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Abstract

Background: We use Agent Based Models (ABMs) to study and contrast the projected
adoption of integrated photovoltaic and battery systems in both Ontario, Canada and
Bavaria, Germany.

Methods: We carry out surveys in both jurisdictions to elicit Agent Based Model (ABM)
model parameters and to learn the decision function that determines whether an agent
purchases a system or not. We use our fitted ABMs to assess the impact of different
policy variants on Solar Photovoltaic (PV) system adoption in both jurisdictions.

Results: We find that different adoption behaviours exist in both jurisdictions, and
that, in jurisdiction, of the polices that we considered, different policy incentives bring
about the most significant increase in adoption. For example, reducing PV prices best
increases adoption in Ontario but increasing the price of electricity would have the
most significant impact in Germany.

Conclusion: ABMs allow policy makers and PV/battery manufacturers to estimate the
jurisdiction-specific impact of a range of policy prescriptions.

Keywords: Agent-based modeling, Photovoltaic systems, Distributed generation,
Energy storage

Introduction
Due to the threats posed by climate change, many jurisdictions around the world are
striving to reduce their carbon footprint, for example, agreeing to the Paris Agreement
sponsored by the United Nations1. Solar Photovoltaic (PV) systems, which have zero
carbon emissions during operation, provide a viable alternative for energy generation.
However, they produce no energy at night and highly variable energy during cloudy peri-
ods. PV systems can be combined with storage batteries to provide reliable power despite
these limitations. As a result, integrated solar PV and battery (‘PV-battery’) systems
represent an attractive alternative for low-carbon and sustainable energy generation.
Recognizing this fact, to encourage the use of solar and storage technologies, different

incentives such as subsidies and Feed-in Tariff (FiT) contracts have been implemented
in different parts of the world. Unfortunately, the same incentives have been met with
varying degrees of success in different jurisdictions (Kazhamiaka et al. 2017). The goal of
our work, therefore, is to compare outcomes from a set of plausible policies to determine
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the best policy incentive from this set that would promote the adoption of PV-battery
systems in each jurisdiction. Specifically, we use jurisdiction-specific ABMs to study the
different policy incentives that could bring about the greatest increase in adoption in each
jurisdiction2.
We find that in Ontario, reducing PV prices significantly impacts adoption but in

Germany, increasing the price of electricity would have the most significant impact.
The rest of this paper is structured as follows: In “Background” section,

we present a background and literature review. We detail our methodology in
“Methods” section. In “Ontario case study” and “Germany case study” sections, we use
this methodology to study PV-storage adoption in Ontario and Germany, respectively. In
“Comparison between Ontario and Germany case studies” section, we compare the find-
ings of both case studies. Finally, in “Conclusions” section, we conclude and present policy
implications.

Background

To encourage the use of solar and storage technologies, different incentives such as
subsidies and FiT contracts have been implemented in different parts of the world.
For example, the Renewable Energy Act (Ernewbare Energie Gesetz (EEG)) was
passed in Germany in 20003. Under this act, homeowners can purchase solar PV
systems and sell the generated electricity back to the grid at a price that is guar-
anteed for 20 years (BNetzA 2015b). When it was introduced, the FiT price was
much greater than the price of grid electricity, so all the generated renewable energy
was fed into the grid to maximize the profit that it homeowners made on their
investment.
Based on this significant government support, the renewable industry in Germany, par-

ticularly PV, grew rapidly between 2004 and 2012. The share of energy derived from
renewable sources in Germany between 2004 and 2014 increased from 11.5 to 31% – 6.8%
of this increase resulted from solar PV (Wirth and Schneider 2015). On sunny weekdays,
electricity from PV systems sometimes meets up to 35% of the instantaneous electric-
ity demand, rising to nearly 50% on weekends and holidays (Wirth and Schneider 2015).
Note that, although there was a high level of PV adoption in Germany between 2010 and
2012, the adoption rate has slowed down subsequently (BNetzA 2015a). This is prob-
ably a result of amendments to the EEG to reduce the FiT to the price that is below
the price of grid electricity, making solar investments less profitable. Instead, the higher
price of grid electricity incentivizes homeowners to install local storage and meet as
much of their needs from local generation as possible. We investigate this trend further
in this paper.
Like Germany, Ontario also has a ‘microFiT’ program targeted to homeowners and

