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Introduction
As a survey by the German Association of Energy and Water Industries (Bdew: Private 
Ladeinfrastruktur foerdern 2022) reveals, 65% of respondents say they would prefer to 
be able to charge an EV from their own homes. Such surveys indicate that, in future, 
EV charging will primarily be done at the LV level of the distribution grid. Since simul-
taneous charging in regions with above-average numbers of EVs can lead to localized 
load peaks, grid operators are forced to act (Bdew: Intelligente Netze für Elektromo-
bilität 2022). In step with the rise in the number of private EVs, installations of private 
chargers will likewise increase (Bdew: Private Ladeinfrastruktur foerdern 2022). Based 
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on this assumption, the remit of this paper is thus also limited to the impact on LV grids. 
Essentially, this paper examines the assumption that external factors, such as sociode-
mographics, influence the distribution of EV chargers and thus their impact on the 
power grid. Therefore, as the first objective of this paper, a potential geographic distri-
bution of wallboxes can be derived. Endeavors are directed to identifying those factors 
that may be considered for modeling the potential future distribution of wallboxes. The 
rationale for such a model is the assumption that wallboxes are not distributed uniformly 
among all households, but that in the near future there could be regions with increased 
penetration and regions with low penetration (Arnhold et al. 2018). These regions have 
to be identified. The second objective of this paper is to run a simulation based on the 
identified distribution model, which will be used to investigate potential grid capacity 
utilization under various scenarios. For this purpose, a computational grid with concrete 
consumption data is available, on the basis of which potential load peaks are to be iden-
tified. The aim here is to build on other studies to achieve results that cover as wide an 
area as possible.

In summary, the two issues to be addressed in this paper can be formulated as follows: 

1 Which data can be taken to derive a spatial wallbox distribution and how can a 
potential distribution be modeled?

2 What is the impact of such distribution on an existing power grid?

State of the art
Regarding charging behavior, different approaches identify peaks arising between 5 p.m. 
and 8 p.m. For the expected loads, especially in German publications the reference val-
ues of 3.7 kW, 11 kW and 22 kW are used as charging power in the private sector, and 
this also decisively impacts charging duration. Echternacht et al. (2018), Gruosso (2016), 
Falco et al. (2019), Quirós-Tortós et al. (2015)

The aim of investigations into this topic is to identify potential overloading of trans-
formers or power lines as well as violations of voltage tolerance limits (Weis et al. 2021). 
The aim is to show at what penetration of EVs it may be expected that such constraints 
will come into play (Echternacht et al. 2018; Weis et al. 2021; Held et al. 2019). In part, 
different grid configurations are also taken into account, depending on their geographi-
cal location, i.e. rural, suburban, or urban (Held et al. 2019). But for the most part, all 
studies have the following in common: they take specific actual grids or reference grids 
as a starting point for a capacity utilization analysis. In line with the assumption that not 
all grid participants draw power from the grid at full load at the same time, a coincidence 
factor is also sought for realistically simulating grid utilization due to e-mobility. Thus 
in Echternacht et al. (2018) and Held et al. (2019) it is assumed that not all EVs will be 
charged at full charging power at the same time. Calculation of such a factor depends on 
other aspects. On the one hand, with lower charging power, the charging time is longer 
and therefore more cars are likely to be charging at the same time (Echternacht et  al. 
2018). On the other, together with the battery’s capacity, likewise influencing the coinci-
dence factor is the state-of-charge (SOC) Held et al. (2019). In addition, the coincidence 
factor depends on the number of vehicles that are under consideration. The greater this 
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is, the lower is the coincidence factor (Echternacht et  al. 2018; Held et  al. 2019). The 
coincidence factor can thus be derived using the formula from (Roestel 2017).

