣
∣

∑n
i=1

∑m
j=1

∣
∣xij

∣
∣

(4)

where xij denotes the j-th element of i-th period of the day, xaj represents the j-th element
of a period of the day and ˆ�Ce(a) is the normalized dataset of �Ce for the a-th period
of the day. The value of m may differ depending on the number of elements in �Ce(a).
The same normalization is performed on the �Cp dataset. Subsequently, we computed
the error rate for each period of the day from the normalized datasets as follows:

ErrorRate = ˆ�Ce
ˆ�Cp

∗ 100% (5)

Figure 5 highlights this correlation for the dataset obtained from the UNIVERSITY build-
ing case. From Fig. 5, it can be observed that both the autumn and winter seasons have
similar patterns for the same periods, while for both the spring and summer seasons, only
the sunrise and noon periods are similar. Similarly, the error rates for the winter, summer,
and autumn seasons are at the highest during the night periods. However, during spring,
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Fig. 5 Correlation between periods of the day, normalized transition and transition errors

the error rates are at the highest at dawn. Figure 5 also shows some distinctiveness com-
pared to Fig. 3. The noon period of the day has the highest proportion of all transitions
for all seasons. However, the error rates during this period are low compared generally
to dawn, sunset and night periods of the day. This indicates that while more accumulated
�Ce are propagated during periods with more�Cr , the rate at which these�Ce are prop-
agated are entirely independent of the rate of �Cr . We argue that this variation in error
rates are well captured with the period of the day and seasonal variation feature sets.

Evaluation
In this section, we present an evaluation of the correctionmethods deployed in PreCount.
The correction methods are evaluated using the Normalized Root Mean Square Error
(NRMSE) metric, and a Leave-One-Out cross-validation method was adopted to ensure
a comprehensive evaluation process. This evaluation method exhaustively evaluates the
performance of each correction method such that for each evaluation step, it uses n − 1
samples in a feature matrix for training and 1 sample for testing. Thus the number of
evaluation cases equals the number of feature vectors (samples) in the feature matrix. We
favor NRMSE over other standard metrics such as Root Mean Squared Error (RMSE) and
Mean Absolute Percentage Error (MAPE) because RMSE can only be interpreted with prior
knowledge of the duration of occupant detection while NRMSE is a non-dimensional form
of RMSE. In the case of MAPE, we favor NRMSE because the occupant counts in a building
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at a time stamp can be zero, especially at night times and we want to avoid division by
zero. The NRMSE is derived from the root mean squared error (RMSE) as follows:

RMSE =
√

∑o
i=0

(
CCg(i) − CCrtc(i)

)

o
(6)

NRMSE = RMSE
CCg

(7)

where CCg(i) and CCrtc(i) are ground truth occupant counts and real-time corrected
counts respectively.
For each presented building cases and their datasets, we have utilized the entire training

data to benchmark the performance of the presented correction methods. Additionally,
we utilized the 1-day ground truth data from OFFICE to validate PreCount’s correc-
tion methods. We also present an investigation into correction cases where few datasets
are available for training and we highlight how the correction results vary given these
variations in the size of training datasets.
PreCount and its elements are implemented in Python using some Python data

processing (Jones et al. 2001) and machine learning libraries (Pedregosa et al. 2011c).
In the following we present the evaluation cases used to evaluate the performance of

PreCount:

1. We compare the overall performance of PreCount’s correction methods for each
building case and present the most accurate correction method as PreCount. In
this evaluation case, we benchmark all methods with CCp and we compare the
correction methods with both the CCrt and the naive approach.

2. We compare the performance of PreCount’s correction methods in the OFFICE

building case for the 1-day ground truth data. In this evaluation case, we
benchmark all the methods for correction with the ground truth data, and we
compare the performance of PreCount’s correction methods with the count
estimates from the naive approach, CCp, and CCrt .

3. Lastly, we evaluate the performance of PreCount with different sizes of training
datasets. For this evaluation, we varied the sizes of training datasets from 30 to 120
days. This evaluation is especially crucial in-order to investigate how the PreCount
algorithm will perform during periods of early deployment where limited training
datasets are available.