small businesses, with a maximum generating capacity of 10 KiloWatt (kW) (IESO 2015a;
2015b; 2016). Ontario also supports a ‘net metering’ program (not available in Germany),
where a homeowner pays only for energy consumed net of local generation, and receives
credits if the generation exceeds consumption (a relatively rare event). Despite these two
programs, there has been a lower level of PV adoption in Ontario than in Germany.
Specifically, at the start of 2016, only 23,061 solar PVmicroFiT contracts had been signed,
in a population of approximately 4.9 million households (IESO 2016; Statistics Canada
2011). In this work, we seek to explain this difference in adoption using Agent-Based
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Models (described in “Methods” section), then use our insights to determine the best
policies to encourage the adoption of PV-battery systems in both Ontario and Germany.

Literature review

We restrict our review of prior work to studies that have used ABMs or similar approaches
to study the adoption of solar PV systems.
Using an ABM, Zhang et al. (2015; 2014) study PV adoption in San Diego, California,

with a focus on two policies: PV price reduction and seeding PV purchase by giving sys-
tems to low-income households. The net present value of a system influences agents’
decisions to purchase PV systems.
Zhao et al. (2011) combine ABMs and system dynamics to study PV adoption. The

purchase decision is based on income, payback period, residence location, and adver-
tisements. Also, a willingness-to-pay is used as a threshold for PV adoption. Simulating
different scenarios, this study shows that PV adoption is better incentivized in smaller
cities.
Robinson et al. (2013) conduct a household PV adoption case study on Austin, Texas.

This is based on an ABM with Geographic Information Systems (GIS) features, where
agent purchase decisions are defined using the Theory of Planned Behaviour (TPB) and
social influence. Similarly, Palmer et al. conduct a case study on PV adoption by house-
holds in Italy. The agent purchase decision variables include the agent’s income, care for
the physical environment, payback period, and social influence; income has the most sig-
nificant impact. This study has been extended by Rai et al. (2015), with a focus on rebate
programs.
Iachini et al. (2015) study the social and economic factors that affect PV adoption.

Similar to Palmer et al. (2015), the purchase decision is influenced by income, care for the
physical environment, payback period, and social influence.
Murakami (2014) focuses on the social component of PV adoption. This study incor-

porates the capacity limits for PV-grid integration, based on grid stability. This study also
considers the impact of using batteries in the grid but does not study battery adoption.
We improve on these studies by studying systems that incorporate both batteries and

PV systems, rather than PV systems alone. In addition, we conduct case studies in both
Ontario and Germany, rather than in a single jurisdiction.

Methods
We use ABMs for our study: the approach is summarized here and details can
be found in (Adepetu 2016a). An ABM system comprises of agents that have cer-
tain properties and behaviours. Agents interact with one another and with their
environment (Macal and North 2010); emergent system behaviour arises from the
aggregation of their actions and interactions. It has been found that many energy
policies can be studied using ABMs, regardless of the complexity of the policy
(Van Dam et al. 2012; Nikolic and Ghorbani 2011).
To set up our ABM, we model homeowners as agents who are influenced by their

social network when purchasing PV-battery systems (Kulviwat et al. 2009). We use Bass’s
(Bass 2004) categorization of adopters as innovators, early adopters, early majority,
late majority, and laggards. Innovators tend to adopt new products without any social
influence while laggards adopt commonplace products. We model this order of adoption
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in each agent using a social threshold T where 0 ≤ T ≤ 1 (Granovetter 1978) and
the value is drawn from a truncated normal distribution. We use our model to compare
emergent behaviour from agent decisions in response to a set of energy policies. Agent
parameters are chosen based on data sources, as detailed in each case study.
We aim to model both rational and irrational factors that affect agent behaviour

(i.e. purchasing PV-battery systems and consuming electricity). Purchasing PV-battery
systems, in particular, can depend on rational factors such as a budget, pay-
back period, system cost, and annual Return on Investment (RoI). Irrational fac-
tors include perceived impact of PV systems on the physical environment, concern
for the physical environment, prior knowledge of PV systems, and susceptibility to
social influence.
We validate our models by simulating historical adoption using the same system prices

and market conditions that existed in the past. For each level of adoption in the popula-
tion, we compare the predicted adoption to the actual adoption during the period being
simulated. This is discussed in more detail in “Validation” section.

Ontario case study
In this section, we discuss the use of an ABM to study the adoption and usage of PV-
battery systems in Ontario.