In Echternacht et al. (2018) and Weis et al. (2021), the results indicate that e-mobility 
leads to an increase in power grid load but, in fact, even with high wallbox penetration 
and charging power up to 22 kW, the thermal limits of power transmission lines and 
transformers in the grids used as examples are not exceeded. This is mainly owing to the 
assumption of a low value for the coincidence factor. With a higher value, penetrations 
of as low as 20% to 30% could result in overloading (Echternacht et al. 2018; Weis et al. 
2021; Held et al. 2019). In that study, however, a voltage drop that violates these limits 
is already to be expected at a penetration of between 50% and 80% (Held et  al. 2019; 
Gruosso 2016). The fact that the results differ in part shows that the effect on the LV 
grid is mainly a function of the coincidence factor. Furthermore, the differing outcomes 
also depend on which power grids are taken as examples. But so that more general con-
clusions regarding critical penetration can be drawn, this methodology will have to be 
applied to a larger number of different grids (Echternacht et al. 2018).

Material and methods
Excursus: species distribution modeling

In developing a distribution model, Species Distribution Modeling (SDM) methodolo-
gies and practices have proven to be practicable for this paper. Specifically, the goal of 
SDM is to apply algorithms to infer the distribution of a particular species based on a set 
of geolocated occurrences of that species. The main problems are the limited number of 
observations, the bias of sampling and that in most cases only data on species presence 
can be drawn (Botella et al. 2018; Ward et al. 2009). Providing a workaround for this are 
so-called “pseudo-absence” data. In their simplest form, these are a randomly selected 
section of the background’s pixels and variables in its surroundings (Ward et al. 2009). 
SDM models can consequently be divided into the two subcategories of presence-only 
(PO) and presence-absence models (Ward et al. 2009). Thus, it is a binary classification 
problem and machine learning methods can be used in this case (Gastón and Garcia-
Viñas 2011).

Extent of the trial region

As shown in Figure 1, the trial region extends over large parts of Saarland.
As can be seen in Figure  1, the trial region belongs to the more rural part of Saar-

land. Overall, grid connection data from 36 (marked orange in Figure 1) of a total of 52 
municipalities in Saarland are available for this trial.

Grid data

Grid connections: Around 172,000 grid connections to the respective premises are 
available as geographic points for the trial region. These connections can be assigned 
to a local power grid substation (LPGS) and thus to its associated LV grid.
EV chargers: Certainly most relevant for this paper are the data on EV chargers. 
Data such as power rating, year of manufacture and associated LPGS are available 
as geographical points. The point-by-point data can be classified as EV chargers or 
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wallboxes, and a distinction can be made between “public” and “private”. Private 
wallboxes thus constitute the 437 private charging options registered with the grid 
operator, the distribution of which is shown in Fig. 1.
Substations: For grid calculations, the connections are spread over around 2500 
local power grid substations. These may be regarded as geographic points with their 
basic rated power.
Consumption data: As consumption data of the individual connections, the time 
series of their load profiles are available for this paper. These load profiles for each 
grid connection result from the capacity utilization factor that has actually been 
metered throughout the year. For the annual value, an average power value is stored 
using standard load profiles for a time series with 15 minute intervals.

Environmental variables

For this paper, in addition to the power grid data, sociodemographic grid data for all of 
Saarland are available through the data package “DDS Data Grid”. With a 100×100 m 
geographic grid, these data provide a basis for homogenizing a wide variety of demo-
graphic data. The sociodemographic data are supplemented with additional geographic 
location surroundings variables generated for this paper during the process of feature 
engineering.

• Basis: Absolute figures for buildings, households and persons
• Population: Relative shares of gender and age brackets
• Building: Relative shares of building categories (by number of households per build-

ing) and relative shares of residential, mixed-use and commercial buildings
• Purchasing power: Relative shares of 6 purchasing power categories and single / 

multi-person households

Fig. 1 Trial region and wallboxes
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• Feature Engineering: Intersection and categorization of existing features. Generation 
of information on PV installations, shares of "GREENS" party voters, EVs in the sur-
rounding cells (100 m radius), Buildings and their geographic area, garages per building, 
“Points of Interest” (POI) per building and distance from city center.