Results

Overall performance

Figures 6, 7, and 8 highlights the overall performance of PreCount’s correction meth-
ods (ADR and RFR) compared to the naive approach and CCrt in the UNIVERSITY, MALL

and LIBRARY building cases respectively. From these figures, the RFR correction achieved
better accuracy than the ADR correction method, while both methods achieved better
accuracy than the naive approach. For the UNIVERSITY building case, the ADR, RFR and
naive correction methods achieved an NRMSE of 0.85, 0.62 and 1.53 while CCrt achieved
an NRMSE of 1.60 for all test days in the count dataset. This indicates that PreCount’s
correction methods achieved a 60% error reduction for the UNIVERSITY building case
compared to the naive approach and CCrt . For the MALL building case, the ADR, RFR and
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Fig. 6 Boxplot showing the performance of each correction method for UNIVERSITY building case

naive correction method achieved an NRMSE of 0.09, 0.05 and 0.12 respectively while the
CCrt achieved an NRMSE of 0.15 for all test days in the count dataset. This indicates that
PreCount’s correction methods achieved a 58% error reduction for the MALL building
case. Lastly, for the LIBRARY building case, the ADR, RFR and the naive correction meth-
ods achieved an NRMSE of 0.15, 0.14 and 0.17 respectively while CCrt achieved an NRMSE

of 0.22 for all test days in the count dataset. This indicates that both regression methods
achieved a 36% error reduction for the LIBRARY building case.
In all the building cases, the RFR model achieved better error reduction than the RFR

model. This is because, the perfect fit of the Adaboost meta-estimator may have over-
fitted the correction model such that it is less generalization to new correction cases.

Ground truth result

Figure 9 highlights the performance of PreCount’s correction methods (ADR and RFR),
compared to the naive approach, CCrt , and CCp for the 1-day ground data in the OFFICE

building case. For this evaluation case, the ADR, RFR, CCp, and the naive approach
achieved an NRMSE of 0.11, 0.10, 0.12 and 0.31 while the CCrt achieved an NRMSE of 0.31.

Fig. 7 Boxplot showing the performance of each correction method for MALL building case
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Fig. 8 Boxplot showing the performance of each correction method for LIBRARY building case

This indicates that the PreCount correction method achieved a 68% error reduction com-
pared to the naive approach and CCrt and, a slight improvement over CCp. Also from
this evaluation, it can be observed that none of PreCount’s correction method violates the
requirements stipulated by the United States Department of Energy (US Department of
Energy 2017).

Comparison between building cases

In this section, we discuss the variation in the results obtained from all building cases. In
Table 3, we summarize the performance of all correction methods for datasets obtained
from all building cases. From this table, it can be observed that the error reduction

Fig. 9 Performance of each correction method in the OFFICE building case for 1-day ground truth data
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Table 3 A table comparing the evaluation results for all building cases

Correction methods Building cases

UNIVERSITY MALL LIBRARY OFFICE

Raw count 1.60 0.15 0.22 0.31

Naive 1.53 0.12 0.17 0.12

PreCount_RFR 0.62 0.05 0.14 0.10

PreCount_ADR 0.85 0.09 0.15 0.11

Sampling rate (Minutes) 1 15 60 1

Error reduction(%) 60% 58% 36% 68%

from the UNIVERSITY, MALL, and OFFICE buildings are more significant compared to the
LIBRARY building case. The primary cause of this disparity is the rate at which the count
datasets are a sample from the camera sensors. For instance in LIBRARY building case,
PreCount has fewer points to corrects over the course of the evaluation period because
of the high sampling rate compared to other building cases. Also, the aggregation over
a longer sampling period reduces the variability in the dataset, and such variability will
usually facilitate the training of a more robust regression model.

Training dataset size

The results in the previous section have used the entire training dataset in the training
phase of PreCount. However, there are instances where there are limited training data
such as cases where counting devices have recently been deployed. For these cases, we
investigate the accuracy of PreCounts, and we hypothesize that increasing the size of the
training dataset should increase the accuracy of PreCount.
In Fig. 10, we varied the size of the training dataset for the MALL building case from

30 days to 120 days with a unit step of 30 days, and we employ a 95% confidence inter-
val for the NRMSE. Also, we compared the NRMSE of CCrt with the NRMSE of varying size

Fig. 10 CCr versus PreCount with varying size of training dataset for the MALL building case
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of the dataset. From Fig. 10, training datasets with sizes 30, 60, 90 and 120 days achieved
an NRMSE of 0.52, 0.34, 0.26 and 0.22 respectively compared to CCrt that has an NRMSE

of 0.74. It can be observed that as the size of the training dataset increased, the NRMSE

reduced i.e. the accuracy of PreCount increased over time. Also, with just 30 days of
training data, PreCount achieved over 30% increase in accuracy compared to CCrt .