Data

We obtain electricity prices and PV-battery system prices from public sources (Ontario
Energy Board 2015b; SunSmart Solar 2016) and vendor quotes4. Hourly electricity
load data from the anonymized smart meter readings of 100 residences in Ontario,
Canada were obtained from a utility company. We estimate PV electricity generation
in Toronto, Ontario using the well-known System Advisor Model (SAM) ((Blair et al.
2014)). Environment variables that correspond to different policy scenarios are shown in
Table 15 and 2).
To determine agent parameters, we conducted a survey of Ontario residents, and asked

them about their attitudes towards purchasing PV-battery systems. Specifically, we pre-
sented survey respondents with different options for PV-battery systems, with different
system costs, payback periods, and return on investment and asked them if they would
purchase such a system6. Figure 4 shows examples of options in the survey questions. We
also gauged the respondent’s level of concern for the physical environment.
We distributed the survey online using Crowdflower (Crowdflower Inc. 2017) to target

Ontario residents. In an attempt to exclude poor-quality responses, we included questions
to test the attentiveness of respondents and removed all responses from respondents who
answered these questions incorrectly. We had 648 survey respondents from Ontario; 381
responses were valid.

Feature selection and logistic regression

To predict agent purchase decisions, we used ridge regression (Hoerl and Kennard 1970)8

10-fold cross validation to fit a decision function to the features describing the PV system.
Based on the regression, the significant factors were found to be the payback, bud-
get, whether or not the system included a battery, and system cost. Figure 5 shows the
coefficients for each variable in all 10 fold scenarios. Other variables such as the RoI,
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Table 1 Environment Parameters (At the Time of the Study)

Variable Definition Source

FiT price ($/kWh) Price for each unit of electricity
generated.

The FiT price for rooftop PV systems smaller
than 10kW in Ontario was $0.384/kWh (IESO
2015a) and in Germany wase0.125/kWh (BNetzA
2015b).

ToU Electricity
Price

Price of electricity depending on
the time of day, day of week, and
season.

Figure 1 shows the ToU prices in Ontario7 .
Germany does not have ToU prices: the price
of grid electricity is e0.295/kWh (Eurostat 2016),
(Statista 2017)

Installed Solar PV
price ($/kW)

Purchase and installation cost of PV
systems.

Figure 2 (SunSmart Solar 2016) shows the price
per kW for different kW capacities in Ontario and
Fig. 3 shows the price for different PV capacities
in Germany(BDEW 2015b).

Installed Battery
Price ($/kWh)

Purchase and installation cost of a
battery storage system.

Given market trends, we use $1,500/kWh in
Ontario (Shahan 2015) and e 1000/kWh in
Germany (Wirth and Schneider 2015)

concern for the environment, and prior knowledge of solar systems were found to be
non-influential in the purchase decision.
Table 3 shows the logistic regression variables and coefficients. Purchasing the PV-

battery system is labeled 0 and not purchasing the PV-battery system is labeled 1. All the
variables and the intercept fall within the desired 95% confidence interval. The logistic
regression model shows that as the payback period increases, an agent is less likely to
make a purchase. Also, the higher an agent’s budget, the higher the likelihood of a system
purchase. These results are as expected.

Agent behaviour

Agents in our model can consume electricity, purchase PV and/or storage systems, and
having done so, can generate electricity. We discuss these behaviours next.
We use an hourly model for electricity consumption, as described in “Data” section.

PV-Battery purchase

An agent considers buying a PV-battery system if it does not own a PV-battery system
and its social threshold parameter exceeds the fraction of its social network that owns
PV-battery systems. Algorithm 1 shows the purchase decision process.
The system options available are solar PV system capacities of 3, 6, and 9 kW, each

without and with batteries of 4 and 8 KiloWatt hour (kWh) capacity. From a list of possible
system options that an agent is willing to purchase, one option is chosen randomly. This

Table 2 Battery Operation Parameters

Variable Definition Source

Battery Depth of
Discharge (DoD)

Battery capacity proportion that can
be utilized.

Current lithium ion (Li-ion) batteries have a DoD of
≈ 80% (Ghiassi-Farrokhfal et al. 2015), (Wang et al.
2012).

Battery Life
(years)

Length of time between a battery’s
first use and its decommissioning.