Derivation of SDM

For the purposes of this paper, an architecture can be derived from the SDM methodolo-
gies. Consequently, in the following, the data are assigned to the respective terms. For this 
application, the sociodemographic grid cells presented in the previous section along with 
the feature engineering data serve as background data. The specific geographic position of 
the wallboxes results in the observation data, which serve as positive input variables for 
model training. In the case of wallboxes, it is not possible to draw any conclusions regarding 
the actual absence of e-mobility, as potential customers for wallboxes could be located in 
all cells. Thus, with regard to a distribution model, the generation of pseudo-absence data 
would be appropriate. Here, as shown by best SDM practice, the largest possible segment is 
chosen and about 5000 random cells are taken as pseudo-absence data for training and test 
data. This corresponds to about 20% of the total background data.

Results
Distribution model

Model training

In this subsidiary step, four machine learning algorithms are trained on the basis of the 
training data. These are: OCSVM (One Class Support Vector Machine), logistic regression, 
random forest, and neural network. For each algorithm, a set of well-established hyper-
parameters is defined and cross-validation is performed for their combinations. For the 
three binary algorithms, the imbalanced dataset is balanced with the unequally distributed 
pseudo-absence data, using class weighting. A strong regularization was chosen for all algo-
rithms to counteract overfitting. Due to monotonicity in the data, the sigomoid activation 
function was chosen for the OCSVM and the neural network. With just one hidden layer, 
the neural network is not structured to be overly complex in this study. The number of hid-
den neurons is chosen to be about twice as large as the number of input neurons, which 
allows the model to learn to a greater depth of detail.

Model validation

To limit the spatial autocorrelation (see Griffith 1992) of the data, spatial cross-validation 
is used for model validation. The subsets for this validation are thereby generated from the 
municipalities (see Fig. 1). Thus, the algorithms are always trained for a subset of communi-
ties, their parameters optimized, and validated on a subset of “unseen” communities. Rob-
erts et al. (2017)

Results of trial runs and model selection

ROC curves

For the ROC curves (Fig. 2), the test data are analyzed according to the cells classified 
as correct positive and false positive. Curves are obtained that provide information 
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about all combinations of the output score in relation to the two positive rates. An ini-
tial indication of the quality of the models is provided by these curves. Regarding the 
false positive rate, it must be noted at this point that the negative examples concern the 
pseudo-absence data. These are a randomly chosen large selection of background data 
and therefore also “positively contaminated” to a certain degree. The stronger the “con-
tamination” of the data, the flatter the curves.

Model selection

Based on the test output as per AUC, the distribution of the output score and the inter-
pretability of the models, logistic regression is shown to be the most suitable algorithm 
for this use case despite a slightly worse AUC compared to the neural network.

Evaluation and depiction of distribution model

Evaluation of coefficients

One of the questions addressed in this paper is what external factors influence the dis-
tribution of wallboxes. This will be answered in this section by performing a coefficient 
analysis. Firstly, Fig. 3 shows on the left side in which direction and to what degree the 
coefficient influences the model. The right-hand window shows the variability of this 
value with cross-validation. A high degree of variability implies correlations or multicol-
linearity in the data. In summary, it can be said that, among other things, numerous PV 
installations, high purchasing power and many “GREEN” voters per cell will favor the 
prevalence of e-mobility, whereas extremely large and small population densities, large 
building plots, low purchasing power and a limited age group will militate against its 
adoption.

Geographical depiction

In this section, the results of the logistic regression will be presented geographically for 
the reader. In Fig. 4, this distribution can now be represented in a high-resolution geo-
graphic map. The result thus appears as a 100x100 m geographic grid showing probabili-
ties for the occurrence of wallboxes and depending on factors in the surroundings of the 

Fig. 2 ROC curves—model outputs from the test data
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cells. As can be seen in Fig. 4, the wallboxes that were known at the time of the study are 
mostly located in cells where the model outputs a high probability.