Discussion
The evaluation results presented in the four evaluation cases documents the merit of
PreCount for performing count correction in real-time. From the overall performance in
“Overall performance” section, PreCount achieved a 60%, 58% and 36% error reduction
in the UNIVERSITY, MALL and LIBRARY building respectively. The ground truth result in
“Ground truth result” section shows a 68% count error reduction in an OFFICE building.
With the results obtained from the varying training sizes of the dataset in the “Training
dataset size” section, PreCount could achieve as high as 30% error reduction with just
30 days of the training dataset. While the accuracies obtained from PreCount are signif-
icant, these accuracies are achieved within the range of some of the highlighted feature
sets in the “Feature analysis” section. Some of these feature sets were motivated from
previous literature and are known contributors to erroneous counts, especially in cam-
era technology. However, no previous literature enabled real-time count correction as
enabled by PreCount. In this section, we discuss some of the limitations in this work,
and we highlight some improvement opportunities to achieve better error detection and
correction accuracy.
Firstly, PreCount assumes that there are available datasets for formulating the feature

sets described in the “Feature analysis” section. However, in some locations, such datasets
are not readily available. To address this concern, it could be relevant to perform a fea-
ture ranking analysis alongside the feature correlation for all presented feature sets. This
can be done in the training phase of PreCount with methods such as principal compo-
nent analysis (PCA) or single value decomposition (SVD) to determine what correction
accuracy is expected with the inclusion or exclusion of each feature group.
Also in Fig. 10, we presented that increasing the size of the training dataset increases

correction accuracy. However, it should be noted that as the size of training datasets
increases, the time complexity for generating PreCount correction models also increases
linearly. Therefore, a trade-off that maximizes both the accuracy for estimating count
errors and estimation speed should be investigated to ensure that the latency for correct-
ing real-time counts are minimal for each domain application.

Conclusions
In this paper, we present PreCount - a predictive model for correcting real-time occu-
pant count data.We highlighted the non-adaptability ofmethods for correcting erroneous
occupant counts in the past to correct occupant counts in real-time. We reviewed the
accuracy of the methods for correcting occupant counts in the past and how PreCount
leverages the accuracy of the probabilistic approach to accurately produce a real-time
correction. Secondly, we present PreCount’s elements, and we deployed two correction
methods namely RFR and ADR in PreCount. Also, we present a “Feature analysis” section
that highlights the features that can represent the factors influencing erroneous occu-
pant counts in our real-time correction model. These factors were used for formulating
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a real-time count correction problem. Thirdly, we evaluate the performance PreCount’s
correction methods using three evaluation cases and with datasets from four building
cases. The first two evaluation cases benchmark the overall performance of both cor-
rection methods with CCp dataset from the first three building and ground truth data
from the last building respectively. The third evaluation case evaluates the performance
of PreCount with varying sizes of training data. Lastly, we present the results from all
the evaluation cases. The results from the first evaluation case indicate that RFR outper-
forms ADR in all building cases. In the second evaluation case, both correction methods
achieved a maximum error reduction of 68% compared to CCrt and the naive approach
and, a slight improvement over CCp. And in the third evaluation case, PreCount achieved
an increasing accuracy as the training dataset increases and with just 30 days of training
data, PreCount achieved an error reduction of over 30% when compared to raw counts.
From the foregoing, PreCount can reliably produce high fidelity correction of occupant
counts in real-time. Also, PreCount can achieve significant error reduction when limited
training data are available for training.
In conclusion, given that PreCount achieves high fidelity correction of CCrt , PreCount

can facilitate a number of pervasive and real-time applications that spans several domains
such as disaster prevention and management, building energy management, and queue
management in retail stores.
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