Based on typical values for current Li-ion batteries,
we choose a battery life of 10 years (Wang et al.
2012)

Battery Charge
Efficiency (years)

Percentage of charging energy that
is actually stored.

Li-ion batteries have 85% charge efficiency (Wang
et al. 2012).

Battery Discharge
Efficiency (years)

Percentage of discharged energy
that is not lost as heat.

Li-ion batteries have ≈ 100% discharge efficiency
(Wang et al. 2012).



Adepetu et al. Energy Informatics  (2018) 1:6 Page 6 of 22

Table 3 Logistic Regression Result (Ontario)

Variable Coefficient Standard error z P > |z|
Intercept -1.0535 0.159 -6.641 0.000

Payback 0.0945 0.009 10.265 0.000

Battery 0.3810 0.065 5.843 0.000

PV Budget -0.2142 0.020 -10.774 0.000

System Cost 2.89e-05 4.41e-06 6.554 0.000

is because the survey shows that all the systems meet the purchase criterion, and there is
no obvious way for us to rank one system over another.

Electricity generation and storage operation

If an agents purchases a PV system, they can operate it either using a FiT or a net metering
contract. FiT contracts are attractive when the FiT rate is higher than the price of electric-
ity, otherwise the agent uses a net metering contract. Agents use energy from the battery
store, if possible, during the peak electricity price period while the battery is charged
during other periods.

Algorithm 1 The PV-Battery System Purchase Process
1: function PURCHASEPVBATTERY(Agents, Systems)
2: for all agent ∈ Agents do

3: SocialPV ← number of friends with PV
total number of friends

4:

5: if agent.PVBatt is ∅ and agent.T ≤ SocialPV then
6: ViableSys ←{} � List of systems the agent can buy
7: for sys ∈ Systems do
8: if agent.WillBuy(sys) then
9: ViableSys ← ViableSys ∪ sys

10: end if
11: end for
12: agent.PVBatt ← Random(ViableSys)
13: end if
14: end for
15: end function

Fig. 1 Ontario ToU Pricing Scheme
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Fig. 2 Solar PV Prices in Ontario

Validation

The social threshold parameter for the ith agent, Ti, is assumed to be drawn from a trun-
cated normal distribution. However, the mean and standard deviation of this distribution
are free parameters. To discover the best values for these parameters, we simulate PV
adoption for 26,160 agents between 2010 and 2014, eachmodeled using survey responses,
for different values of these parameters and compare it with the actual FiT contract adop-
tion for this period (IESO 2015b). The best FiT values of these parameters are then used
in our simulations.

Fig. 3 Solar PV Prices in Germany
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Fig. 4 Sample Survey Question: Which system(s) would you buy?

More specifically, in our simulations, the PV price, ToU electricity price, and FiT values
were chosen based on historical price and FiT data (Fig. 6 (IESO 2015b; Ontario Energy
Board 2015b; Feldman et al. 2014)). We executed 20 validation simulations for each mean
μ and standard deviation σ for the T distribution. The distribution of prediction errors
(in FiT adoption) can be seen in Figs. 7 and 8. We see that for the T distribution parame-
ters of μ = 0.42 and σ = 0.14 (highlighted box in Fig. 7), we obtained the closest match
and least error. The figure also compares the simulation results for these values and his-
torical adoption, showing a visually good fit. Hence, we use μ = 0.42 and σ = 0.14 for T
distributions to study the impact of various alternative policy prescriptions.

Fig. 5 Coefficients for Feature Selection using Ridge Regression (Ontario)
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Fig. 6 Multipliers Applied to Environmental Parameters over Time

Simulation results

Policy parameters

We use ABM simulations to study the following potential policy prescriptions over a 10-
year simulation period:

• Base case: The system prices change based on current trends (Ontario Energy Board
2015b; Parkinson 2015). To model the historical decline in FiT prices in Ontario, we
assume that the FiT price will continue to decrease linearly towards 0 $/kWh

• Less slow reduction in FiT, to continue to encourage solar adoption (compared to the
base case)

• Increase in grid (ToU) electricity price by a ratio of 6:1 (compared to 2:1 in the base
case)

• Reduced price of PV systems (compared to the base case)

Fig. 7 RMSE for different values of the parameters of the social threshold distribution, Ontario
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Fig. 8 Scaled Historical Adoption, Ontario

• Reduced price for battery storage (compared to the base case)

Figures 9 shows the changes in the model parameters over time that result from these
policy prescriptions.