Simulation of wallbox distribution

For blanket simulation of the impact of wallboxes on the power grid, the first step is to 
simulate an appropriate predicted distribution. For this, the outputs of the distribution 
model from the foregoing section are taken and, based on these, weighted random sam-
pling is prepared. With the grid connection data and the geographic grid with its proba-
bility values, a probability can be assigned to each connection as a weighting factor. With 
these elements, a distribution simulation run can now be executed. To do this, each grid 
connection is extracted in turn from all connections depending on its assigned prob-
ability in successive simulation rounds. Each round defines a relative share of market 
penetration. A further distribution simulation parameter is the influence of the model. 

Fig. 3 Coefficient analysis of the logistic regression

Fig. 4 Segment from the geographical depiction of the E-mob GRID
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In order to raise the influence of the model, the simulation rounds are performed more 
frequently for each penetration level, while retaining the most frequently selected con-
nections in the simulation. In this way, the influence of the model can be increased and 
thus the degree of randomness can be lessened. Selecting simulation rounds of 1, 20 & 
100 proves to be the most appropriate for multiple simulations with different numbers 
of rounds. In the following simulations the influence of the model is expressed as textual 
parameter:

• Low: 1 simulation round
• Moderate: 20 simulation rounds
• High: 100 simulation rounds

Simulation of the impact on the power grid
With the distribution simulation data, information about the impact on an actual power 
grid can be obtained in this section. The focus hereby is on the calculated distribution of 
wallboxes. For this purpose, assumptions regarding the charging behavior and the load 
profiles of the connections are simplified and the connections of each LV grid are ana-
lyzed cumulatively in this paper.

Simulation structure (impact on grid)

For the simulation run, the data are thus considered at the level of the grid connec-
tion. The simulated connections are available as wallboxes. The load profiles and thus 
the starting point for grid capacity utilization without simulated wallboxes are provided 
by the grid connection data together with their consumption data. For simulating the 
capacity utilization, these two load data are considered aggregated at the local power 
grid substation (LPGS) level and reconciled with the respective nominal power ratings. 
In this paper, for the sake of simplicity we choose points in time that are to be found in 
the literature. The grid capacity utilization is considered for a period during 2018 from 
6:30 p.m. to 6:45 p.m., for one randomly selected working day in summer and one in 
winter. To test whether the currently installed infrastructures can cope with the simu-
lated charging profiles, the following parameters are considered:

Penetration: 1% to 30% market penetration is investigated for the trial region
Influence of the model: The degree of randomness of the simulation
Coincidence factor: Formula from (Roestel 2017) with multiple values for each sce-
nario
Average charging power: charging powers between 7 kW and 15 kW
Loading limits: Rated power (100%) of the transformers and 2/3 (67%) of this capac-
ity

From the parameters presented, different scenarios are derived for the simulation runs 
in this study. The goal in developing the scenarios is to achieve a result that is as realistic 
and informative as possible. For these simulation runs, the three scenarios from Table 1 
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are examined with regard to penetration, time of year, and possible coincidence factors 
( g∞).

Results of simulation runs
The above derived scenarios are examined here for their impact on the power grid. Each 
scenario is evaluated for different parameters. The focus is on wallbox market penetra-
tion, which serves for temporal ordering of the simulation runs. Also analyzed are the 
impact of the time of year and the coincidence factor. For a meaningful evaluation, 
among other things, the LV grids are considered at their peak capacity utilization. For 
this purpose, LV grids are split into their top 1 and 10% quantiles based on their relative 
capacity utilization and evaluated using the median.

Comparison of scenarios

From Fig. 5a, b, it is evident that the worst-case scenario stands out from the other sce-
narios, especially at the peak. Thereby, the differences between the scenarios are signifi-
cantly larger for the 1% quantile than for the 10% quantiles. For the top 1% of networks, 
impacts are already evident at low wallbox penetration. However, the gap between the 
scenarios only becomes apparent at moderate to higher penetrations. For the upper 10% 
quantiles, the curves diverge much later.