PV adoption

PV adoption results for each simulation scenario are shown in Figs. 10 11 and 129. This
adoption comprises both FiT and net metering contracts. The bars show the 95% con-
fidence interval; large intervals show the difficulty of making specific predictions. For
example, it appears that both decreasing PV prices and increased ToU rates increase
adoption, but their combination performs worse than each individually. We attribute this

Fig. 9 Coefficient in Base Case and Alternative Scenarios, Ontario
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Fig. 10 Total PV Adoption, Ontario

to experimental ‘noise.’ Nonetheless, the results still inform the policy selection process,
given the adoption trends.
Recall that there are approximately 26,000 agents, so there is about 15% penetration

at the end of the simulation period in all cases. This growth is driven primarily by the
expected drop in PV prices, with no additional policy stimulus. Nevertheless, there is
a significant improvement possible due to the use of appropriate policies. In particular,
a reduction in PV prices, over and above market price, due to purchase tax credits for
example, can significantly improve PV adoption. It is also clear that increased grid prices
tend to suppress FiT contracts and incentivize net metering contracts.

Battery adoption

We show the adoption of batteries in different scenarios in Figs. 13 and 14. Note that
battery adoption is influenced by the attractiveness of solar PV adoption (without a PV
system being purchased, there is no need for a battery). The base case has the lowest
battery adoption. While reducing battery prices improves battery adoption, higher elec-
tricity prices can also motivate battery adoption. The best case is sue to a reduction in
both PV and battery prices simultaneously; again, something that can be accomplished
using purchase tax credits.

Fig. 11 FiT Contracts, Ontario
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Fig. 12 Net Metering Contracts, Ontario

Germany case study
In this section, we use ABMs to study PV-battery system adoption in Germany. In the
interests of space, we only highlight the differences between this study and the Ontario
study. Note that, unlike Ontario, homeowners in Germany can only sign FiT contracts,
but not net metering contracts. Therefore, if the FiT price is lower than the price of grid
electricity, an agent sells its excess electricity to the grid. This is similar in principle to net
metering. However, if the FiT price is higher than the price of grid electricity, and agent
sells all of its PV generation to the grid at that price and uses electricity from the grid
instead.

Data

We obtain German electricity prices from public sources: (Eurostat 2016), (Statista 2017).
PV-battery system prices are publicly available for Germany and are shown in Table 1.
Lacking load traces from measurements, we use a load simulator (Pflugradt 2017) to

generate hourly load traces for households with different numbers of residents. We use
HOMER (HOMER 2016) to estimate solar PV generation, based on radiation measured
by solar stations in Germany. To determine agent parameters, we conducted a survey,
similar to the Ontario survey, also using CrowdFlower (Crowdflower Inc. 2017), but only

Fig. 13 Battery adoption in different scenarios with single variables changed from base case, Ontario
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Fig. 14 Battery adoption in different scenarios with multiple variables changed from base case, Ontario

open to to German residents. Specifically, we asked which solar and solar/storage systems
a respondent would consider purchasing, and how much the respondents care about fac-
tors such as system cost. An example question is shown in Fig. 1510. As with the Ontario
survey, we added test questions to check if respondents were paying attention to the ques-
tions. We had 520 survey responses from Germany using CrowdFlower, out of which 150
were judged to be valid because they answered our attention test question correctly.

Feature selection and logistic regression

As in the Ontario case study, we use ridge regression and 10-fold cross validation to find
a decision function for feature selection. We find that the payback period, budget of the
respondent, greenness, and the stated social effect have a significant impact of PV pur-
chase decisions (Fig. 16). Based on the agent decision model and typical behaviours, we

Fig. 15 Sample Survey Question (Germany): Which system(s) would you buy?
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Fig. 16 Feature Selection using Ridge Regression (Germany)

found the decision function to be well-modeled by the logistic regression model parame-
ters in Table 4. Agent purchase decisions are made using the same algorithm as in Ontario
(“Agent behaviour” section).

Validation

Similar to the Ontario study, we used simulations to compare predicted adoption with
historical adoption between 2004 and 2014 (BSW-Solar 2015), because the German FiT
program started in August 2004. With the assumption that only households purchased
FiT contracts, the historical adoption was scaled to the agent population size, i.e., 13,250
agents. Environment variables such as FiT, PV prices, battery prices, and price of elec-
tricity were replicated based on historical data during the simulated years (BDEW 2015b;
Wirth and Schneider 2015; BDEW 2015a).
We find the closest fit and lowest error with a social threshold T distribution of

μ = 0.26 and σ = 0.18. Figure 17 shows the errors for different values of μ and σ . The
Fig. 18 also shows the simulated adoption from 2004 to 2014, compared to the historical
adoption during this period, showing a reasonably good fit. Therefore, in scenario simu-
lations, we assign agents a social threshold Ti from a normal distribution with μ = 0.26
and σ = 0.18, truncated at 0.

Table 4 Logistic Regression Result (Germany)

Variable Coefficient Standard error z P > |z|
Intercept 0.9492 0.203 4.673 0.000

Payback 0.0734 0.011 6.731 0.000

PV Budget -0.0933 0.019 -4.961 0.000

Greenness -0.1417 0.037 -3.810 0.000

Social Effect -0.1374 0.033 -4.151 0.000
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Fig. 17 RMSE for different values of the parameters of the social threshold distribution, Germany

Simulation results

Policy parameters

We studied the following policy scenarios (these mimic the Ontario scenarios, with minor
differences):

• Base Case: This is the scenario where current market trends continue. We vary the
environment variables based on best-fit extrapolations (Pescia et al. 2015;

Fig. 18 Scaled Historical Adoption, Germany
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Fig. 19 Coefficients for PV Price, Battery Price, and FiT in Germany

Energiewende 2015; AECOM 2015). As with Ontario, we reduce the FiT at a linear
rate towards a price of e0.0/kWh in 2025

• Reduced price of PV systems (compared to the base case)
• Increased electricity (kWh) price by a ratio of 2.4:1 (compared 1.6:1 to the base case)
• Reduced battery price (compared to the base case)

Figure 19 shows the changes in the model coefficients over time that result from these
policy prescriptions.

Fig. 20 PV Adoption in Different Scenarios with Single Variables Changed from Base Case, Germany
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PV adoption

For PV adoption, the base case in Figs. 20 and 21 shows adoption rates plateauing after an
initial small increase, then increasing only after about six years, when PV prices are suffi-
ciently low and electricity prices are expected to be high. Indeed, PV adoption in Germany
has been quite slow for the last few years, which is reflected in this analysis. However, our
study shows that in a few years, this combined change in the environment results in the
availability of PV systems with shorter payback periods, providing an economically viable
alternative to grid electricity, which will spur the adoption of PV systems.
The highest rate of adoption – 28% – is when electricity price is increased and PV prices

are simultaneously reduced. In addition, we find that increasing the price of electricity has
the most significant impact of PV adoption. Based on our findings, we expect the own-
ership of PV-battery systems to continue to increase in the long term, particularly with
self-consumption of PV electricity becoming a more attractive option for households.

Battery adoption

Figures 23 and 22 shows the battery adoption in several scenarios. In the base case, there
is a significant increase in battery adoption only after five years of very low ownership.
This is because, it is only by 2020 that the price of electricity is sufficiently high for agents
to benefit from purchasing batteries for electricity storage. This was also observed by
Kaschub et al in recent work (Kaschub et al. 2016). In addition, the scenario that combines
reduction in PV-battery system prices and increased electricity price results has highest
battery adoption among all scenarios considered.

Comparison between Ontario and Germany case studies
We now compare the results from both jurisdictions. While these results are suggestive,
we caution that they are each dependent on numerous modeling assumptions. We there-
fore have made an attempt to only draw conclusions that appear to be robust to modeling
errors. First, in comparing the penetration of solar PV systems in Ontario and Germany,

Fig. 21 PV Adoption in Different Scenarios with Multiple Variables Changed from Base Case, Germany
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Fig. 22 Battery Adoption in Different Scenarios with Single Variables Changed from Base Case, Germany

we must keep in mind that they are at already at different stages of PV adoption. Specifi-
cally, in January 2015 the household penetration of solar PV systems in Ontario was about
0.4% while that in Germany was over 3.5%, about an order of magnitude greater. This
difference in the phase of penetration results in the differneces in the adoption decision
functions shown in Tables 3 and 4. Note that in these tables, while the payback and stated
budget are common to both PV-battery system adoption functions, greenness and social
effect are also significant in the decision of German respondents to purchase PV-battery
systems, unlike Ontario respondents. Thus, taking the physical environment into consid-
eration when buying solar PV systems seems to correspond to the emphasis on renewable
energy in German policies such as the Energiewende (Pescia et al. 2015).