The impact of time of year on each outcome is evident in Fig.  5c, d. Here, com-
pared to the other scenarios, the worst-case scenario shows a significantly larger gap 

Table 1 Scenarios

Scenario Best case Mid case Worst case

Influence of the model Low Moderate High

Average charging power 7 kW 11 kW 15 kW

Coincidence factor g∞ ∈ [0, 25; 0, 4] g∞ ∈ [0, 2; 0, 35] g∞ ∈ [0, 15; 0, 3]

Fig. 5 Comparison of scenarios
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between the scenarios on a summer day than on a winter day. Thereby, PV instal-
lations that are still feeding into the grid at this time of day during summer can no 
longer cope with the EV charging load. Overall, the critical impacts in all scenarios 
are concentrated in a small percentage of all LV grids in the trial region. In the worst-
case scenario, with a maximum penetration of 30% and a realistic coincidence factor 
of 20%, up to 13% of the grids are impacted on a winter day (see Fig. 5c). In a best-case 
scenario with a coincidence factor of 30%, only up to 4% of all networks are impacted 
under the same conditions. Thus, in the near future, with a penetration of between 
5% and 10%, isolated limit violations are only to be noted under the assumption of 
extreme conditions. Considering a somewhat more distant future with a penetration 
of 10% to 20%, the grid load will be significantly higher. Here, already 1% in the best 
case and in the worst case up to 7% of the LV grids show limit violations. With a much 
higher proliferation of wallbox installations and a market penetration of up to 30%, 
almost 13% of the grids show limit violations under the worst conditions (see Fig. 5c).

Geographic evaluation

The simulation results show that isolated limit violations can occur in the power grids. 
By undertaking a geographic evaluation, the affected networks can be analyzed in the 
geographic region. The goal of a geographic evaluation is to show specific clusters in 
the trial region where the power grid exhibits vulnerabilities and, in addition, where 
a high prevalence of wallboxes is predicted. Thus, as shown in Fig. 6, the substations 
can be visualized on a map with regard to their geographic location and their relative 
capacity utilization. A perfunctory examination shows spatially distributed point-by-
point limit load violations in a worst-case scenario with the parameters shown, but 
also potential cluster zones. In these locations, there is thus a combination of a high 
density of simulated wallboxes and an infrastructure that is not designed to cope with 
this situation.

Fig. 6 Geographic evaluation of simulation results
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Conclusion
The more rural nature of the trial region of this study cannot serve as a reference for the 
whole of Germany, since, among other things, it is not transferable to an urban environ-
ment. In this respect, further studies could show how EV charging behavior in a densely 
populated urban setting would impact the power grid. Moreover, in the simulation of 
this study, only the impacts on transformers are gauged. However, as previous research 
has shown, violations of the voltage tolerance band may arise even before the equip-
ment is overloaded. Under the remit of this paper, neither these impacts nor violations 
of the thermal cable limits can be investigated. Further studies of these factors could 
reveal greater impacts on today’s power grid even at a lower wallbox market penetration. 
Another optimization would be the assumption that regions also differ geographically 
regarding the battery state-of-charge (SOC). The SOC greatly influences the coinci-
dence factor which, in turn, is a key driver of the grid load, as is evident in this paper. In 
conclusion, this paper has shown how potential vulnerabilities in the power grid can be 
identified, particularly if the geographic spread of e-mobility is not homogeneous. It is 
precisely for such cases that machine learning methods and models have proven to be 
useful tools for simulating the spread of e-mobility take-up and how to build on previous 
research, thus enabling predictions of power grid capacity utilization over an extensive 
region. These methods have shown that, in contrast to previous work, individual net-
works can become overloaded. These networks must be identified at an early stage in 
order to guarantee network stability.
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