Fig. 23 Battery Adoption in Different Scenarios with Multiple Variables Changed from Base Case, Germany
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Second, our simulation results indicate that in the Ontario base case, we can expect
a steady increase over the entire time period (Fig. 10). In contrast, in the German base
case, we predict a plateau in adoption for the first six years, followed by an increase; the
plateau phase ends around 2019 when PV prices are sufficiently low and electricity prices
are expected to be high (Fig. 21). We believe that one of the policies suggested in this
paper would reduce the duration of the plateau. For example, a greater rate of increase in
electricity prices would cause the plateau to end about a year sooner.
Finally, of the set of polices that we studied, reducing the price of PV systems appears

to result in the highest increase adoption of PV systems in Ontario, while increasing the
price of electricity in Germany results in the highest level of adoption. We attribute this
difference to the fact that the price of electricity in Germany is relatively higher, so that
further increasing the electricity price may be the best way to further improving adoption
there.

Conclusions
We present an ABM-based approach to model and forecast PV-battery adoption and
usage, with case studies in both Ontario and Germany. Different populations adopt PV-
battery systems differently, based on local economic variables as well as non-economic
factors such as self-perceived ‘greenness.’ Thus, it is important to understand the pop-
ulation and evaluating existing adoption dynamics before suggesting new policy pre-
scriptions. We have been diligent in selecting appropriate data sources to model each
jurisdiction. Moreover, ABM parameters, such as the purchase decision function, are
determined by conducting surveys in the target populations, hence the expectation to
accurately reflect biases in the population. With this ABM-based approach, the adop-
tion and usage of PV-battery systems can be estimated before policies are actually
implemented.
We used historical adoption patterns to both choose a free model variable (the adoption

threshold) as well as to validate the accuracy of our model. With the proper selection
of ABM parameters, we find that our models are able to model historical adoption to a
reasonable degree of accuracy.
We use our ABMs to simulate the impact of a set of different policy prescriptions in

both jurisdictions.While we caution that ourmodels are only approximate, it appears that
in Germany, ‘greenness’ (i.e., concern for the environment) plays a role in the decision to
purchase a PV system, unlike Ontario. Based on this difference, as well as differences in
the number of existing solar installations, grid electricity price, and cost of PV systems in
both jurisdictions, we find that different policies bring about the most significant increase
in adoption. Specifically, reducing PV prices appear to have the most significant impact
on adoption in Ontario while increasing the price of electricity would appear to have the
most significant impact in Germany.
We also found that policy prescriptions can indeed play a significant role in the adoption

of battery systems in both jurisdictions. Without any intervention, there is insignificant
adoption of battery systems in both jurisdictions until 2021 or 2022. However, by pro-
viding tax credits or discounts for battery systems, or by increasing the price of grid
electricity, these systems could be made more desirable.
To conclude, we believe that ABMs, when properly calibrated, are a useful and prag-

matic approach to evaluate the impact of potential policy prescriptions in different
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jurisdictions. We have used this approach to compare the impact of impact of differ-
ent policies in both Ontario and Germany, finding specific policies that can be used to
significant improve adoption in both jurisdictions.

Endnotes
1 http://unfccc.int/paris_agreement/items/9485.php
2This paper summarizes and extends our prior work in using ABMs to forecast PV and

storage adoption in Ontario (Adepetu and Keshav 2016b) and Germany (Alyousef et al.
2017).

3 https://en.wikipedia.org/wiki/German_Renewable_Energy_Sources_Act
4Due to confidentiality requirements, these sources cannot be named
5 Prices listed in this study are in Canadian Dollars, unless stated otherwise
6The entire survey can be found as Appendix A.2 of Reference (Adepetu 2016a).
7Ancillary charges, such as delivery and clean energy charges, constitute a signifi-

cant part of the electricity bill in Canada. It is unclear how these charges are estimated.
Consequently, we excluded these charges from our electricity bill calculations.

8 Ridge regression allows feature selection even in the presence of correlated features.
9 Please note that in order to emphasize the difference between various policies, we

have chosen to use different Y-axis scales in our results.
10 This survey is a German translation of the one that can be found in Appendix A.2 of

Reference (Adepetu 2016a).
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